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Abstract

Health literacy plays a critical role in ensuring
people can access, understand, and act on med-
ical information. However, much of the health
content available today is too complex for many
people, and simplifying these texts manually is
time-consuming and difficult to do at scale. To
overcome this, we developed a new framework
for automatically generating health answers at
multiple, precisely controlled complexity lev-
els. We began with a thorough analysis of 166
linguistic features, which we then refined into
13 key metrics that reliably differentiate be-
tween simple and complex medical texts. From
these metrics, we derived a robust complexity
scoring formula, combining them with weights
learned from a logistic regression model. This
formula allowed us to create a large, multi-
level dataset of health question-answer pairs
covering 21 distinct complexity levels, rang-
ing from elementary patient-friendly explana-
tions to highly technical summaries. Finally,
we fine-tuned a Llama-3.1-8B-Instruct model
using “control codes” on this dataset, giving
users precise control over the complexity of the
generated text and empowering them to select
the level of detail and technicality they need.

1 Introduction

Health literacy, which is the ability to obtain, pro-
cess, and understand basic health information, re-
mains a significant challenge worldwide. A sur-
vey conducted by the World Health Organization
(WHO) between 2019 and 2021 across 17 Euro-
pean countries found that between 25% and 75% of
people struggle with understanding health-related
information, with variation depending on country-
specific factors like education and healthcare access
(Pelikan et al., 2021).

In the United States, approximately 80 million
adults had limited health literacy as of 2018, with
disproportionately higher rates among older adults,
minority groups, and individuals of lower socioeco-

University of Aveiro
Aveiro, Portugal
tiagomeloalmeida@ua.pt

University of Aveiro
Aveiro, Portugal
aleixomatos@ua.pt

nomic status (Woods et al., 2023). These statistics
matter because people with lower health literacy
often struggle to understand medical terms, leading
to poorer health outcomes and increased healthcare
costs (Shahid et al., 2022). This issue becomes
even more important as more people turn to online
sources for health information. In 2022, 58.5% of
U.S. adults searched for health information online
(Wang and Cohen, 2022), yet studies show that
most health-related content online exceeds recom-
mended readability levels (Szmuda et al., 2020;
Mohile et al., 2023).

Large language models (LLMs) like GPT-4
(OpenAl, 2023), Med-PalLLM (Singhal et al., 2023),
and Claude (Anthropic, 2024) now generate health
information and are increasingly used in health-
care contexts. However, these models typically
produce text at a fixed complexity level, often too
advanced for many readers (Amin et al., 2024).
Current approaches to medical text simplification
focus on converting complex text into simpler ver-
sions (Gondy et al., 2018; Flores et al., 2023; Li
et al., 2024) rather than dynamically adjusting com-
plexity based on individual needs.

This gap presents an opportunity to develop lan-
guage models that can generate health answers
with adjustable complexity levels, a capability that
would make information more accessible to every-
one, regardless of their health literacy level.

2 Related Work

This section provides an overview of existing liter-
ature and previous research relevant to the scope of
this study.

2.1 Text Complexity and Readability
Assessment

The earliest attempts to measure text complexity
used simple formulas based on surface-level fea-
tures. Smith and Senter (1967) developed the Au-
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tomated Readability Index (ARI), which counts
characters per word and sentence length to esti-
mate reading difficulty. Shortly after, Kincaid et al.
(1975) created the Flesch-Kincaid Grade Level for-
mula, which also considers syllable counts and
remains widely used today for its simplicity and
reliability.

Zheng and Yu (2018) noted that standard formu-
las failed to capture medical complexity because
they ignored specialized terminology and semantic
relationships. They developed a ranking system
that compared documents relative to each other
rather than assigning absolute scores, using both
surface-level features and word embeddings to bet-
ter match human judgments of readability.

Jiang and Xu (2024) created MedReadMe, man-
ually annotating 4,520 medical sentences with read-
ability labels and identifying complex spans within
each sentence. They introduced “Google-Easy”
and “Google-Hard” categories based on how com-
monly terms appear in web searches. Their analy-
sis of 650 linguistic features revealed that medical
jargon density and syntactic complexity were the
strongest predictors of reading difficulty.

Devaraj et al. (2021) proposed using a masked
language model (MLM) to differentiate techni-
cal and lay medical text. Their method evaluates
how accurately a model trained on scientific litera-
ture predicts masked tokens, based on the observa-
tion that technical terminology is more predictable
within domain-specific contexts. Luo et al. (2022)
improved this method by focusing on noun phrases,
allowing multi-word medical terms like “heart at-
tack” to be treated as single semantic units.

While methods based on masked language mod-
eling have shown promise, they mainly focus on
single-word complexity. Lyu and Pergola (2024)
addressed this limitation with SciGisPy, a metric
rooted in Fuzzy-Trace Theory (FTT) (Reyna, 2012)
that evaluates how well simplified texts preserve
the core meaning (gist), emphasizing semantic co-
herence and the ability to form clear mental models.

2.2 Medical Text Simplification

Medical text simplification started with straightfor-
ward rule-based systems. For instance, Damay et al.
(2006) used techniques like lexical substitution and
sentence restructuring to make medical texts easier
to understand. Later, Kandula et al. (2010) took
this further by combining both semantic and syntac-
tic methods to simplify electronic medical records
and patient education materials.

The field progressed significantly with the de-
velopment of large-scale datasets for training lan-
guage models. Devaraj et al. (2021) created the
Cochrane dataset, which pairs technical abstracts
with lay summaries from the Cochrane Database of
Systematic Reviews. Using this parallel data, they
trained BART models with unlikelihood training,
explicitly penalizing the generation of tokens iden-
tified as technical language through a bag-of-words
classifier. Flores et al. (2023) replaced the bag-of-
words classifier with the Flesch-Kincaid readability
formula to identify and penalize complex words.
To prevent hallucinations that can occur when opti-
mizing solely for simplicity, they also incorporated
factual consistency into their loss function and de-
signed a beam search method that weighs both
readability and accuracy during decoding.

Basu et al. (2023) created Med-EASi, a finely
annotated dataset for simplifying medical texts
that identifies four types of textual transformations:
elaboration, replacement, deletion, and insertion.
With this dataset, they built T5-based models that
allow users to select specific medical terms and
control exactly how they should be simplified.

Lu et al. (2023) developed NapSS, a two-stage
“summarize-then-simplify” method for medical text
simplification that first identifies important sen-
tences using a summarizer trained on paired techni-
cal abstracts and their human-simplified versions,
and then extracts key phrases to create “narrative
prompts” that guide the language model during the
simplification process, helping preserve the logical
flow and medical accuracy of the original text.

Phatak et al. (2022) applied reinforcement learn-
ing to medical text simplification by designing re-
ward functions that balance content preservation,
Flesch-Kincaid readability scores, and lexical sim-
plicity. Rahman et al. (2024) later created Sim-
pleDC, a dataset of original and simplified texts re-
lated to digestive cancers. They fine-tuned LLaMA
models on this dataset and further improved them
using reinforcement learning, guided by a binary
classifier trained to detect simple language.

2.3 Controllable Text Generation

Recent research has explored ways to control text
readability during generation. Ribeiro et al. (2023)
developed methods for controllable summarization
using instruction-based prompting, reinforcement
learning with a Gaussian reward function that pe-
nalizes deviations from desired readability scores,
and lookahead decoding to anticipate how word
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choices impact readability.

Luo et al. (2022) focused on readability con-
trol specifically for biomedical text summariza-
tion. They first tried prepending special tokens as
prompts to the input and then tested a multi-head
architecture with separate decoders for different
readability levels. While the multi-head approach
helped create some distinction between technical
and plain language outputs, they found that the
level of readability control was still very limited.

Tran et al. (2024) introduced ReadCtrl, which
instruction-tunes language models to generate text
at specific readability scores on an almost continu-
ous scale rather than predefined categories. Mean-
while, Hsu et al. (2024) found that even with clear
instructions, language models often produce out-
puts that do not align with traditional readability
metrics. They also showed that readers generally
preferred explanations written at a high school
level, suggesting that there may be a sweet spot
of complexity balancing clarity and informative
content.

