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Abstract

Due to strict privacy regulations, text corpora
in non-English clinical contexts are scarce.
Consequently, synthetic data generation using
Large Language Models (LLMs) emerges as
a promising strategy to address this data gap.
To evaluate the ability of LLMs in generating
synthetic data, we applied them to our novel
German Medical Interview Questions Corpus
(GerMedIQ), which consists of 4,524 unique,
simulated question-response pairs in German.
We augmented our corpus by prompting 18
different LLMs to generate responses to the
same questions. Structural and semantic eval-
uations of the generated responses revealed
that large-sized language models produced re-
sponses comparable to those provided by hu-
mans. Additionally, an LLM-as-a-judge study,
combined with a human baseline experiment
assessing response acceptability, demonstrated
that human raters preferred the responses gener-
ated by Mistral (124B) over those produced
by humans. Nonetheless, our findings indicate
that using LLMs for data augmentation in non-
English clinical contexts requires caution.

1 Introduction

Textual medical data is crucial for developing and
validating Natural Language Processing (NLP) ap-
plications within clinical contexts. While there are
large, high-quality datasets available for English
(e.g., MIMIC by Johnson et al. (2016)), accessible
German clinical documentation typically remains
sparse (Hahn, 2025). This is often due to stringent
privacy constraints, restricted access to secure en-
vironments, or a lack of accessible corpora. While
the creation of such shareable datasets should be
viewed as the optimal solution, it is time-, labour-,
and resource-intensive (Meineke et al., 2023; Lohr
et al., 2024). A quicker and more lightweight alter-
native is data augmentation using Large Language
Models (LLMs) (Piedboeuf and Langlais, 2024).

However, the use of LLMs as robust data genera-
tion engines in the clinical domain remains largely
underexplored, particularly regarding their capabil-
ity to reliably simulate realistic clinical interactions
between physicians and patients.

With this paper, we release the German Medical
Interview Questions Corpus (GerMedIQ), a dataset
consisting of 116 questions from standardized Ger-
man anamnesis questionnaires and 39 simulated
human responses each. Moreover, we explore the
possibility of using LLMs in generating synthetic
responses to those questions, specifically focusing
on their ability to adopt the role of the patient.1 The
central question guiding our investigation is: Can
LLMs effectively serve as synthetic data generators
in the context of clinical anamnesis? Further, our
experiments allow us to assess whether the same
set of LLMs can also serve as judges.

2 Related Work

The following section provides an overview of ex-
isting medical interview datasets and dives deeper
into the literature on synthetic data generation in
the biomedical and clinical domains.

2.1 Medical Conversational Datasets

Researchers have collected real and simulated med-
ical conversational datasets, mostly for training
conversational artificial intelligence (AI) systems.

The largest real-world conversational dataset
from the medical domain is MedDialog: Zeng
et al. (2020) compiled a Chinese corpus with 3.4M
doctor-patient interactions and an English corpus
with 260K such conversations, covering numerous
medical specialities. The researchers showed that
models trained on the MedDialog dataset produced

1Throughout this paper, we differentiate between simu-
lated and synthetic data: Both terms describe data that approx-
imates real clinical data. We use the term simulated when
the text was produced by humans, and synthetic whenever a
machine generated it.
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accurate medical conversations. Similar results are
reported by Pieri et al. (2024) on models that were
trained on BiMediX, a corpus combining 1.3M real
and 200K synthetic English-Arabic clinical conver-
sations. Xu et al. (2022) collected the RealMedDial
dataset, consisting of 24K utterances from Chinese
telemedical interviews, to train and improve medi-
cal dialogue systems. Saley et al. (2024) released a
corpus of 22K English doctor-patient dialogues for
medical history taking, and the dataset may serve
task-oriented conversational AI systems. Another
non-English corpus with Spanish counseling ses-
sions includes 800 medical questions and about
400 expert reflections (Gunal et al., 2025). Gratch
et al. (2014) collected the DAIC corpus with about
500 psychological English interviews for diagno-
sis support. The only medical interview corpus
that includes German that we are aware of is DiK,
which contains roughly 120 audio recordings with
transcriptions of doctor-patient interactions in Ger-
man, Portuguese, and Turkish as well as interpreted
conversations to study interpretation in clinical mul-
tilingual scenarios (Bührig and Meyer, 2009).

In order to boost the automatic summarization
abilities of LLMs as well as clinical note genera-
tion, Ben Abacha et al. (2023) collected a 1.7K cor-
pus of simulated interactions between physicians
and patients. Fareez et al. (2022) crafted a mul-
timodal dataset consisting of 272 medical conver-
sations derived from simulated cases focusing on
respiratory diseases. Similarly, Papadopoulos Ko-
rfiatis et al. (2022) created a small, multimodal
corpus for primary care consultations. Sanni et al.
(2025) generated a dataset with medical and non-
medical conversations in different African accents
to enhance automatic speech recognition systems.

