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Abstract

Recently, large language models (LLMs) have
demonstrated impressive capabilities in deal-
ing with new tasks with the help of in-context
learning (ICL). In the study of Large Vision-
Language Models (LVLMs), when implement-
ing ICL, researchers usually adopt the naive
strategies like fixed demonstrations across dif-
ferent samples, or selecting demonstrations di-
rectly via a visual-language embedding model.
These methods do not guarantee the configured
demonstrations fit the need of the LVLMs. To
address this issue, we propose a novel frame-
work, demonstration retriever for large multi-
modal model (DRUM), which fine-tunes the
CLIP embedding model to better meet the
LVLM’s needs. First, we discuss the retrieval
strategies for a visual-language task, assuming
an embedding model is given. And we propose
to concate the image and text embeddings to
enhance the retrieval performance. Second, we
propose to re-rank the the embedding model’s
retrieved demonstrations via the LVLM’s feed-
backs, and calculate a list-wise ranking loss for
training the embedding model. Third, we pro-
pose an iterative demonstration mining strategy
to improve the training of the embedding model.
Through extensive experiments on 3 types of
visual-language tasks, 7 benchmark datasets,
our DRUM framework is proven to be effec-
tive in boosting the LVLM’s in-context learning
performance via retrieving more proper demon-
strations.

1 Introduction

In-context learning (ICL) is a simple yet im-
portant learning paradigm that given a few input-
output pairs (demonstrations), a model can learn to
conduct predictions on a new task it never sees be-
fore. ICL is a type of emergent capability observed
in large-scale pre-trained models (Wei et al., 2022).
It is first observed by GPT-3 (Brown et al., 2020),
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and draws the attention of the whole community
of artificial intelligence. And a large branch of
literature have shown that large language models
(LLMs) have impressive ICL capabilities across
a wide range natural language processing (NLP)
tasks. ICL is essential for applications, since it can
quickly adapt the large pretrained models to a novel
task, or a task with personalized needs, with only a
few demonstrations. No fine-tuning is needed and
the model need not to be deployed again.

Recently, large vision-language models
(LVLMs) are being rapidly developed, and its ICL
capabilities are also being investigated (Alayrac
et al., 2022). The LVLMs like Flamingo (Alayrac
et al., 2022) and Qwen-VL (Bai et al., 2023)
have demonstrated impressive ICL capabilities on
the visual question answering (VQA), few-shot
image classification (ImageCLS), and image
captioning (ImageCAP) tasks. However, when
implementing ICL for LVLMs, researchers
usually adopts the naive strategies like fixed
demonstrations or demonstrations ranked by a
pre-trained vision-language embedding model.
These strategies are sub-optimal, since they do
not incorporate the LVLMs’ feedbacks on how
these demonstrations help them to improve the
responses.

To address the above issue, we now present a
novel framework, demonstration retriever for large
multi-modal model (DRUM). DRUM is targeted
at fine-tuning a pre-trained visual-language embed-
ding model so that it learns to retrieve better demon-
strations to meet the LVLM’s needs when conduct
inference. First, assuming the embedding model is
given, DRUM discusses the retrieval strategy for
any visual-language tasks. And it proposes to re-
trieve demonstrations based on the joint embedding
of input image, prompt and draft response. Sec-
ond, DRUM asks the inference LVLM to re-rank
the embedding model’s retrieved demonstrations
via the LVLM feedback. In this work, the LVLM
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Figure 1: The schematic representation of our DRUM framework. Circles, rectangles, and triangles respectively

represent the images, prompts, and responses in the triplet.

feedback on a demonstration is defined as the con-
ditional log-likelihood of the target response when
the demonstration is added to the prompt. With
the LVLM'’s reranking results, a list-wise ranking
loss can be calculated and used as the optimiza-
tion objective for the embedding model. Third, we
propose an iterative demonstration mining strat-
egy which updates the demonstration candidates
iteratively, thus improving the training of the em-
bedding model by providing high-quality ranking
signals.

We have conducted extensive experiments on
3 types of visual-language tasks, VQA, Image-
CLS and ImageCAP, and totally 7 benchmark
datasets. The experimental results demonstrate
that our DRUM framework is effective in boost-
ing the LVLM’s ICL performance. In addition, for
commercial LVLMs like GPT-40, the embedding
model fine-tuned by DRUM can also be transferred
to them, help them to retrieve better demonstra-
tions.