While prior work has focused primarily on bi-
nary simplification or relied on traditional readabil-
ity metrics that fail to capture the unique challenges
of medical terminology, we developed a more com-
prehensive framework that integrates multiple lin-
guistic features to accurately measure the complex-
ity of medical text and generate content at precisely
targeted readability levels.

3 Methods

This section details the framework developed for
automatically generating health answers at multiple
complexity levels, as illustrated in Figure 1.

3.1 Data Collection

We used two established datasets containing paired
original and simplified medical texts. Though these
datasets provide parallel texts at different complex-
ity levels, the “simplified” versions, while less com-
plex than the originals, are not always simple in ab-
solute terms. This relative simplification creates a
sliding scale rather than distinct complexity levels,
making it difficult to develop a reliable readability
formula. To overcome this limitation, we created a
synthetic dataset containing pairs of clearly differ-
entiated simple and complex medical texts.

3.1.1 Medical Text Simplification Datasets

We evaluated our metrics using two parallel corpora
of medical texts: PLABA (Attal et al., 2023) and

Cochrane (Devaraj et al., 2021). Both datasets in-
clude original medical texts paired with simplified
versions. PLABA contains sentence and paragraph-
level simplifications of biomedical abstracts, while
Cochrane focuses on paragraph-level simplifica-
tions of systematic reviews. More detailed descrip-
tions are available in Appendix A.1.

Table 1 summarizes the key characteristics of
the three datasets used in this stage of the project.

3.1.2 HSQA-Claude Dataset

We created a new dataset using Claude 3.5 Sonnet
to generate answers to questions from the Health-
SearchQA dataset (Singhal et al., 2023), which con-
tains 3,173 commonly searched consumer medical
queries. We manually identified and filtered out
questions that were not genuinely health-related to
ensure the quality and relevance of our dataset. For
each valid question, we prompted the model to pro-
duce one answer using technical medical language
suitable for healthcare professionals, and another
using simple language appropriate for patients with
limited health literacy. This approach provided
clearly differentiated examples of simple and com-
plex medical text covering the same information
content.

Dataset Source # Pairs
PLABA-sent PubMed abstracts 7,643
PLABA-para PubMed abstracts 750
Cochrane Systematic Reviews Database 4,459
HSQA-Claude  HealthSearchQA questions 3,150

Table 1: Parallel datasets used for text complexity anal-
ysis.

3.2 Metrics

We implemented 166 metrics to measure text read-
ability and complexity, covering various linguistic
dimensions. We chose this broad scope to com-
prehensively explore and identify the most robust
indicators of medical text complexity, given the
multifaceted nature of readability and the lack of
a single, universally agreed-upon metric in the do-
main. The following sections describe each cate-
gory of metrics we used in our analysis.

3.2.1 Traditional Metrics

We calculated 20 traditional readability formu-
las, including Flesch-Kincaid Grade Level (Kin-
caid et al., 1975), SMOG Index (McLaughlin,
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Figure 1: Framework for complexity-controlled health answer generation.

1969), and Coleman-Liau Index (Coleman and
Liau, 1975). These metrics estimate text difficulty
based on surface-level features like word length,
syllable count, and sentence length, working on the
general assumption that longer lexical units require
more cognitive effort, thereby making the text more
complex (Yu et al., 2020). Although not designed
for biomedical literature, they can serve as a useful
starting point to judge how easy or difficult a text
is to read and understand. We supplemented these
with 8 statistical measures capturing additional as-
pects of readability, including the proportion of
difficult words from the Dale-Chall list (Dale and
Chall, 1948) and lexical diversity metrics such as
TTR and MTLD (McCarthy and Jarvis, 2010).

3.2.2 Syntactic Structure

We implemented 16 syntax-based metrics using
spaCy (Honnibal et al., 2020) for dependency pars-
ing and part-of-speech tagging, organized into two
categories. For lexical distribution, we calculated
content-to-function word ratio, which compares
meaning-carrying words to grammatical words
(Just and Carpenter, 1992), and part-of-speech dis-
tributions to identify texts with higher noun density
typical of scientific writing (Biber et al., 1999). For
structural complexity, we measured dependency
distance (Gibson, 2000), passive voice proportion
(Ferreira, 2003), noun phrase length (Biber et al.,
1999), embedding depth (Gibson, 1998), negation
density, and left-right asymmetry (Hawkins, 2004).
These metrics capture aspects of syntactic com-
plexity that increase cognitive load, such as deeply
embedded clauses and words separated from their
grammatical dependents.

3.2.3 Medical Terminology and Jargon

We implemented 19 term-level metrics using
the Unified Medical Language System (UMLS)
Metathesaurus (National Library of Medicine,
2024) and Consumer Health Vocabulary (CHV)
(Zeng and Tse, 2006). For concept identifica-
tion, we used QuickUMLS (Soldaini, 2016), which
performs faster approximate dictionary matching
compared to MetaMap (Aronson and Lang, 2010).
These metrics include term density, expert-to-lay
ratio, semantic type diversity, and CHV familiarity
scores that measure how frequently terms appear in
consumer health materials (Keselman et al., 2007).

We also built a RoBERTa-large (Liu et al., 2019)
sequence tagger with Conditional Random Fields
(CRF), trained on the MedReadMe dataset to iden-
tify seven distinct categories of medical jargon as
defined by Jiang and Xu (2024). These categories
include easy and hard medical terms, medical en-
tities, complex terms, multisense words, and med-
ical and general abbreviations. This method en-
ables more fine-grained analysis than dictionary
lookups, capturing context-dependent terminology
and terms absent from UMLS. From this, we de-
rived 29 other metrics capturing jargon density, dis-
tribution across categories, and clustering patterns.

3.2.4 Gist Formation

We adapted GisPy (Hosseini et al., 2022), an open-
source tool based on Fuzzy-Trace Theory (Reyna,
2012), which measures how easily readers can un-
derstand the essential meaning of a text. GisPy
calculates scores for several components that con-
tribute to gist formation, including referential cohe-
sion (connecting ideas between sentences), corefer-
ence resolution (tracking entities throughout text),
deep cohesion (presence of causal connectives),
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and semantic verb overlap (relatedness of actions).
We modified the original implementation to use
BioSimCSE-BioLinkBERT-BASE (raj Kanakara-
jan et al., 2022), trained on biomedical literature,
making it more suitable for our task. We also
implemented SciGisPy (Lyu and Pergola, 2024),
which tailors GisPy for biomedical text simplifi-
cation. SciGisPy introduces domain-specific im-
provements, such as information content measures
derived from biomedical corpora and semantic
chunking to measure topic cohesion.

3.2.5 Masked Language Model

We implemented three MLM-based metrics using
Bio+Clinical BERT (Alsentzer et al., 2019), which
outperformed other BERT variants in our tests.
These metrics measure complexity by calculating
how predictable medical terminology is within con-
text. The first metric randomly masks 15% of to-
kens, the second specifically targets noun phrases,
and the third applies a ranking method (RNPTC),
which weighs phrases based on their prediction
probability (Luo et al., 2022). We found that in-
creasing the number of random masking iterations
from 10 to 30 significantly improved reliability by
reducing variance. As a result, the simpler random
masking approach became more effective than the
other two methods in distinguishing between tech-
nical and simplified texts.

3.2.6 Semantic Clustering

We built on the method introduced by Cha et al.
(2017), which uses word embeddings to measure
text complexity. In our implementation, each word
is mapped to a BioWordVec embedding (Zhang
et al., 2019), and these vectors are grouped using
K-means clustering. While the original implemen-
tation used 100 clusters, we increased this to 300 to
better reflect the distinctions in medical vocabulary.
We then create a count vector for how often words
fall into each cluster, which serves as a feature
vector for predicting readability. We trained two
separate Support Vector Regression (SVM) mod-
els, one using the CLEAR corpus (Crossley et al.,
2023), and another using the MedReadMe dataset
(Jiang and Xu, 2024) for medical texts.