2.2 Synthetic Data Generation in the
Biomedical Domain

The generation of synthetic data and the collec-
tion of simulated data have both evolved over the
last years to overcome the shortage of clinical data
caused by privacy constraints. Usually, data aug-
mentation workflows are built upon existing data,
where parts of datasets are paraphrased or back-
translated by a model (Rentschler et al., 2022).
Since the advancement of LLMs, researchers have
been able to generate synthetic data completely
independently from existing data sources, and
Piedboeuf and Langlais (2024) showed that LLM-
generated data increases model performance much
better than paraphrasing or back-translations.

Typical reasons for the increasing interest in syn-
thetic data generation are cost efficiency, scalability,
control over the diversity and balance of data, and
reduced privacy concerns, especially in healthcare
(Liu et al., 2024; Nadas et al., 2025). This is un-
derpinned by Hahn (2025), who states that besides
domain proxies (e.g., guidelines) and translated
real clinical datasets (e.g, in non-English contexts
MIMIC-derived datasets), simulated or synthetic
textual data are crucial for NLP applications in the
clinical domain. Examples of existing German sim-
ulated text corpora are JSYNCC (Lohr et al., 2018)
and GRASCCO (Modersohn et al., 2022).

A known disadvantage of LLM-generated data
is their vulnerability to biases and hallucinations,
potentially leading to counterfactual, unrealistic,
or semantically implausible synthetic corpora (Yu
et al., 2023; Hicks et al., 2024; Liu et al., 2024;
Hahn, 2025; Nadas et al., 2025).

Synthetic data generation has been applied suc-
cessfully in boosting LLMs’ performance on arith-
metics (Geva et al., 2020), information retrieval
(Xiong et al., 2024), or named entity recognition
(NER) (Lu et al., 2024). But also in the biomedical
domain, data augmentation improved the perfor-
mance of ICD-9 and ICD-10 code labeling (Ku-
michev et al., 2024; Sarkar et al., 2024) or other
clinical NER tasks (Šuvalov et al., 2025); synthetic
radiology reports helped to classify misdiagnosed
fractures (Liu et al., 2025) and medical LLMs
trained on synthetic text only even outperformed
ones trained on real data (Peng et al., 2023).

3 Dataset: The GerMedIQ Corpus

We present the German Medical Interview Ques-
tions Corpus (GerMedIQ), consisting of 116 stan-
dardized anamnesis questions answered by 39 par-
ticipants, resulting in 4,524 simulated unique Ger-
man question-response pairs.2 To the best of our
knowledge, this is the first anamnesis interview
question-response dataset for German.

3.1 The Corpus Collection

The interview questions were extracted from a mix-
ture of standardized questionnaires and basic anam-
nesis questions used at the University Medical Cen-
tre Mannheim (UMM).

2The GerMedIQ Corpus and the LLM-augmented re-
sponses are available at Zenodo (https://www.doi.or
g/10.5281/zenodo.15774407) and GitHub (https:
//github.com/Jhofenbitzer/GerMedIQ-Corpus).
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We selected the Barthel Index (Mahoney and
Barthel, 1965), the EORTC Quality of Life Ques-
tionnaire (Aaronson et al., 1993), and the PainDE-
TECT Questionnaire (Freynhagen et al., 2006),
which are actively used in everyday clinical rou-
tines. The Barthel Index is designed to assess the
functional abilities, e.g., mobility, to track changes
in long-term patients. The EORTC Quality of Life
Questionnaire is used to evaluate the physical, psy-
chological, and social well-being of cancer patients.
The PainDETECT Questionnaire screens neuro-
pathic pain components in patients with chronic
diseases. In addition, we compiled anamnesis ques-
tions from clinical routine interviews done at UMM
covering a wide variety of topics like basic body
characteristics, e.g., weight, or the medical his-
tory of a patient.3 Some questions were slightly
rephrased for consistency reasons.

Table 1 shows the distribution of questions
across the full list of questionnaires. Due to privacy
regulations, we could not collect responses from
real patients and instead recruited laypeople with-
out previous formal medical knowledge or known
medical history. The rationale behind this decision
is that no medical knowledge should be required
to answer anamnesis questionnaires. In order to
obtain realistic responses, the participants were in-
structed to give ‘appropriate’, i.e., grammatically
well-formed and contextually reasonable responses
without disclosing any personally identifiable in-
formation. Although no detailed patient profiles
were provided, participants were encouraged to
answer as plausibly as possible, drawing on their
own understanding or interpretation of hypothet-
ical clinical scenarios. All participants answered
all questions online on MyMedax4. The survey
took each participant roughly 40 minutes, and they
received monetary compensation.
The GermMedIQ corpus contains three different
question types: 12 Wh-questions (WhQ), 59 po-
lar questions (PQ; yes/no-questions), and 39 ques-
tions that combine the two syntactic types (CQ).
While PQ semantically denote a binary set of
propositions (i.e., either confirming or rejecting the
question), WhQ are known to have a significantly
larger response space (e.g, cf. Hamblin, 1958, 1973;
Karttunen, 1977; Groenendijk and Stokhof, 1984).
Three sample questions per question type, together

3Some of the baseline questionnaires are inspired by
Kuhlmann et al. (2022) and the ‘Deutscher Schmerzfrage-
bogen Version 12/2024’.