Our contributions are as follows:

* We propose a novel framework, DRUM, to
enhance the ICL capabilities of the LVLMs.

* Extensive experiments have proven that
DRUM is effective in boosting the LVLMs’
ICL performance on a wide range of vision-
language tasks.

2 Related Work

In-Context Learning in NLP. The artificial intel-
ligence community has witnessed significant ad-
vancements in the realm of large language mod-
els (LLMs) in recent years. As these models and

their training corpora expand in scale, LLMs have
demonstrated emergent capabilities, such as rea-
soning, mathematical proficiency, and the ability to
follow prompts (Wei et al., 2022). GPT-3 (Brown
et al., 2020) was the pioneer in revealing that suffi-
ciently large models can learn to execute new tasks
with minimal guidance, a phenomenon termed in-
context learning (ICL). Subsequent studies have
corroborated the impressive performance of LLMs
across various tasks through ICL (Mosbach et al.,
2023). The crux of ICL lies in the construction of
high-quality in-context demonstration sequences
(Li et al., 2023c). However, the bulk of these ex-
plorations have concentrated on pure natural lan-
guage processing tasks and text-centric foundation
models, highlighting the necessity to extend this
research to encompass other domains.

The research works on in-context learning focus
primarily on demonstration sequences. A series of
techniques have been investigated, including: (a)
utilizing similarity scores to retrieve more relevant
in-context examples (Li et al., 2023c), (b) employ-
ing machine-generated demonstrations (Li et al.,
2023b). The literature has seen a series of studies
that reveals certain properties of LL.Ms when ap-
plied to in-context learning. Pan (2023) proposed
a decomposition of ICL into the task recognition
effect and the task learning effect, and quantified
these capabilities of models with varying numbers
of shots and scales. Additionally, Lyu et al. (2022)
records the "copying effect” phenomenon in LLMs,
which is also a type of shortcut inference. Our work
complements this line of research by fine-tuning
the vision-language embedding model to learn how
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to retrieve appropriate demonstrations.

LVLM and ICL Inspired by the triumphs of
LLMs in natural language processing, the vision-
language domain has seen the rise of analogous
large vision-language models (LVLMs) (Du et al.,
2022). Among these, models such as BLIP2 (Li
et al., 2023a), MiniGPT-4 (Zhu et al., 2023), and
LLAVA (Liu et al., 2024) are pretrained by align-
ing image and text data through the use of adapters
(Houlsby et al., 2019) to reduce training overhead.
While there are several VLMs available, it is worth
noting that some of the models are unsuitable for
in-context learning, as this capability demands that
the LVLM handle inputs that interweave images
and text content (Alayrac et al., 2022). Presently,
there is scant research on multimodal ICL or ICL
for LVLMs, with only a few studies focusing on
rudimentary strategies. Yang et al. (2024) exam-
ines the impact of ICL on the LVLM’s performance
in image captioning tasks. Li et al. (2024) analyzes
the effects of ICL for LVLMs and proposes various
strategies for demonstration retrieval using a pre-
trained vision-language embedding model, such as
CLIP (Radford et al., 2021). Our work comple-
ments this line of research by proposing a novel
framework for ICL of the LVLMs.

3 DRUM

We now elaborate on the technical details of our
DRUM framework. For the training process of
DRUM, we split the dataset for the current visual-
language task into four parts: the support set Dy,
the training set D y;p_¢rqin used for fine-tuning the
image-text embedding model, the validation set
Deiip_dev used to validate the embedding model af-
ter fine-tuning, and the test set D, for evaluating
the performance of LVLM contextual learning.