3.2.7 ALBERT Transformer

We used the ALBERT-xxlarge model (Lan et al.,
2019) from the winning entry in the CommonLit
Readability Prize Kaggle competition (Malatinszky
et al., 2021). This model processes text through

attention layers to capture relationships between
words before predicting a readability score. Al-
though the original solution used an ensemble
of models, ALBERT-xxlarge was singled out by
the winner as especially important, thanks to its
parameter-sharing structure, which helps prevent
overfitting while still capturing complex language
features. The same model was later reused in the
REFeREE framework for evaluating text simplifi-
cation (Huang and Kochmar, 2024).

3.2.8 LLM Expert Evaluation

We created a hybrid method for evaluating text read-
ability using large language models as expert eval-
uators. Specifically, we prompted three 70 billion-
parameter models (Nvidia-Llama-3.1-Nemotron-
70B (Wang et al., 2024), Llama3-OpenBioLLM-
70B (Pal, 2024), and DeepSeek-R1-Distill-Llama-
70B (DeepSeek-Al, 2025)) to evaluate texts on
five dimensions: vocabulary complexity, syntac-
tic complexity, conceptual density, required back-
ground knowledge, and overall cognitive load.
Each model rated texts on a 1-5 scale using few-
shot prompting with three calibration examples that
we personally annotated. Because running multi-
ple large models is computationally expensive, we
trained a smaller and more efficient BioSimCSE-
BioLinkBERT-BASE model (raj Kanakarajan et al.,
2022) on the averaged LLM scores. This distilled
model not only processes texts much faster, but
also improves the results by smoothing out incon-
sistencies in the original LLM judgements.

3.3 Formula Development

After collecting and implementing the linguistic
features, we followed a systematic approach to se-
lect the most reliable features for our complexity
formula. Since we lacked human-annotated read-
ability scores, we developed a data-driven method-
ology to identify stable features that consistently
distinguished simple from expert-level medical
texts, using the datasets described in Section 3.1.

The feature selection process began by removing
features with absolute pairwise correlations above
0.7 to reduce collinearity and lower the risk of un-
intentionally excluding important features from the
final model. We then applied Lasso logistic regres-
sion with bootstrapping, adapting the methodology
described by Laurin et al. (2016), which involved
the following steps:

1. Creating 1,000 bootstrap samples from our
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training data using random sampling with re-
placement.

2. Fitting a Lasso logistic regression model to
each bootstrap sample to classify if a text was
written for experts or general audience.

3. Calculating the coefficient of variation (CV)
for each feature, defined as the standard devi-
ation divided by the mean absolute value of
the coefficient, across bootstrap samples.

4. Using the interquartile range (IQR) method to
exclude features with unstable coefficients by
calculating the upper fence (Q3 + 1.5 x IQR).
Features with CV exceeding this threshold
were considered outliers and removed.

5. Further filtering features if the 95% confi-
dence interval for the value of the coefficient
included zero.

We then trained our final logistic regression
model using only the HSQA-Claude dataset, which
contains controlled comparisons of text complex-
ity with a cleaner signal-to-noise ratio. For this
purpose, we used ElasticNet regularization to esti-
mate feature weights, as it balances the benefits of
both Lasso and Ridge regression and better handles
any remaining collinearity among features. This
process resulted in a final set of 13 metrics (listed
in Appendix B.1) after excluding those that per-
formed exceptionally well in one dataset but poorly
or inconsistently in others. These features were
likely overfitting to specific data characteristics and
were removed to improve generalizability.

3.4 Multi-Level Dataset

After developing and validating our complexity
formula, we created a medical dataset containing
answers rewritten at multiple levels of complexity
to train our controlled text generation model.

3.4.1 Source Datasets

We built our dataset using question-answer pairs
from five established medical datasets: LiveQA
(Abacha et al., 2017), MedicationQA (Abacha
et al., 2019), MEDIQA-AnS (Savery et al., 2020),
MedQuAD (Abacha and Demner-Fushman, 2019),
and BioASQ Task 13B. After cleaning and filtering
for quality, we retained 31,917 question-answer
pairs. Table 2 provides a brief overview of these
datasets, with detailed descriptions available in Ap-
pendix A.2.

Dataset Source # Pairs
LiveQA U.S.NLM 800
MedicationQA  NIH websites 690
MEDIQA-AnS  CHiQA-retrieved passages 312
MedQuAD NIH websites 16,423
BioASQ PubMed/MEDLINE articles 13,692

Table 2: Source datasets used to create our multi-level
medical QA dataset

3.4.2 Dataset Creation

For each question-answer pair in our source
datasets, we created five versions of the answer,
each written for a different audience, namely young
children, middle school students, high school stu-
dents, college graduates, and biomedical experts.
We generated these answers using the models de-
scribed in Section 3.2.8, with DeepSeek handling
70% of the generation, Nemotron 20%, and Open-
BioLLM 10%. This allocation was based on pre-
liminary experiments, which showed that using
multiple models helped capture a broader range of
writing styles for each education level.

We designed a prompt that generated all five
variants simultaneously, with answers becoming
progressively more complex (see Appendix C.3).
The prompt included three examples to guide the
models, descriptions of each target audience, and
instructions to keep the answers factually accurate.
It also instructed the models to flag any cases where
the original answer did not fully address the ques-
tion, allowing us to filter out problematic samples
from the dataset early on.

After generating the variants, we checked the
quality of all answers through a two-stage process.
First, we used regex patterns to identify and re-
move samples containing placeholder text instead
of proper content. Then we evaluated each vari-
ant against its original answer using metrics for
content preservation and factual accuracy, includ-
ing ROUGE (Lin, 2004), BLEURT (Sellam et al.,
2020), BERTScore (Zhang et al., 2019), UniEval
(Zhong et al., 2022), and SummaC (Laban et al.,
2022). The filtering identified relatively few prob-
lems and only 2,926 samples (1.56%) were re-
moved from the initial 187,769. This low rejection
rate was not surprising, since the variants were cre-
ated directly from the original answers. Most of the
issues found actually stemmed from contradictions
or inaccuracies present in the source material.
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Each variant was annotated using the complex-
ity formula described in Section 3.3. This gave us
raw scores between -34.56 and 31.99, which we
converted to a more practical 0-100 scale and then
binned into 21 categories labeled 0, 5, 10, and so on
up to 100, with each bin containing roughly 8,800
samples. These bins aligned reasonably well with
our original five levels, though with some natural
overlap between categories. For example, the ma-
jority of high school-level variants fell within bins
labeled 50-70, while college-level variants typically
ranged from 60-80.

The final dataset includes 184,843 answers for
36,969 questions. Each entry has the original ques-
tion, the reference answer, the variants at different
complexity levels, as well as the corresponding
evaluation metrics and complexity scores.

3.5 Model Fine-Tuning

After creating our multi-level dataset, we fine-tuned
a language model to generate medical text with con-
trolled complexity levels. We experimented with
two different methods: natural language instruc-
tions and control codes.

For natural language instructions, we used
prompts like “Answer the following question with
a complexity score of 75 out of 100.” For con-
trol codes, we added special tokens to the model’s
vocabulary (e.g., “<COMPLEXITY_75>") and
placed them at the beginning of each prompt. These
new tokens were initialized by positioning them
along a “complexity direction” in the embedding
space. We identified simple and complex anchor
words in the model’s vocabulary, created a vector
between them, and placed our tokens along this
vector. This gave the tokens semantic meaning
before training even began.

We selected Llama-3.1-8B-Instruct (Grattafiori
et al., 2024) as our base model and applied LoRA
fine-tuning (Hu et al., 2021) with rank 8, alpha
16, and a learning rate of 5e-5, and targeted all
projection matrices in the transformer architecture.