4https://mymedax.de

Questionnaire N

Baseline: Previous Medical History 19
Baseline: Anamnesis Assessment 16
Baseline: Basic (Subjective) History 16
EORTC QLQ 30 14
PainDetect Questionnaire 9
Barthel Index 8
Baseline: Patient Characteristics 7
Baseline: Patient Circumstances 7
Baseline: Immune System 6
Baseline: Senses 5
Baseline: Cardiovascular System 3
Baseline: Airways 2
Baseline: Existing Documents 2
Baseline: Teeth 1
Baseline: Upper Abdominal Organs 1

Total 116

Table 1: Distribution of questions per questionnaire.

with potential responses, can be seen in (1) - (3).

(1) Waren Sie kurzatmig? (Have you experi-
enced shortness of breath?)
a. Ja (Yes)
b. Nein, es gab keine Probleme (No,

there were no problems)

(2) Wie oft trinken Sie Alkohol pro Woche?
(How often do you consume alcohol per
week?)
a. Ich trinke zwei Bier (I drink two beers)
b. Ich trinke nicht (I don’t drink)

(3) Üben Sie regelmäßig einen bestimmten
Sport aus? Falls ja, bitte nennen Sie
die Sportart (Do you exercise a specific
sport regularly? If so, please specify which
sport.)
a. Ich gehe regelmäßig schwimmen (I go

swimming regularly)
b. Ich spiele Tennis, dienstags im Verein

(I play tennis, every Tuesday with my
club)

3.2 Data Augmentation Process

We augmented the human-produced GerMedIQ
corpus with machine-generated, synthetic re-
sponses from 18 open-weight LLMs without fine-
tuning in a zero-shot approach. We selected a
vanilla and, if existing, a biomedically fine-tuned
variant of each LLM, ranging over different archi-
tectures and sizes. Table 2 summarizes the key
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characteristics of the models used.5 Each model
was instructed to respond to the upcoming anamne-
sis question as if it were a real patient. All models
were exposed to the same prompt written in Ger-
man, and we collected five independent responses
from each model in a stateless setup.6 Inference on
an NVIDIA A40 48GB took overall ≈ 6.5 hours.

Model Parameters Domain Size

flanT5 Base (standard) 250 M general S
flanT5 Base (medical) 250 M biomedical S

BioGPT 347 M biomedical S
BioGPT MedText 347 M biomedical S

Llama 3.2 1.0 B general S
Bio Medical Llama 3.2 1.0 B biomedical M
Llama 3.2 3.0 B general M
Llama 3.3 70.0 B general L

Phi 4 Mini 3.8 B general M

Gemma 3 4.0 B general M

Bloom CLP German 6.4 B general M

Qwen 2.5 7.0 B general M
Qwen UMLS 7.0 B biomedical M

R1 Qwen 8.0 B general M

Mistral 7.0 B general M
BioMistral 7.0 B biomedical M
Ministral 8.0 B general M
Mistral 124.0 B general L

Table 2: Overview of two encoder-decoder (flanT5)
and 16 decoder-only models used for synthetic data
generation.

4 Evaluation of synthetic data points

While it is straightforward to generate synthetic
data with LLMs, the evaluation of the output has
to be conducted carefully. To evaluate the quality
of machine-generated responses and compare them
with the human-generated ones, we performed two
studies targeting structural and semantic properties
of the output and one acceptability study.

4.1 Structural Evaluation

As a first approximation to the differences between
human-produced and machine-generated responses
to anamnesis interview questions, we measured
the syntactic and grammatical properties of each
type. In order to get realistic results, we decided
to remove all model-internal tokens, e.g., end-of-
sequence tokens, from the original strings of the
synthetic LLM responses. If a response consisted

5Model references are listed in Table 6 in Appendix A.1.
6Find the prompt in Figure 3 in Appendix A.2.

exclusively of such tokens, we removed it from
further analyses. In total, we filtered out 273 re-
sponses, 136 produced by BioGPT MedText and
137 by Gemma 3 (cf. the last column in Table 3).

We used DOPAMETER (Lohr and Hahn, 2023)
to retrieve the average number of tokens and char-
acters, the type token ratio (TTR), as well as the
average and maximum dependency distance from
the responses. We aggregated the responses by
model domain, size, question type, and all their in-
teractions prior to computing the results.7 While
the token and character counts per response cap-
ture the average length of the given responses, TTR
divides the number of distinct word forms by the
total number of tokens and gives insights about
the observed lexical diversity within the responses
(Peirce, 1906). The average and maximum depen-
dency distance measures the linear distance be-
tween all syntactic heads and their dependents and
indicates how complex sentences are.