3.1 In-context learning

Given a well pre-trained Large Vision-Language
Model (LVLM) (denoted as M) e.g., Flamingo
(Alayrac et al., 2022), one can use it directly to
solve a VL task like VQA with in-context learning,
and no fine-tuning is required. To achieve this, we
need to prepare a multi-modal in-context sequence

S=A{z1,...,zn}, (1)
where S consists of n-shot z; = (image;, prompt,,
response;) tuples. Then we concatenate S to
the left of the test sample zi,; = (image,,;.,

prompt,, ), and feed into the LVLM for generating
the corresponding response:

response, ., = {a1, ..., a7, }, 2

where the ¢-th (tf < T'4) token a; is sampled from
the probability distribution P(-) over the vocabu-
lary calculated by the LVLM M:

P(a4|S, vtest, G1:4-1)- 3)

3.2 Strategies for sample embedding

Different from retrieving via only images or texts
(Li et al., 2024), we retrieve the demonstrations via
the concatenation of image embeddings and text
embeddings generated by the CLIP model (Rad-
ford et al., 2021). We first generate a draft re-
sponse response?” %! o the test sample zeq with
the help of strategy SIT-IP, and then compare the se-
mantic similarity between (image,,,;, prompt; ;.
response?”“*!) and (image;, prompt;, response;).
We denote this strategy as retrieving via similar
image prompt and draft response (SIT-IPDR).

We will use SIT-IPDR as the default sample em-
bedding strategy in our experiments. More strate-
gies are presented in Appendix C for completeness.
And we will use experiments (Section 4.6) to vali-

date this choice.

3.3 Pilot experiments and motivations

The previous sub-section assumes that an em-
bedding model £ is ready to use for any given VL
task which can transform the image and text inputs
to embedding vectors. Intuitively, one can directly
utilize the pre-trained CLIP models (Radford et al.,
2021) to initialize £ and obtain the test sample’s
image or text embeddings, and conduct search for
similar demonstrations based on these embeddings.
However, we now conduct a pilot experiment to
demonstrate that the original open-sourced CLIP
models may not be effective in retrieving demon-
strations for a LVLM.

For a task at hand, we first use the CLIP model
(base) to construct the demostration vector database
on Dgypp. For a sample z; = (image,, prompt,,
responseq) from Dy, dev, the CLIP model will
embed it and retrieve n = 16 demonstration candi-
dates {z;}}_;. These candidates are ranked based
on the embeddings’ similarity scores:

ro(2;) = Ranking(sim(zq, 2;)[{2;}j=1), (4

where sim(z,, z;) denotes the embedding vectors’
cosine similarity when CLIP is the embedding
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model, and Ranking is the ranking function (in
ascending order).

Note that the intended effect of demonstrations
on LVLM is to help the LVLM generate better re-
sponses and achieve performance boost. In other
words, demonstrations are expected to enhance the
likelihood of the ground-truth answer being gener-
ated by the LVLM. Thus, it is appropriate for the
LVLM to evaluate and rank the demonstration can-
didates via the log-likelihood function. Formally,
the LVLM’s ranking of the candidate demonstra-
tions are given by:

r(z;) = Ranking(s(z;)[{s(2j)}j=1)
s(zj) = LLH(response,|z;, image,, prompt,),
(&)

where LLH(+|-) is the LVLM’s conditional log-
likelihood function. s(z;) represents the ground-
truth response,’s log-likelihood conditioned on the
demonstration candidate z; and the querying input
image, and prompt,. s(z;) indicates the impor-
tance of z; for the LVLM to encode the query-
ing sample and generate the ground-truth response.
The more important z; is for the LVLM, the higher
s(z;j) will be, and the larger r(z;) will be.

Since we have two rankings for the same set
of demonstration candidates, we can calculate the
correlation between these two rankings:

corry = Spearman({r(z;)}j_1, {ro(z)}j=1),
(6)
where Spearman is the Spearman rank corelation
coefficient (Dodge, 2008). The average correlation
score is given by:

qu E/Dclipidev Corrq
| | Dclip_dev ‘ |

COITqyg = (7)

The average correlation score is calculated on the
VizWiz (Gurari et al., 2018), Flicker30K (Plummer
etal., 2015) and Hateful-Memes (Kiela et al., 2020)
tasks, with the LVLM being the Deepseek-VL2
(tiny). The results are presented in Table 1. From
Table 1, we can see that the CLIP model’s rankings
and the LVLM’s rankings actually have very low
correlations. For example, the correlation score on
the VizWiz task is negative, showing significant
discrepancy between the CLIP model’s retrieved
candidates and the LVLM’s needs.