During training, we implemented context-aware
batching, grouping all answers for the same med-
ical question into a single batch. This helped the
model focus on the patterns that actually matter
and avoid spurious correlations. For example, if a
batch includes both simple and technical answers
about asthma, gradient updates adjust the model’s
weights to preserve important details, such as in-
flammation and breathing issues, while tailoring
the language to match the desired complexity level.

We found that using control codes worked better
than using natural language instructions. The train-
ing converged faster, and the model generated more
consistent responses at each complexity level.

4 Experiments and Results

This section details the evaluation of our complex-
ity scoring formula and the performance of our
fine-tuned model in generating text at specific com-
plexity levels.

4.1 Formula Validation

We evaluated our complexity scoring formula us-
ing data from the four datasets introduced in Sec-
tion 3.1. We trained the formula on 80% of the
HSQA-Claude dataset and tested it on the remain-
ing 20%, as well as the complete Cochrane and
PLABA datasets. This setup helped us determine
how well our formula works for different text types
and simplification strategies.

For comparison, we used two baselines. The
first was the Flesch-Kincaid Grade Level (FKGL),
which is the most popular and widely used read-
ability formula today. The second baseline
(marked with { in Table 3) corresponds to the best-
performing metric for each dataset, selected post
hoc from the full set of existing metrics.

To evaluate performance, we used three comple-
mentary statistical measures. Cohen’s d measures
the standardized difference between the means of
two distributions by indicating how many standard
deviations separate the simple and complex text
groups. The Area Under the Curve (AUC) mea-
sures how well the scoring method distinguishes
between the two classes, giving an estimate of the
probability that a randomly chosen complex text
receives a higher score than a randomly chosen sim-
ple one. Jensen-Shannon (JS) Divergence measures
the dissimilarity between two probability distribu-
tions by comparing their entire shapes rather than
just their averages or classification accuracy.

Figure 2 shows the score distributions of simple
(green) and complex (red) texts using our formula.
The HSQA-Claude dataset shows the clearest sep-
aration between the two groups, with virtually no
overlap. The Cochrane and PLABA-para datasets
also show good separation, although with more
overlap between the distributions. This likely hap-
pens because many of the so-called “simplified”
texts in these datasets still include difficult jargon
and remain relatively complex. The PLABA-sent
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dataset has the highest overlap, since shorter texts
often do not provide enough context to reliably
judge their complexity.

--- SimpleMean —-- Complex Mean =mm Simple ®mm Complex

Frequency

Score

Figure 2: Distribution of complexity scores in the four
parallel text datasets.

Table 3 compares our formula against the base-
line methods. While certain metrics occasionally
show slightly better results on specific datasets,
their performance fluctuates more from case to case.
In contrast, our formula consistently delivers strong
results regardless of text length, domain, or sim-
plification strategy. Moreover, perfect numerical
separation is not always ideal, as some degree of
overlap between distributions may actually reflect
genuine ambiguities or edge cases in the data, not
necessarily a flaw in the scoring method. In prac-
tice, what matters is how well a score captures the
perceived reading difficulty experienced by indi-
viduals with different levels of health literacy, not
just how cleanly it separates two labeled groups in
a curated dataset.

4.2 Model Performance

We evaluated the ability of our fine-tuned model to
generate text at specific complexity levels by com-
paring it to the original base model and a version us-
ing few-shot prompting. Using 100 questions sam-

Dataset Method Cohen’sd AUC ]S Div.
Our formula 1.21 0.80 0.16
PLABA-sent FKGL 0.58 0.67 0.05
+ 0.99 0.76 0.11
Our formula 1.86 091 0.34
PLABA-para FKGL 095 0.76 0.12
+ 1.89 091 0.32
Our formula 2.23 0.95 0.42
Cochrane FKGL 0.61 0.68 0.06
T 236 095 0.42
Our formula 6.40 1.00 0.69
HSQA-Claude FKGL 1.58 0.90 0.31
+ 6.11 1.00 0.67

T Represents the best-performing metric for each dataset.

Table 3: Comparison of readability scoring methods.

pled from HealthSearchQA (Singhal et al., 2023),
we generated responses at each target complexity
level and calculated the difference between the re-
quested complexity and the actual complexity of
the generated text.

Figure 3 shows the relationship between the tar-
get and the generated complexity levels for each
model. The fine-tuned model closely follows the
ideal diagonal line, particularly at lower and mid-
range levels. However, there is some compression
at the highest levels (80-100), an issue that requires
detailed examination in future studies. The few-
shot approach shows a step-like pattern, indicat-
ing that it captures general complexity trends but
lacks fine-grained control. Meanwhile, the baseline
outputs are clustered around a fixed level (~ 60),
showing little response to different targets.
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Figure 3: The ability of each model to generate text at
the desired complexity level.

4.3 User-Centric Evaluation

To better understand the practical impact of our
complexity control mechanism on end-users, we
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conducted a downstream evaluation using simu-
lated agents, powered by Claude Sonnet 4, as prox-
ies for human evaluators. This method was chosen
to overcome the logistical challenges associated
with recruiting and managing a large pool of human
participants with varying levels of health literacy.

We designed three user personas representing
low, medium, and high health literacy levels, with
specific prompts to influence how they interpret the
content. For instance, the low-literacy persona was
described as having “no medical training and rely
on everyday language,” while the high-literacy per-
sona was a “healthcare professional... comfortable
with medical terminology.” The full prompts used
for these personas are provided in Appendix C.4.

Each simulated user independently rated the re-
sponses along five quality dimensions on a scale of
1 to 5. These dimensions included understandabil-
ity (ease of comprehension), usefulness (practical
and actionable guidance), relevance (directness in
addressing the question), and factuality (medical
accuracy and reliability).

—e— low —e- Medium —e— High

Understandability Usefulness

a0 | e,

- ok \\ 1 . . o.
- \ \ \ .S:i:\.i,
15 \ \ .
10 \°

§ . Factuality Relevance
: : :>°*<:=::

0 5 50 7 100 o 5 50 75 100
Complexity Level

Figure 4: Evaluation scores from simulated user per-
sonas with low, medium, and high health literacy.

As shown in Figure 4, which presents average
scores for five complexity levels (0, 25, 50, 75, and
100), increasing complexity leads to a dramatic and
consistent drop in understandability for the three
personas, with scores declining approximately 40-
70% from the simplest to the most complex lev-
els. This suggests that although more complex
responses may contain richer information, they be-
come substantially harder to follow regardless of

the reader’s health literacy level. When it comes to
factuality, the scores remain relatively stable and,
in some cases, even show a slight improvement,
which indicates that changes in complexity do not
come at the cost of medical accuracy. On the other
hand, relevance and usefulness both vary greatly
depending on the persona. Simpler answers are
more helpful and relevant for users with low and
medium health literacy, whereas the high-literacy
persona seems to favor more complex responses,
though this benefit plateaus and slightly decreases
at the highest complexity level.

While these findings highlight the trade-offs in-
volved in adjusting complexity for different user
groups, it is important to acknowledge that sim-
ulated agents cannot fully replicate the nuanced
and multifaceted ways genuine human users pro-
cess and respond to medical information, including
their emotional reactions, personal health contexts,
and individual communication preferences. There-
fore, these results should be viewed as indicative
rather than definitive of actual human behavior.

5 Conclusions

We introduce a framework for creating medical
answers tailored to different health literacy levels.
We analyzed 166 linguistic features and defined a
scoring formula based on a smaller set of 13, incor-
porating domain terminology, syntactic complexity,
and signals from large language models, to reli-
ably distinguish simple from complex medical text.
Using this formula and public resources including
LiveQA, MedQuAD, and BioASQ, we created a
large dataset of 184,843 medical question-answer
pairs rewritten at 21 complexity levels, filling a gap
in training materials. We then fine-tuned a language
model to generate text at distinct complexity levels,
from very simple explanations to highly technical
content for medical professionals. This versatility
makes it useful in many healthcare settings. It can
help create personalized patient education materi-
als, support medical students as they learn more
advanced topics, and generate documentation for
healthcare providers, such as doctors and nurses.
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A Datasets

This appendix provides additional details about the
datasets used in our study, including the medical
text simplification datasets used to validate our eval-
uation metrics and the question-answer datasets
used to build our multi-level medical QA corpus.