Table 3 shows that humans formulated shorter re-
sponses than models, regardless of their size, their
domain, or the given question type. For exam-
ple, human responses to PQ were about six tokens,
while general-domain medium-sized LLMs pro-
duced answers of on average more than eleven,
which is an increase of 83.3%. This trend is also re-
flected in the grammatical complexity, operational-
ized as the dependency distance: Human responses
show lower average distances between syntactic
heads and their dependents, indicating less com-
plex sentence structures, compared to all groups of
models. Moreover, responses to WhQ were on av-
erage about two tokens shorter and showed a lower
average dependency distance than those to PQ or
CQ for humans, medium, and large LLMs. The
maximum dependency distance, i.e., the biggest
distance between a token and its dominating head,
does not show much variance for the answers
given by humans (5.05-5.58), biomedical medium
(6.59-7.81), and large LLMs (4.71-5.32). Small
LLMs produce responses with higher complexity
(general: 8.41-11.78, biomedical: 9.66-16.08), and
medium-sized general-domain LLMs generated re-
sponses with very high maximum dependency dis-
tances (24.50-42.23). The evaluation of the lexical
diversity in the responses did not reveal relevant
differences.

7We consider small (S) models having 1B or fewer param-
eters, medium-sized (M) models having more than 1B and up
to 8B parameters, and large (L) models having more than 8B
parameters (see column ‘Size’ in Table 2).
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Domain Q-Type Size N Avg. Tokens Avg. Characters Avg. Dist. Max. Dist. TTR Null

Humans
PQ – 2301 6.38 32.34 1.40 5.58 0.14 –
WhQ – 819 4.62 24.76 0.99 5.05 0.30 –
CQ – 1404 6.65 35.45 1.45 5.15 0.19 –

General LLMs

PQ
S 590 8.93 46.21 1.90 11.22 0.23 –
M 2609 11.08 58.27 2.14 42.08 0.11 46
L 590 10.05 54.21 1.95 5.32 0.11 –

WhQ
S 210 9.53 50.35 1.97 11.78 0.31 –
M 921 10.16 52.88 1.99 42.23 0.17 24
L 210 9.20 48.67 1.80 5.00 0.19 –

CQ
S 360 9.76 51.80 1.99 8.41 0.25 –
M 1553 10.53 58.11 2.07 24.50 0.15 67
L 360 9.82 54.14 1.88 4.71 0.14 –

Biomedical LLMs

PQ S 1108 8.67 44.20 1.73 16.08 0.25 72
M 590 10.67 56.79 2.12 7.76 0.20 –

WhQ S 388 9.07 47.01 1.81 14.49 0.30 32
M 210 9.52 49.58 1.96 6.59 0.29 –

CQ S 688 9.16 47.21 1.80 9.66 0.28 32
M 360 9.76 52.60 2.03 7.81 0.24 –

Table 3: Overview of structural evaluation metrics: Amount of responses per evaluated group (N), Average amount
of tokens and characters, average and maximum dependency distance, type token ratio (TTR) of given responses,
and the number of detected null-responses (Null).

The structural evaluation showed BioGPT
MedText and Gemma 3 had trouble following the
instructions, as 273 responses had to be removed
from further analyses. Further, we saw that the
remaining LLM responses were longer and, on
average, more complex than the ones from the hu-
mans. Moreover, we showed that out of the most
complex responses, those from humans were most
consistent in having low complexity, together with
medium-sized biomedical and large general mod-
els. This finding suggests that specifically small
and medium-sized general models have produced
oddly complex outlier responses.

4.2 Semantic Evaluation
In the second step of our investigation, we focused
on the contextual relation between human and syn-
thetic data via distributional semantics. Specifi-
cally, we looked into the diversity of responses
per model, the similarity among models, and the
closeness to human responses.

To analyze semantic similarity between re-
sponses, we used the SentenceTransformers li-
brary to compute sentence-level embeddings for
each response (cf. Reimers and Gurevych, 2020).8

We first computed within-model similarity, i.e.,
pairwise cosine similarity among all responses

8paraphrase-multilingual-MiniLM-L12-v2

from the same model per question.9 Second, we cal-
culated between-model similarity, where we used
cosine similarity between response centroids, i.e.,
the average response, to compare models with each
other and with the human responses.