The above observations are consistent with the
claims in the previous works (Li et al., 2023c; Ru-
bin et al., 2021): demonstrations retrieved by an
open-sourced embedding model may not benefit

Task COIT g
VizWiz -0.16
Flicker30K 0.11
Hateful-Memes 0.21

Table 1: The average correlation scores between the
CLIP model’s rankings and the LVLM’s rankings, on the
Deiip_dev sets of the VizWiz , Flicker30K and Hateful-
Memes tasks.

the most for the LVLM. Thus, it is natural to con-
sider fine-tuning the embedding model £ so that its
retrieved demonstrations better fit the LVLM and
help to elicit better responses from the LVLM.

3.4 Demonstration retriever training

We now elaborate on the core of our DRUM

framework, the training approach for the demon-
stration retriever. Different from Rubin et al. (2021)
which design task-specific training signals for sev-
eral tasks separately, we propose to cast the re-
triever’s training signals into a list-wise ranking
loss based on the LVLM’s feedback. Then we in-
troduce a training framework in which the retriever
iteratively mines high-quality demonstration candi-
dates with the help of the LVLM and learn to rank
them in turn. The whole workflow are shown in
Algorithm 1. And we now introduce the list-wise
ranking training and iterative mining strategy for
the demonstration retrievers as follows.
Loss function for the demonstration retriever
The objective of training the demonstration re-
triever is to make the CLIP’s ranking (from Equa-
tion 4) and the LVLM’s ranking (from Equation
5) more consistent. With the demonstration can-
didates’ ranks {r(z;)}7_; from the LVLM’s feed-
back, we propose to use the following loss function
to inject the ranking signal into the demonstration
retriever £:

L= )

1<i,j<n,i#j

m(i,j) *g(i,7),  (®)

where m(i, j) is given by

m(i,j) = max

1
(07 -
Vr(z)  /r(z)
and g(4, j) is given by:
g(i,j) — 10g(1 + e(sim(xq,Zj)fsim(xq,zi)))’ (10)

We now provide intuitive explanations for the
above loss function. For those z; and z; where
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r(z;) < r(z), Lp will draw sim(z4,2;) up
and optimize the retriever towards sim(xz, z;) >
sim(zq, zj). For z; and z; where r(z;) > 7(z;),
this pair will be discarded by the loss function.
Additionally, m(i, j) adjusts the weight for each
pair of demonstrations, conveying list-wise rank-
ing information into £,. When the ranks of z;
and z; are close, e.g., 7(z;) = 2 and r(z;) = 1,
m(%,j) ~ 0.292. In comparison, when z; has a
much higher rank than z;, e.g., r(2;) = 15 and
r(z;) = 1, m(4, j) will be 0.742, larger than 0.292.
Thus, when z; has a much higher rank than z;, w
will be a high weight, and asks £, to strongly draw
sim(z4, z;) up and away from sim(z,, z;). Since
we optimize the retriever on demonstration pairs
under different m(i, j), £, can help our DRUM
method fully incorporate candidates’ list-wise rank-
ing signals and learn to retrieve those high-quality
and helpful demonstrations.

3.5 Iterative Demonstration Candidate
Mining

The selection of demonstration candidates can
be a key factor for retriever’s training. It is infeasi-
ble and possibly harmful to take the entire training
set as candidates. In addition, once the embed-
ding model is fine-tuned, it no longer matches the
supporting samples’ vectors in the vector database.
To strike a balance between training time cost and
quality, we adapt an iterative strategy to update
candidates (Li et al., 2023c). Specifically, we iter-
atively train the retriever and use it to select can-
didates in turn. At each iteration, we update each
example z,’s candidates as:

an

where D is the task’s supporting set, n is the num-
ber of candidates retrieved. Then we will use the
LVLM M to score and rerank Z*, and calculate
the list-wise ranking loss according to Eq 8. Be-
fore the first iteration, the retriever is exactly the
pre-trained embedding model, so we initialize can-
didates based on the similarity calculated with the
pretrained embedding model. In summary, Algo-
rithm 1 shows the DRUM’s overall training proce-
dure.