A.1 Medical Text Simplification Datasets

We used two publicly available datasets of simpli-
fied medical texts to support the evaluation of our
complexity metrics and train our formula:

* PLABA (Attal et al., 2023): The PLABA
dataset contains 750 biomedical abstracts that
have been rewritten in plain language, total-
ing 7,643 sentence pairs. It was created by
scraping 75 common medical questions from
MedlinePlus and retrieving relevant paper ab-
stracts from PubMed. Human annotators then
simplified these abstracts by replacing techni-
cal terms with familiar synonyms (e.g., “or-
thosis” to “brace”), breaking down complex
sentences, and removing content that might
not be relevant to a general audience. We used
PLABA at both sentence and paragraph levels
to evaluate our complexity metrics.

* Cochrane Dataset (Devaraj et al., 2021):
The Cochrane Simplification dataset contains
4,459 pairs of technical medical texts and
their simplified versions, sourced from the
Cochrane Database of Systematic Reviews.
These paragraph-level simplifications are de-
rived from pls written for readers without
a university education and involve a mix of
paraphrasing, deletion, and summarization to
make the original texts more accessible.

A.2 Source Medical QA Datasets

To create our multi-level medical QA corpus, we
combined samples from five existing datasets that
represent a range of medical topics, question styles,
and answer formats:

e LiveQA (Abacha et al., 2017): The LiveQA
dataset includes real-world consumer health
questions submitted to the U.S. nlm during
the TREC 2017 LiveQA challenge. The orig-
inal release had 634 training pairs and 104
test questions, each with multiple reference
answers. After cleaning the data, we retained
800 question-answer pairs covering topics
such as diseases, treatments, medications, and
medical exams.

* MedicationQA (Abacha et al., 2019): The
MedicationQA dataset contains 690 consumer
questions about medications, each paired with
an answer from a trusted medical website,
such as MedlinePlus and DailyMed, address-
ing topics like drug usage, dosage, side effects,
and drug interactions.

* MediQA-AnS (Savery et al., 2020): The
MediQA-AnS dataset, created for the
MEDIQA 2021 challenge, includes 156 con-
sumer health questions, each paired with two
reference summaries (abstractive and extrac-
tive) both written by medical experts based on
passages retrieved using the CHiQA system
Demner-Fushman2020.

e MedQuAD (Abacha and Demner-Fushman,
2019): The Medical Question Answering
Dataset consists of 47,457 question-answer
pairs sourced from 12 websites managed
by the U.S. National Institutes of Health
(NIH), including MedlinePlus, cancer.gov,
and niddk.nih.gov. Due to copyright restric-
tions, we had to exclude over 31,000 entries,
leaving us with a total of 16,423 samples.

* BioASQ (Krithara et al., 2023): The BioASQ
Task 13B dataset, part of the 2025 BioASQ
challenge, includes 5,389 biomedical ques-
tions. Each question is paired with one
or more ideal answers, resulting in a total
of 13,692 question-answer pairs. These an-
SWers are concise, expert-written summaries
that draw from scientific literature, primarily
PubMed, and use precise biomedical terminol-

ogy.

1123


https://arxiv.org/pdf/1904.09675
https://arxiv.org/pdf/1904.09675
https://doi.org/10.2196/MEDINFORM.8611,
https://doi.org/10.2196/MEDINFORM.8611,
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.131
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.131

B Results and Performance

This appendix provides additional performance de-
tails and supporting results for the main experi-
ments described in the paper.

B.1 Selected Features

The following 13 metrics were selected for our final
complexity scoring formula, listed here along with
their coefficients.

B.1.1 LLM Vocabulary Complexity (3.217)

We use this score to estimate how difficult a piece
of text is to understand, based on evaluations from
the three 70-billion parameter models we described
earlier. Each model rated texts on a scale from 1
to 5, with higher scores indicating more complex
language. This feature has the largest positive coef-
ficient in our formula, confirming that vocabulary
choice drives most of the perceived difficulty in
medical texts.

B.1.2 Dale-Chall Score (1.839)

The Dale-Chall readability formula (Dale and
Chall, 1948) estimates how difficult a text is to
read based on the average sentence length and the
percentage of “difficult” words not found on a pre-
defined list of familiar words. In our implementa-
tion, we expanded the original list of 3,000 words
by including those from the Spache list. The posi-
tive coefficient in the formula shows that texts with
longer sentences and more unfamiliar words tend
to be significantly more complex.

B.1.3 Type-Token Ratio (0.173)

Type-token ratio (TTR) measures lexical diversity
by dividing the number of unique words (types) by
the total number of words (tokens) in a text. The
positive coefficient confirms that texts with more
diverse vocabulary contribute to higher complexity
scores, though with less impact than the vocabulary
complexity or the Dale-Chall readability formula.

B.1.4 ALBERT Transformer Score (-2.471)

We used the ALBERT-xxlarge model (Lan et al.,
2019) from the winning entry in the CommonLit
Readability Prize Kaggle competition (Malatinszky
et al., 2021). This model processes text through
attention layers to capture relationships between
words before predicting a readability score. The
negative coefficient appears because ALBERT as-
signs higher scores to texts that are easier to read,
which runs in the opposite direction of our scoring

system, where higher values indicate lower read-
ability.

B.1.5 Referential Cohesion (0.068)

This feature captures how well a paragraph main-
tains topical consistency by measuring the semantic
similarity between consecutive sentences (Lyu and
Pergola, 2024). To compute it, we embed each
sentence using BioSimCSE-BioLinkBERT-BASE
(raj Kanakarajan et al., 2022) and calculate the co-
sine similarity between adjacent sentence pairs. A
sharp drop in similarity, falling in the bottom 25%
of the distribution, marks a potential topic shift,
or “breakpoint.” We count the number of chunks
in each paragraph based on these breakpoints and
take the average over the entire text. The small pos-
itive coefficient may seem counterintuitive, since
texts that are more cohesive are usually easier to
read. However, this result suggests that even highly
technical medical texts in our datasets tend to main-
tain strong internal cohesion despite their complex
vocabulary.

B.1.6 Information Content (0.691)

This feature measures how specialized the vocabu-
lary is in a given text, based on how often each
word appears in a biomedical corpus (Lyu and
Pergola, 2024). The basic idea is that technical
terms tend to be rarer and harder to understand. To
build our reference corpus, we combined data from
biomedical and consumer health sources, includ-
ing MedQuAD (Abacha and Demner-Fushman,
2019), LiveQA (Abacha et al., 2017), Medica-
tionQA (Abacha et al., 2019), and other medical
datasets. We lemmatize each word in the corpus,
count how often each lemma appears, and calculate
its information content as the negative logarithm
of its probability. For any given text, we extract all
nouns and verbs, look up their information content
values, and calculate the average. The positive co-
efficient in our model supports the idea that texts
with a more technical and less common vocabulary
tend to be more complex.

B.1.7 Verb Ratio (-0.330)

Part-of-speech distributions measure the frequency
of different grammatical categories relative to the
total word count. We calculate separate ratios for
nouns, verbs, adjectives, adverbs, conjunctions,
and auxiliary verbs. A negative coefficient for verb
ratio indicates that texts with fewer verbs relative
to other parts of speech are rated as more com-
plex. This is consistent with research showing that
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academic and scientific writing tends to use more
nouns and fewer verbs (Biber et al., 1999).