We fitted a series of linear mixed-effects regres-
sion models (LMER) on the within-model diversity
using the lme4 R-package (Bates et al., 2015). We
compared all models with likelihood ratio tests
to assess improvements in model fit. We began
with a baseline intercept-only model including ran-
dom intercepts for question ID and random slopes
for question type by model, accounting for poten-
tial effects of single questions as well as question
type preferences of the examined models. We then
increased the complexity of the models by first
adding model domain, model size, and question
type as fixed effects. We then added two-way and,
in the last model, three-way interactions between
the predictors. The likelihood ratio comparison of
the different models exhibited that the fixed-effects-
only model provides the best fit (χ2 = 13.9992,
df = 6, p = .023).

The predictors of the chosen LMER re-
vealed a significant positive effect of model size:
Large (β = 0.282, p < .001) and medium models

9For simplicity reasons, we treat human responses as their
own model, domain, and size.
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(β = 0.153, p = .002) showed to have significantly
higher within-model similarity scores, i.e., lower
diversity in responses, than small models or hu-
mans (see Figure 1). Other fixed effects, including
question type and model domain, did not reach sta-
tistical significance.
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Figure 1: Within-model cosine similarity scores to ac-
count for diversity of responses of each model with
standard deviation (for humans: ±0.064). The figure
divides the values by model domain and model size.

To account for between-model similarity, we cal-
culated how far the centroid response of each LLM
and the human responses deviated from those of
all other models. Figure 2 displays a similarity
graph where every model’s centroid response is
represented by a node. The arrows between the
nodes reflect the between-model similarity and are
directed to a centroid’s most similar counterpart.
The closest centroid response to the human centroid
was produced by Gemma 3 (cos = .63), a general-
domain, medium-sized decoder-only LLM. Fur-
thermore, we observe two similarity islands: Both
flanT5 models and the two small-sized GPT mod-
els, BioGPT MedText and BioGPT, produced very
similar responses. Moreover, all models from the
Mistral family are grouped together, and Mistral
(7B)’s centroid was most similar to the largest num-
ber of other LLMs (N = 4).

While the human centroid was not among the top
similar picks of any model, we further examined
the distance between human and model centroids.
We fitted a sequence of LMER using the same
methodology as before. The structure of the model
with the best fit (χ2 = 16.2405, df = 5, p < .001)
predicts the average centroid distance to the human
centroid having question type, model domain, and
size as non-interacting fixed-effects. Random ef-

fects were identical to the within-similarity LMER.
The analysis of this model showed that, specifi-
cally, responses of large (β = -0.112, p < .001)
and medium-sized LLMs (β = -0.075, p < .001)
exhibited significantly lower distance to the human
centroid than small models.

The semantic analysis of the human and ma-
chine responses revealed that small LLMs, as well
as humans, produced more diverse responses than
medium and large LLMs. By investigating the
between-model distance, the human response cen-
troid was not picked by any model as the most
similar one, suggesting substantial semantic dif-
ferences between human and LLM text. Gemma 3
outperformed the other LLMs in getting closest
to the human centroid, suggesting better ability to
mimic humans. Two similarity islands and a cluster
within the graph network indicate that more similar
responses are produced within model families. On
the other hand, Mistral (7B) was found to be
most similar to most other models, where three out
of four do not belong to the Mistral family. Lastly,
the assessment of the distance of model centroids
to the human’s illustrated that small LLMs are the
farthest away.

4.3 Acceptability Study
To assess the quality of human and machine re-
sponses, we conducted a human evaluation and an
LLM-as-a-judge experiment (Zheng et al., 2023).

We asked four second-year medical students to
rate the acceptability of a small subsample of the
GerMedIQ corpus to ground the LLM judgments.
All participants were native German speakers, and
they passed the first medical state exam. Each
question was extracted twice from the original
corpus—once paired with a human response and
once with a model-generated response—resulting
in 232 unique question-response pairs. We further
split the sample in half, each containing every ques-
tion, making sure that 50% of the responses were
generated by LLMs and 50% by humans. Two
pseudo-randomized versions of each list were cre-
ated, making sure that human responses and model
responses were presented in alternating order, re-
sulting in four experimental lists. Each human rater
was presented with one of these lists and asked to
judge the acceptability of each response on a Likert
scale (Likert, 1932) from 1 (completely unaccept-
able) to 5 (very acceptable). Participants were in-
structed to assume acceptability if a response was
correct, natural, and contextually sound.

1069



human

BioMistral

Ministral

Llama 3.3

Llama 3.2 (3B)

Llama 3.2 (1B)

Qwen 2.5

Qwen UMLS

Phi 4 Mini

Mistral (7B)

Bio Medical Llama 3.2 Bloom CLP German

BioGPT MedText

BioGPT

R1 Qwen

Mistral (124B)

Gemma 3

flanT5 Base (standard)

flanT5 Base (medical)

Similarity

0.6

0.7

0.8

Domain

biomedical

general

human

Figure 2: Semantic network graph displaying the highest centroid similarity for each model. The thickness of a
connection indicates the similarity score.