Embedding Model Validation The optimiza-
tion objective of model £ is to minimize the dis-
crepancy between the ranking of retrieved example
vectors and the ranking assigned by the large-scale
model M to these examples. Therefore, to vali-
date the training effectiveness of model £, and to

Z* = topK({sim(zq, 2)|z € Dsupp}, 1),

Algorithm 1: DRUM’s demonstration rank-
ing training
Input: Embedding model &, large
vision-language model M, number
of training iterations N1, number of
training steps in each iteration No,
number of retrieved candidates n
Output: A fine-tuned embedding model €.
Data: support set Dy, model £’s training
set Detip_train, model £’s validation
set Deyip_devws test set for the LVLM
Dyests
1 training iteration index ¢ < 0;
2 while i < N7 do

3 Embed each training example with &£;
4 Retrieve n candidates of each training
example;

5 training step index 7 < 0;

6 while j < N> do

7 Sample an querying example z,
from D, and obtain its candidates
{26 =15

8 Re-rank {z;}}_, by M using Eq 5;

9 Calculate £, using Eq 8;

10 Update &;

1 j—i+1

12 14— 1+ 1;

select the model checkpoints during training, we
follow Equation 7 to compute the average correla-
tion coefficient corr,,, of rankings using dataset

Dcl ip_dev-
4 Experiments

4.1 Datasets

We conduct experiments on three benchmark
visual question-answering (VQA) tasks, two im-
age classification (ImageCLS) tasks, and two im-
age captioning (ImageCAP) tasks: VQAv2 (Goyal
et al., 2017), VizWiz (Gurari et al., 2018), OK-
VQA (Marino et al., 2019), Flowers102 (Nilsback
and Zisserman, 2008), Hateful-Memes (Kiela et al.,
2020), Flickr30K (Plummer et al., 2015), NoCaps
(Agrawal et al., 2019). The introduction and dataset
splits of each dataset are detailed in Appendix A.

4.2 Evaluation metrics

Metric for the VQA tasks We follow Alayrac
et al. (2022) to use accuracy as the evaluation met-
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Retrieval VQA ImageCLS ImageCap
Methods | VQAvV2 VizWiz OK-VQA Flowers102 Hateful-Memes Flicker30K NoCaps
Null 56.1 24.6 42.3 14.6 55.4 27.1 28.6
Random 66.3 432 56.3 31.5 61.3 375 39.4
Fixed 66.4 42.6 579 32.3 61.1 38.1 39.9
BM25 67.8 34.5 55.8 25.7 56.7 339 343
Dino 69.5 46.8 59.9 357 63.2 39.0 38.8
BGE 68.9 38.7 61.2 26.6 56.8 343 35.1
CLIP 69.7 58.2 63.4 36.5 65.4 39.2 40.7
EPR 70.4 61.3 64.9 38.5 66.9 40.3 413
DRUM 73.7 64.6 67.8 40.9 70.9 41.5 43.5

Table 2: Results on 7 benchmark tasks. Due to randomness, the results from Random, Fixed, EPR, UDR and
DRUM are the average scores across five different runs under different random seeds. Best scores are bolded.

ric for VQA task:

3 X > kelo,0) match(a;, gr,)

10 ’
(12)

where a; denotes the predicted answer of the
LVLM, g denotes the k-th ground true answer,
and the match() function indicates whether two
answers match, if they match, the result is 1, other-
wise it is 0.

Metric for the image classification tasks For
the visual classification tasks, we report the accu-
racy score.

Metric for the image captioning tasks For eval-
uation on the image captioning tasks, we report the
ROUGE-L score (Lin, 2004).

Acc,, = min(1,

4.3 Implementation details

Computing infrastures All experiments are
conducted on the RTX 4090 GPUs.

LVLM models We employ the Deepseek-VL2
Tiny (Wu et al., 2024) model (3B) as the LVLM to
evaluate our DRUM method.

Decoding  After receiving the input images and
text prompts, the predictions are generated using
the language modeling head (LM head) of the
LVLM. No other prediction layers outputting nu-
merical or categorical results are installed on the
LVLM backbone. For decoding during inference,
we use beam search with beam size 3.

ICL Setup for the LVLM Model M The num-
ber of demonstrations obtained for each test sample
is set by default to n = 4 in this work. The ablation
studies also investigate different values of n. After
retrieving the examples, model M concatenates the
demonstration sequence in ascending order of simi-
larity scores to the left side of the test sample input.
This means that the higher the similarity score an
retrieved example has, the closer it is placed to the

test sample input. The prompt templates for the
LVLM are presented in Appendix B.