B.1.8 Function Word Ratio (-0.596)

The content-to-function word ratio calculates the
proportion of content words (nouns, verbs, adjec-
tives, adverbs) to function words (auxiliaries, de-
terminers, prepositions, conjunctions) in a text. A
negative coefficient means that texts with more con-
tent words and fewer function words are seen as
more complex. This is because function words
help organize sentence structure, so when they are
used less frequently, the resulting text can be more
syntactically dense and cognitively demanding for
readers (Just and Carpenter, 1992).

B.1.9 Masked Probability Score (-0.049)

This metric evaluates how predictable words are in
biomedical text using a masked language model De-
varaj et al. (2021).. Specifically, we randomly mask
15% of the tokens and run this process 30 times,
then measure how accurately Bio+ClinicalBERT
can guess the original words. In general, techni-
cal or scientific writing tends to have more pre-
dictable language patterns, especially due to con-
sistent use of domain-specific terms. The negative
weight in the scoring formula helps balance out
other vocabulary-based metrics. It prevents pe-
nalizing texts that are technically dense but still
internally consistent and readable.

B.1.10 MedReadMe Cluster Score (0.295)

This score comes from a clustering-based word em-
bedding model trained on the MedReadMe dataset
(Jiang and Xu, 2024). Each word in the text is
converted into its BioWordVec embedding, then
assigned to one of 300 semantic clusters using K-
means clustering. The pattern of these assignments
forms a feature vector that represents how the vo-
cabulary is distributed across different semantic
categories. A positive coefficient means that texts
using vocabulary patterns similar to those found
in more complex medical content tend to receive
higher complexity scores.

B.1.11 Embedding Depth (-0.161)

Embedding depth measures how deep the hierar-
chical structure of a sentence goes in its depen-
dency tree. To calculate this, we identify the word
with the longest chain of grammatical dependen-
cies leading to the root of the sentence. A sentence
with greater embedding depth usually contains
more subordinate clauses (introduced by words like

“which,” “that,” “when”) and complex phrases em-
bedded within one another. This typically makes
text harder to process, as readers must track mul-
tiple incomplete grammatical relationships while
reading, increasing cognitive effort (Gibson, 1998).
However, in our corpus, the expert texts often used
more concise, noun-heavy sentences with fewer
nested clauses. In contrast, the simpler texts used
more explanatory language with embedded clauses
to break down complex concepts. This pattern ex-
plains the negative coefficient in our formula.

B.1.12 Average Dependency Distance (-0.826)

Dependency distance measures how many words
separate a dependent word (object or modifier)
from its head word (main verb or noun) in a sen-
tence. Longer distances increase cognitive load,
since the reader must keep track of the dependent
word while processing the words in between (Gib-
son, 2000). We calculate the average dependency
distance for each sentence and then find the overall
average for the entire text. Although this metric
correlates with higher difficulty when used alone,
the negative coefficient in our multivariate model
suggests an inverse relationship when considered
alongside other features.

B.1.13 Coreference Chains (-0.390)

Coreference resolution tracks how entities are refer-
enced throughout a text. When a document refers to
the same person, object, or concept using different
terms (e.g., pronouns, synonyms, or descriptions),
it creates coreference chains that help readers fol-
low who or what is being discussed. For instance, if
a text mentions “Dr. Smith” and later refers to her
as “she” or “the physician,” these references form
a continuous link to the same entity. To calculate
CoREF, we use FastCoref (Otmazgin et al., 2022)
instead of the Stanford CoreNLP implementation
previously used in GisPy (Manning et al., 2014;
Qi et al., 2020). We decided to make this switch
because CoreNLP was causing significant delays
in the processing pipeline, especially when work-
ing with longer documents. FastCoref, on the other
hand, not only performs on par with state-of-the-art
models but also runs much faster, completing tasks
in seconds that used to take minutes. Following the
same methodology as GisPy, we identify all coref-
erence chains in a document, calculate the ratio of
chains to sentences for each paragraph, and then
compute the final CoREF score as the average of
these paragraph-level scores. The negative coef-
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ficient indicates that complex medical texts often
contain fewer or shorter coreference chains, intro-
ducing new entities without established reference
patterns, which increases reading difficulty.

B.2 Quantitative Model Performance

The quantitative results in Table 4 confirm what
we see in Figure 3. The fine-tuned model out-
performs both alternatives in every metric, with
a mean absolute error (MAE) 23% lower than the
few-shot method and nearly 50% lower than the
baseline. The strong correlation coefficient (0.84)
and high R? value (0.66) together validate its ability
to consistently generate responses at the intended
complexity level.

Model MAE RMSE Correlation R2
Baseline 26.07 31.28 021 -0.07
Few-shot 17.33 22.03 0.69 047
Fine-tuned 13.30 17.63 0.84 0.66

Table 4: Comparison of how accurately each model
generates text at the desired complexity levels.

C Prompts

This appendix compiles the complete set of
prompts used throughout this work. These prompts
were integral to various stages of our research, from
dataset generation to text complexity evaluation,
and include placeholders for dynamic content that
was filled in during the actual runs.

C.1 Prompt for Generating the HSQA-Claude
Dataset

This prompt was used to generate the HSQA-
Claude dataset, introduced in Section 3.1.2. It
provides detailed instructions for generating expert-
level and patient-friendly answers to health-related
questions, handling ambiguous or off-topic ques-
tions, correcting grammatical issues, and format-
ting the output as a JSON array. The list of ques-
tions to be answered is represented by the place-
holder [QUESTION_LIST].

You are providing two types of answers
to health-related questions:

1. An expert answer written as if for
medical professionals (like in
clinical documentation or medical

education)

2. A patient—-friendly answer written as
if for a medical forum or patient
consultation

IMPORTANT INSTRUCTIONS::

1. For questions that don't
appear health-related:
— If there's any possible health

immediately

interpretation , treat it as a
health question
— Mark as "(wrong topic)" in the

question field if you are
confident it has no health
relevance

— Strive to provide a health-related
answer even if the question seems
unusual

— Example: "How do you make an IO
game?" is clearly not health -
related

— Example: "How do I make a paste?"

could be about medical adhesives
or food preparation for special
diets , so treat as health-related

2. For questions with spelling or
grammar issues:
— Fix any grammatical errors in

questions while preserving their
meaning
— Add missing articles (a, an, the)

where needed
— Correct subject—verb agreement
— Improve clarity but maintain the
original intent
— Example: "Is jaundice can be cured
7" "Can jaundice be cured?"
Example: "Is every white patch is
vitiligo ?" "Is every white
patch vitiligo ?"

Make sure to answer every unique
question in the provided order.

Questions :
[QUESTION_LIST]

General guidelines for all answers:

1. Vary response style naturally - avoid
rigid templates or repetitive
structures

2. Match answer length to the topic's
complexity — some need more context,

others can be brief

3. Expert answers don't need to be
longer than simple ones — focus on
clarity and accuracy

4. Adapt detail level to the specific

question and context
5. Ensure information is
factual
6. Avoid overused phrases or patterns in
medical writing
7. Structure responses

accurate and

logically and

coherently
Guidelines specific to expert answers:
1. Write in clinical documentation style

using precise medical terminology
2. Include key differential diagnoses
when relevant
3. Discuss diagnostic criteria and
clinical presentations
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4. Mention standard treatment approaches
and clinical decision-making
factors

5. Include relevant quantitative
information (rates , thresholds ,
timeframes)

6. Focus on assessment and management
considerations

7. Use professional medical syntax and
phrasing

Guidelines specific to patient—friendly
answers:

1. Use clear, accessible language
without medical jargon

2. Explain concepts in practical terms

3. Address common concerns and
misconceptions

4. Include appropriate reassurance while
being honest about risks

5. Use analogies ONLY when the concept
is complex and would genuinely
benefit from one

6. Focus on practical implications and
self —care when relevant

Format each Q%A pair as:
{

"question": "The health question",

"expert_answer": "Clinical —style
medical explanation",

"simple_answer": "Patient-—friendly

explanation"

The complete response should be a JSON
array:

"qa_pairs": [
/l Q%A pairs here
1
}

Return only valid JSON with no
additional text.