This design ensures that each response was
judged by two independent human evaluators. Each
LLM, which was used as a data augmentor, was
also instructed to judge the acceptability of every
response given the respective question. The task
was the same as for the humans and we constructed
a unified English prompt describing the rating task
carefully.10 The models were instructed to respond
with a single digit in the Likert-scale range only.
We designed a zero-shot experiment with a state-
less model setup to enhance comparability, and the
overall runtime was ≈ 10 hours.

Substantial post-processing was necessary since
many models did not comply with the instructions.
We first removed every non-digit character from
the judgments before we removed every number
outside of the allowed range. This led to large ex-
clusions of judgments (cf. Table 4), and we decided
to exclude both flanT5 models and Gemma 3 from
further analyses. We also removed all elements
with fewer than two ratings, ending up with a total
of 13,399 rated elements.

A post-hoc inter-rater agreement evaluation
showed very low averaged pairwise Cohen’s κ (Co-
hen, 1960) for both the human and the machine
judgments, the latter being substantially lower

10A comparison between the final prompt (cf. Figure 4 in
Appendix A.2) and three alternatives—a direct German trans-
lation, a version requesting justification, and one requiring
three ratings per criterion—revealed no notable differences in
the judgments upon qualitative inspection of the results.

Model Removed Outputs N

Mistral (7B) 25.42% 3,406
Llama 3.2 (3B) 29.91% 4,008
Mistral (124B) 33.27% 4,458
Phi 4 Mini 35.58% 4,768
Qwen 2.5 44.30% 5,936
Qwen 2.5 UMLS 44.67% 5,986
Llama 3.3 49.47% 6,629
Minstral 56.97% 7,634
R1 Qwen 62.90% 8,428
Llama 3.2 (1B) 63.55% 8,515
BioMistral 66.07% 8,853
Bio Medical Llama 3.2 81.67% 10,943
Bloom CLP German 86.63% 11,608
BioGPT MedText 94.19% 12,620
BioGPT 97.10% 13,011

Gemma 3 99.97% 13,395
flanT5 Base (standard) 100.00% 13,399
flanT5 Base (medical) 100.00% 13,399

Table 4: Percentage and absolute count of removed judg-
ments per model after post-processing due to instruction
violations. The total number of judgments is 13,399.

(κhuman = .277; κllm = .055). After binarizing
the ratings into unacceptable (ratings 1 to 3) and
acceptable (ratings 4 and 5), we found moderate
agreement for the humans and still low agreement
for the LLMs (κhuman = .521; κllm = .144). Further
analyses were conducted using the binary scores.

To examine the effects of model and judge char-
acteristics on rating behavior, we employed a set of
generalized linear mixed-effects regression models
(gLMER) using lme4.
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We replicated the procedure described in the se-
mantic evaluation section and found our final model
for the LLM judges (χ2 = 2117.7, df = 8, p < .001)
employing the binary rating score as the dependent
variable modeled with a binomial distribution and a
logit link. The fixed effects included question type
and the interaction between model and rater do-
main as well as the interaction between model and
judge size. Random intercepts were included for
both the question ID and the LLM judge to account
for question-specific and rater-specific variability.
The final model for the human evaluators (χ2 =
198.1347, df = 6, p < .001) included question type,
model domain, and size as fixed effects without any
interactions. The random-effects structure allowed
random intercepts for question ID and rater, too.

The human gLMER revealed a significant neg-
ative main effect of model domain, i.e., responses
from LLMs received lower ratings than human
responses (e.g., for general LLMs: β = -5.487,
OR = .004, p < .001). The LLM gLMER also
shows a negative effect, indicating that general
LLMs’ answers were rated worse than humans’
(β = -0.161, OR = 8.51, p < .001). A significant in-
teraction between model and judge domain further
clarifies that general-domain judges rated LLM re-
sponses better than biomedical judges, and thus
LLMs received higher ratings than humans from
general-domain judges (e.g., for general judges and
general models: β = 0.299, OR = 1.35, p < .001).
Moreover, both gLMER models revealed signifi-
cant main effects of model size: large and medium
models received significantly higher ratings com-
pared to small models (e.g., for large models:
β = 0.665, OR = 1.95, p < .001), also from human
raters (e.g., for large models: β = 6.504, p < .001).
Also, a significant negative effect of judge size was
observed, indicating that large judges tended to
give overall lower ratings than small-sized judges
(β = -3.493, OR = .0304, p < .001). Similarly,
the interaction between model size and judge size
was highly significant in the LLM model: Hu-
man responses as well as those from medium and
large LLMs received more favorable ratings from
large and medium-sized judges than small LLMs
(e.g., the interaction between large judges and large
LLMs: β = 7.858, OR = 2588, p < .001). Question
types were no significant predictor for the human
ratings, while for LLMs, CQ were rated slightly
lower than PQ (β = -0.095, OR = .909, p < .01).11

11For more details see Figures 5 and 6 in Appendix A.3.

We computed how often each judge rated each
model being acceptable or unaccpetable and de-
rived a leaderboard from the top-rated model per
judge. Table 5 displays all models that were rated
most and least appropriate more than once by trans-
parently illustrating whether the respective model
voted for itself and whether humans agreed with
the top ranking. It can be seen that the responses
from Mistral (124B) were perceived as most
appropriate by most LLMs and the human raters.
Also, the large Mistral model was the only one
among the winners, which rated its own responses
best. Qwen 2.5 was rated most appropriate by two
judges. The two BioGPT models were rated worst
by 10 out of 15 LLMs, plus the humans, indicat-
ing low performance. It is surprising, though, that
neither the LLM judges nor the human evaluators
rated the human responses as most acceptable.

Model Count Self-vote Human Vote

Best Mistral (124B) 8/15 T T
Qwen 2.5 2/15 F F

Worst BioGPT 6/15 F T
BioGPT MedText 4/15 F F

Table 5: Leaderboard of the rated models: Count of best
and worst rated models by all LLM and human judges,
including self-votes.

This study showcased once more that LLMs do
not always follow the given instructions, which led
to the exclusion of three models in the LLM-as-
a-judge study. To enhance agreement within both
human raters and LLM judges, we binarized the
rating scores. The analyses demonstrated different
preferences: While humans and biomedical mod-
els classified human responses as more appropriate
compared to LLM responses, general-domain mod-
els held the inverse point of view. Correspondingly,
question type was no significant factor for humans,
while LLM judges rated responses to CQ worse
than to PQ or WhQ. LLMs and humans agreed
that large and medium-sized LLMs produced more
appropriate responses than small models. Also,
large judges were shown to rate all responses more
conservatively than small-sized judges. In addi-
tion, Mistral (124B) was rated most appropriate
by the majority of LLM judges and, surprisingly,
also by the human raters, while the two BioGPT
models produced the most inappropriate responses,
according to all judgments.
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5 General Discussion

The driving question behind the three evaluation
studies was to identify whether open-weight LLMs
serve as reliable synthetic data generators. Be-
fore even evaluating the synthetic responses, we
found that a small portion of the given responses
by BioGPT MedText and Gemma 3 had to be re-
moved from further analyses. Even worse was the
situation with the LLM-as-a-judge study, where
no LLM fully complied with the instructions given,
and both flanT5’s and Gemma 3 had to be excluded.
We assume that one reason for this finding is the
lack of model-specific prompts. Recent research
found that even state-of-the-art models show signif-
icant vulnerability of LLMs when used as judges
(Maloyan et al., 2025).

Furthermore, the structural, semantic, and ac-
ceptability evaluations indicated a clear pattern:
Especially large LLMs, but mostly also medium-
sized ones, perform at least on par with humans.
While humans distinctly produced shorter and less
complex responses than all LLMs, medium-sized
biomedical, and large LLMs, produced equally
readable sentences as humans. The semantic evalu-
ation further showed that medium and large LLMs
synthesized responses significantly closer to the
human answers than small LLMs, Gemma 3 outper-
forming all other models. Finally, LLM judges and
human raters agreed that small models’ answers
were significantly less acceptable. Moreover, the
BioGPT models’ responses were rated unacceptable
most often, suggesting a larger quality gap.

Most surprisingly, though, were not human re-
sponses, but those from Mistral (124B), the
largest, general-domain model in our setup, rated
to produce the most acceptable responses over all
questions contained in our dataset. While, in gen-
eral, humans rated human responses better than
LLM responses, they agreed with the LLM judges
that Mistral (124B) delivered the best responses
to the questions. This finding supports recent in-
vestigations showing that LLMs are capable of out-
performing humans across different domains and
tasks (e.g., cf. Taloni et al., 2023; Marco et al.,
2025; Salvi et al., 2025).

Altogether, the experiments showed that the use
of LLMs for data augmentation in the context of
German clinical language is possible once the right
LLM has been identified. In our setup, Gemma 3
was semantically closest to the human responses,
and Mistral (124B) was rated to produce the

most acceptable texts. We nevertheless think that a
life-cycle for synthetic textual data or a human-in-
the-loop approach might be important to consider
before further processing LLM-augmented data,
especially given the instruction compliance issue
we found (cf. Liu et al., 2024; Long et al., 2024). In
addition, we clarified that a fairly large and diverse
set of LLMs can effectively be used in an LLM-as-
a-judge setup, as their ratings largely agree with
those from human raters. We did not identify biases
when models judge their own responses.

6 Conclusion

We release a novel simulated medical anamnesis
interview question dataset along with the syntheti-
cally generated responses by the LLMs, unique in
the German clinical NLP environment. The dataset
has the potential to improve conversational AI in
health care and to give insights into the answering
behaviour of both humans and LLMs.