C.2 Prompt for Evaluating Text Complexity

This is the prompt used in Section 3.2.8, where
we evaluate the complexity of medical texts using
pre-trained language models. It asks the model
to rate a given text on five different dimensions
of complexity, using a scale from 1 to 5, and to
provide a brief explanation for each rating. The
text to be evaluated is placed at [TEXT], and the
model is guided by three annotated examples in-
serted into the placeholders [EXAMPLE_1_TEXT],
[EXAMPLE_1_EVALUATION], and so forth. We ini-
tially tried using JSON for the output format, but
since the models often generated invalid JSON, we
switched to XML because it is easier to parse and
less error-prone.

You are an expert in evaluating the
readability and complexity of texts.

Your task is to assess the given
text on several dimensions using a
scale from 1 to 5, where 1 is the
simplest and 5 is the most complex.

When evaluating the text, you must:

1. Assess each dimension independently
using the defined S5-level scale.

2. Provide a brief reasoning for your
assessment.

3. Ensure your evaluation is consistent
and well—justified .

The five dimensions and their levels (1
to 5) are defined as follows:

#x* Vocabulary Complexity #x*:

— 1: Very basic words, suitable for
young children.

— 2: Simple words, understandable by
most adults.

— 3: Moderate vocabulary, including some
technical terms.

— 4: Advanced vocabulary, with
specialized terms.

— 5: Highly technical or specialized
vocabulary , requiring expert
knowledge .

*x Syntactic Complexity #x*:

— 1: Very simple sentence structures ,
short sentences.

— 2: Basic sentence structures , mostly
simple and compound sentences.

— 3: Moderate complexity with a mix of
simple and complex sentences.

— 4: Complex sentence structures , with
subordinate clauses and intricate
syntax .

— 5: Highly complex syntax, with nested
clauses and sophisticated
constructions .

xxConceptual Density xx:

— 1: Single, straightforward ideas
presented one at a time.

— 2: Few related concepts introduced at
a manageable pace.

— 3: Multiple concepts with clear
connections between them.

— 4: Many interrelated concepts
requiring careful attention to
follow .

— 5: Dense with numerous abstract and
interrelated concepts.

xxBackground Knowledge #x*:

— 1: No special knowledge needed beyond
everyday experience.

— 2: Basic familiarity with the subject
area.

— 3: General education in the domain or
field discussed.

— 4: Considerable domain knowledge
required .

— 5: Expert—level knowledge in the field
necessary .

% Cognitive Loadx*:
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— 1: Minimal effort to process and

understand .

— 2: Some attention needed but generally
easy .

— 3: Requires focus and moderate effort.

— 4: Demands concentration and
significant mental effort.

— 5: Requires sustained intense
concentration and analytical
thinking .

Below are examples to guide your
assessment:

#xExample 1%
Text: [EXAMPLE_1_TEXT]
[EXAMPLE 1_EVALUATION]

#xBExample 2
Text: [EXAMPLE_2 TEXT]
[EXAMPLE 2 EVALUATION]

#xBExample 3
Text: [EXAMPLE_3_TEXT]
[EXAMPLE 3_EVALUATION]

Now, evaluate the following text:

ITEXT)

Place your response between <root> and
</root> tags in exactly this format:

<root>

<vocabulary_complexity >score </
vocabulary_complexity >

<syntactic_complexity >score </
syntactic_complexity >

<conceptual_density >score </
conceptual_density >

<background_knowledge >score </
background_knowledge >

<cognitive_load >score </cognitive_load >

<reasoning >brief explanation </reasoning>

</root>

Only include scores as between
1 and 5 within the tags.

Ensure each tag is properly closed with
the corresponding closing tag.

Do not include any additional text
outside the <root> and </root> tags.
Use only the specified XML format.

integers

C.3 Prompt for Generating Answer Variants

This is the prompt used to generate the answer
variants for the multi-level dataset described in
Section 3.4.2. It takes a question and a reference
answer, then generates a series of variants writ-
ten for audiences with increasing levels of back-
ground knowledge. The total number of variants,
along with the question and original answer, are
inserted into the placeholders [NUM_VARIANTS],
[QUESTION], and [ORIGINAL_ANSWER]. We also

provide three in-context examples and use XML as
the output format for the same reasons discussed in
the previous prompt.

You are an expert in creating
educational content for different
reading abilities. Your task is to
generate multiple answer variants
for the given question and original
answer , each at a specified
complexity level, while preserving
all factual information.

When generating each variant, you must:
1. Preserve ALL factual information from
the original answer and keep it

relevant to the question.

2. Adjust vocabulary, sentence structure
, and explanation detail to match
the complexity level.

3. Do not introduce substantively new
claims that aren't reasonably
implied by the original answer.

4. Ensure the answer is coherent and
well-structured .

5. If the original answer does not
directly address the question asked,
respond with: '[CONTENT MISMATCH]'
as the answer.

Complexity levels (1
as follows:

— 1: For a young child;
vocabulary , short
basic concepts.

— 2: For a middle school
basic scientific terms, clear
explanations , and moderate detail.

— 3: For a high school student; use
technical terminology , longer
sentences , and detailed explanations

to 5) are defined

use very simple
sentences , and

student; use

— 4: For a college graduate; use in-
depth technical details , complex
sentence structures , and scientific
language .

— 5: For a biomedical expert; use
advanced scientific terminology,
assume prior knowledge, and provide
precise details.

Below are examples of how to adjust
answers by complexity:

#xBExample 1

Question: [EXAMPLE_I_QUESTION]
Original Answer: [EXAMPLE_1_ANSWER]
[EXAMPLE_1_VARIANTS |

xx Example 2

Question: [EXAMPLE_2 QUESTION ]
Original Answer: [EXAMPLE 2 ANSWER]
[EXAMPLE_2_VARIANTS]

#xBExample 3

Question: [EXAMPLE_3_QUESTION]
Original Answer: [EXAMPLE_3_ANSWER]
[EXAMPLE_3_VARIANTS ]
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Now, generate [NUM_VARIANTS] answer
variants for the following question
and original answer. The variants
should be ordered from the simplest
to the most complex, reflecting a
gradual increase in complexity. For
each variant, assign a complexity
level from 1 to 5, where 1 is the
simplest and 5 is the most complex,
based on the definitions provided.

[ QUESTION ]
[ORIGINAL_ANSWER |

Question :
Original Answer:

Place your response between <root> and
</root> tags in exactly this format:
<root>
<variant >
<complexity_level >1</
complexity_level >
<answer>{Your first answer goes here
} </answer>
</variant >
<variant >
<complexity_level >2</
complexity_level >
<answer>{Your next answer goes here
} </answer>
</variant >

</root>

Ensure EACH variant has both <
complexity_level > and <answer> tags.

Each tag must be properly closed with
the corresponding closing tag.

Do not include any additional text

outside the <root> and </root> tags.
Use only the specified XML format.

C.4 Prompt for Evaluating Medical
Responses Using Simulated Personas

This prompt, used in Section 4.3, simulates how
individuals with varying levels of health literacy
interpret and rate responses based on five prede-
fined quality dimensions. The specific question and
its corresponding answer are dynamically inserted
into the prompt at the [QUESTION] and [ANSWER]
placeholders, while the background of the simu-
lated user is inserted at the start of the prompt in
place of [SIMULATED_USER_BACKGROUND].
The full evaluation prompt is shown below.

[SIMULATED_USER_BACKGROUND |

You must evaluate the medical answer
strictly from your own perspective
and level of health literacy. Do not
try to judge it from a general or
professional viewpoint unless that
matches your background.

Your task is to score the answer across
five dimensions on a scale from 1 to
5, where 1 is the lowest and 5 is
the highest.