Moreover, we could show that especially small
LLMs should only be leveraged carefully as syn-
thetic data generators in the German clinical con-
text. Medium and large LLMs showed similar
performance to humans across evaluations, with
Mistral (124B) even outperforming humans in
the rating study.

Future research should investigate further
whether LLMs behave similarly in other non-
English contexts, perhaps including closed-weight
models and different architectures. In addition,
prompt-tuning might be a valuable extension for
both the data augmentation process and the LLM-
as-a-judge experiment.
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Appendix A.1

As an extension to Table 2, Table 6 lists all available
research papers and Huggingface repositories of
the LLMs described in this paper.

Appendix A.2

Figures 312 and 4 illustrate the final prompts used
for the data augmentation and the LLM-as-a-judge
experiment, respectively. While we did not perform
quantitative prompt tuning, we always tried multi-
ple prompts and subjectively assessed the quality of
model outputs. Different prompts included a Ger-
man and an English version. In the judgment study,
we experimented with prompts asking the models
to justify their response, or giving independent rat-
ings for each appropriateness criterion mentioned
in the prompt. For the data augmentation process,
the German prompt turned out to be best, while
for the LLM-as-a-judge experiment, the English,
single-digit prompt worked best.

Data Augmentation Prompt:
“Du erhältst gleich eine Interviewfrage aus einem stan-
dardisierten medizinischen Anamnesefragebogen auf
deutsch. Bitte beantworte die Frage auf deutsch, so als
wenn du ein realer Patient in der Routineversorgung
wärst.
Frage: {question}
Antwort:”

Figure 3: Plain-text LLM prompt for data augmentation.

LLM-as-a-judge Prompt:
“You are an expert in medical interviews and your task is
to evaluate the quality of a given response to a medical
questionnaire question, both written in German. Your
rating should consider the appropriateness of a response.
A response is considered appropriate if it answers the
question properly, it is natural, coherent and contextually
suitable. Rate each response on a scale from 1 (not
appropriate) to 5 (very appropriate). Please, respond
only with a number and do not justify your rating.
Question: {question}
Answer: {answer}
judgment:”

Figure 4: Plain-text LLM prompt for the LLM-as-a-
judge study.

12English Translation: You will immediately receive an in-
terview question from a standardized anamnesis questionnaire
in German. Please answer the question in German as if you
were a real patient in routine care.
Question: {question}.
Response:.

Appendix A.3

Figure 5 visualizes the average ratings of the hu-
man raters. Human responses were rated drastically
higher, and small model responses much lower than
by the LLM judges (cf. Figure 6), but the over-
all trend is similar: Large general-domain LLMs
were rated best, and even higher than the human
responses.
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Figure 5: Average binary rating by human raters divided
by model size and domain with standard error. The
human standard error is ±0.024

Figure 6 displays the mean ratings given by the
LLM judges grouped by size and domain of judges
as well as models. The figure visually represents
the findings described in section 4.3 and showcases,
for example, that large LLM judges preferred the
responses of large models, even more than biomed-
ical judges. Moreover, it is visible that medium
LLMs were always rated higher than small LLMs,
and large LLMs than medium-sized models.
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Model Huggingface Repository Reference

flanT5 Base (standard) google/flan-t5-base Chung et al. (2022)
flanT5 Base (medical) QuyenAnhDE/flant5base-medical -
BioGPT microsoft/biogpt Luo et al. (2022)
BioGPT MedText AventIQ-AI/BioGPT-MedText -
Llama 3.2 (1B) meta-llama/Llama-3.2-1B -
Bio Medical Llama ContactDoctor/Bio-Medical-Llama-3-2-1B-CoT-012025 -
Llama 3.2 (3B) meta-llama/Llama-3.2-3B-Instruct -
Llama 3.3 meta-llama/Llama-3.3-70B-Instruct -
Phi 4 Mini microsoft/Phi-4mini-instruct -
Gemma 3 google/gemma-3-4b-it -
Bloom CLP German malteos/bloom-6b4-clp-german Ostendorff and Rehm (2023)
Qwen 2.5 Qwen/Qwen2.5-VL-7B-Instruct Yang et al. (2024); Qwen Team (2024)
Qwen UMLS prithivMLmods/Qwen-UMLS-7B-Instruct -
R1 Qwen deepseek-ai/DeepSeek-R1-0528-Qwen3-8B DeepSeek-AI (2025)
Mistral (7B) mistralai/Mistral-7B-Instruct-v0.1 -
BioMistral BioMistral/BioMistral-7B Labrak et al. (2024)
Ministral mistralai/Ministral-8B-Instruct-2410 -
Mistral (124B) mistralai/Mistral-Large-Instruct-2411 -

Table 6: LLMs and their corresponding sources.

Human Resp. Biomedical Resp. General Resp.
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edical LLM
 Judges
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Figure 6: Average binary rating by LLM judges divided by judge and model size as well as judge and model domain
with standard error.
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