The five dimensions and their levels (1
to 5) are defined as follows:

#xUnderstandability s=:
— 1: Very difficult to understand,
confusing language or concepts
— 2: Somewhat difficult, requires
to follow
— 3: Moderately understandable ,
generally clear
4: Easy to understand,
concepts
— 5: Extremely clear and accessible for
the intended audience

effort

well —explained

#x Usefulness

— 1: Not helpful, lacks practical value

— 2: Minimally helpful, limited
practical application

— 3: Moderately useful, provides some
actionable information

— 4: Very useful, offers clear guidance
or valuable insights

— 5: Extremely useful,
and comprehensive

highly actionable

xx Clarity #=:

— 1: Very confusing, many unclear or

ambiguous parts

— 2: Somewhat confusing, several unclear
elements

— 3: Generally clear with minor
confusing aspects

— 4: Clear and well-structured , easy to
follow

- 5: Exceptionally clear, no confusing
elements

#% Relevance #s:

— 1: Does not address the question,
completely off—topic

— 2: Minimally relevant, partially
addresses the question

— 3: Moderately relevant, addresses main
aspects of the question

— 4: Highly relevant, directly addresses
the question well

— 5: Perfectly relevant, comprehensively
addresses all aspects

#x Factuality s=:

— 1: Contains significant medical

inaccuracies or misinformation

Contains some questionable or

potentially inaccurate information

— 3: Generally accurate with minor
issues or omissions

— 4: Medically accurate and reliable
information

— 5: Completely accurate ,
, and up—-to-—date

- 2:

evidence —based

Question: [QUESTION]
Answer: [ANSWER]

Respond using only the following JSON
format, without any additional text
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or explanations:
“Tjson

"reasoning": "Brief reasoning for
scores (optional , not required)
"

"understandability ": 1-5,

"usefulness": 1-5,
"clarity ": 1-5,

"relevance": 1-5,
"factuality ": 1-5

C.5 Persona Definitions

Each evaluation was run using one of the
following user personas, inserted at the
[SIMULATED_USER_BACKGROUND] placeholder in
the prompt above:

* Low Health Literacy: You are a person with
low health literacy evaluating medical infor-
mation. You have no medical training and rely
on everyday language to understand health
topics. You struggle with medical jargon and
need simple, clear explanations.

* Medium Health Literacy: You are a person
with moderate health literacy evaluating med-
ical information. You have some familiarity
with common medical terms through personal
experience, general education, or caring for
family members. You can understand basic
medical concepts but may struggle with highly
technical information.

High Health Literacy: You are a healthcare
professional or medical student evaluating
medical information. You have extensive med-
ical training and are comfortable with medical
terminology, clinical concepts, and evidence-
based practice.

D Model Output Examples

This appendix presents example responses gener-
ated by our fine-tuned language model for the med-
ical question “Can asthma be cured?” across five
different complexity levels (see Table 5). Each
response was generated using a specific control to-
ken to target the desired complexity level, ranging
from O (most accessible) to 100 (most technical).
These examples demonstrate how the model adapts
its language, terminology, and depth of explana-
tion based on the specified complexity target while
maintaining medical accuracy throughout all levels.

E Limitations and Future Work

While our work has made meaningful progress in
simplifying medical texts, it also has some impor-
tant limitations.

First, we focused only on English. The features
we used to measure complexity, especially those
tied to medical terms, may not translate well to
other languages that have different grammar rules
or naming conventions in medicine.

Second, we developed our complexity formula
without using human feedback. Instead, we as-
sumed that the best formula is the one that maxi-
mizes the gap between simple and complex texts,
following a set of heuristics we defined based on
our understanding of the data. However, perceived
complexity is subjective and can vary depending
on a person’s background, reading ability, and fa-
miliarity with medical concepts. Therefore, testing
with real users would be necessary to confirm if
the formula aligns with human judgments. Fur-
thermore, because the formula is a simple linear
equation, it can be “gamed.” For example, shorten-
ing sentences or swapping in simpler words could
reduce the complexity score without making the
text any easier to understand. A possible solution
would be to follow the same approach we used in
Section 3.2.8, distilling the scores into a language
model to smooth errors and reduce the impact of
outliers. We chose a simple, interpretable formula
here, but future work should explore more flexible,
non-linear models.

Another concern is the use of synthetic data for
training. Even with filters in place, the dataset
might still include outdated or inaccurate medical
information carried over from the original sources.
We also did not evaluate our model against external
benchmarks or state-of-the-art systems like GPT-4
or Claude, and lacked specialized datasets to mea-
sure factual accuracy and relevance when control-
ling the complexity of the answers. More impor-
tantly, the model was not tested longitudinally with
actual users.

Finally, we did not explore alternative methods
for measuring text complexity. For example, train-
ing models to predict which of two texts is more
complex (as in learning-to-rank frameworks) rather
than assigning absolute scores could be an alterna-
tive approach to evaluate text readability.
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Control Code

Generated Output

<COMPLEXITY_0>

Asthma can’t be fully “cured,” but you can manage it. Treatments help control symptoms and
prevent attacks, making life easier for those with the condition.

<COMPLEXITY_25>

No, there is currently no cure for asthma. However, symptoms can often be managed with the
use of medications and other treatments that help control inflammation in your lungs so you
don’t experience as many attacks. You’ll likely need to work closely with a doctor or
healthcare provider to develop an action plan to manage your condition effectively. Some
people have periods when they are free from symptoms (remission), but this doesn’t mean
their underlying disease has gone away. If left untreated, asthma will always get worse over
time; if not treated properly, it may cause permanent damage to lung tissue, which could lead
to chronic obstructive pulmonary disease (COPD). While it’s possible to make lifestyle
changes such as quitting smoking or avoiding allergens to reduce flare-ups, managing asthma
requires ongoing medical attention.

<COMPLEXITY_50>

Asthma is a chronic condition with no cure, but its symptoms can be effectively managed
through medication and lifestyle adjustments. The primary goal of treatment is to prevent
exacerbations by maintaining optimal control over the disease process. This involves using
inhaled corticosteroids as maintenance therapy for most patients, alongside other medications
such as bronchodilators or biologics based on specific clinical needs. By adhering strictly to
prescribed treatments under medical supervision, individuals with asthma can significantly
reduce their risk of acute attacks, minimize disruptions to daily life, and improve overall
quality of living despite ongoing management requirements.

<COMPLEXITY_75>

Asthma is a chronic inflammatory airway disease characterized by hyperresponsiveness to
various stimuli, leading to recurrent episodes of wheezing and dyspnea. While the condition
itself cannot be definitively “cured” due to its inherent pathophysiology involving complex
interactions between environmental triggers, genetic predisposition, immune system
modulation, and structural changes in the lung parenchyma, therapeutic interventions can
significantly mitigate symptoms and improve quality of life for affected individuals through
targeted management strategies aimed at modulating inflammation, reducing
bronchoconstriction, enhancing pulmonary function, and minimizing adverse effects on
health-related outcomes such as exercise capacity or cognitive performance. These
interventions encompass pharmacological agents (e.g., corticosteroids), non-pharmacologic
modalities like physical activity and avoidance of irritants, along with advanced technologies
including mechanical ventilation support during acute exacerbations, highlighting an
integrated approach that balances symptom control with prevention-oriented care models to
enhance overall well-being and reduce long-term morbidity associated with this common
respiratory disorder.

<COMPLEXITY_100>

Asthma is a chronic inflammatory disorder characterized by reversible airflow obstruction,
manifesting as episodic wheezing and dyspnea. While no definitive “cure” exists for asthma
due to its complex pathophysiology involving multiple cell types and mediators in the airway
mucosa, therapeutic strategies can effectively manage symptoms and prevent exacerbations
through targeted interventions aimed at modulating inflammation, enhancing bronchodilation,
reducing allergen sensitization, and improving patient adherence to treatment regimens.
Notably, recent advances in precision medicine have enabled personalized approaches
tailored to an individual’s genetic predisposition, environmental exposures, and molecular
phenotypic characteristics of their disease state, thereby optimizing outcomes across various
subpopulations within this heterogeneous condition.

Table 5: Example of model responses at different complexity levels for the question “Can asthma be cured?”

1131