Settings for embedding and retrieval This
work defaults to using the base-sized CLIP model'
for image-text embedding. The default retrieval
strategy adopted in this work is the SIT-IPDR ap-
proach detailed in Section 3.2. Under this strategy,
the vector representation of both demonstrations
samples and test samples is obtained by concatenat-
ing the image vector and the text vector. This work
utilizes the Faiss toolkit (Douze et al., 2024) for
constructing the vector database and for efficient
vector retrieval.

Settings for fine-tuning the embedding model
We implements the fine-tuning process of the em-
bedding model £ based on the Huggingface Trans-
formers(Wolf et al., 2020) code library. The num-
ber of training epochs N for the embedding model
is set to 50, with No = 100 steps per epoch. During
the fine-tuning of the embedding model, the num-
ber of recall examples 7 is set to 32. For model op-
timization, we use AdamW (Loshchilov and Hutter,
2019), with a learning rate of 1e-5 and a warmup of
50 steps at the beginning of the model fine-tuning.
Other hyperparameters remain consistent with the
Transformers code library. After each epoch, the
embedding model £ is evaluated according to Equa-
tion 7. The fine-tuning employs an early stopping
strategy with a maximum patience of 10, meaning
that if the evaluation metric corr,,, does not im-
prove for 10 consecutive epochs, the training will
be stopped.

4.4 Baseline methods

With the same inference LVLM, we compare our
DRUM method with existing methods for demon-

"https://huggingface.co/openai/
clip-vit-base-patch32
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stration retrieval by the downstream ICL perfor-
mance, including: (a) Null, which is not to use any
demonstrations. (b) Random, randomly sampling
demonstrations from the supporting set. (c) BM25,
a prevailing sparse retriever widely used in the lit-
erature (Chen et al., 2017). (d) DINO, which is to
retrieve demonstrations using the image embedding
provided by the DINO model (Caron et al., 2021).
(e) BGE, which is to retrieve demonstrations using
the text embedding provided by the BGE model
(Chen et al., 2024). (f) CLIP, which is to retrieve
demonstrations using the image-text embedding
provided by the CLIP model (Caron et al., 2021).
(g) EPR (Rubin et al., 2021), which builds upon
the aforementioned CLIP approach by conducting
LVLM feedback evaluation for each example, then
transforming the task of re-ranking demonstrations
into a classification task, leading to the training of
a classifier for evaluating these demonstrations.

4.5 Main Results

We report the performance of different meth-
ods on the seven benchmark VL tasks in Table
2. We can see that: (a) DRUM outperforms the
baselines with clear margins on most tasks, which
shows our method’s best demonstration retrieval
ability on a wide range of VL tasks. (b) Specially,
compared with EPR, DRUM has better overall per-
formance and this shows the effectiveness of our
training method. Meanwhile, compared with CLIP,
the embedding model which is directly initialized
with CLIP-base, DRUM has clear advantages. This
straightly demonstrates that our proposed training
framework can help DRUM incorporate LVLM’s
feedback through the DRUM’s fine-tuning proce-
dure and retrieve more beneficial demonstrations.
The experimental results also reveal that the ran-
dom baseline achieves the worst performance in
most tasks. This phenomenon is intuitive: pairing
the current query with irrelevant demonstrations is
unhelpful, and sometimes could lead the model to
the wrong directions.

4.6 Further analysis

Ablation Study To evaluate the effect of our
DRUM'’s each component, we consider the follow-
ing variant of DRUM: (a) DRUM- 11, which 1sub—
) @)
(b) DRUM-2, which substitute Eq 9 to m(7, j) =
max (0, 7(z;) — 7(z;)). (c) DRUM-3 removes the
weight m(i, j) from Eq 8. (d) DRUM-4, which

stitute Eq 9 to m(i,7) = max(0,

Method | VizWiz Hateful-Memes Flicker30K
DRUM 64.6 70.6 41.5
DRUM-1 64.0 68.7 40.8
DRUM-2 | 63.9 69.3 40.7
DRUM-3 | 63.8 68.4 40.1
DRUM-4 63.4 68.2 39.9
Table 3: Results of the ablation study on DRUM’s

training strategy.

Strategy | VizWiz Hateful-Memes Flicker30K
SIT-IPDR | 64.6 70.6 41.5
COSITIP | 631 686 407
ST-PDR 61.5 66.2 394
ST-P 62.7 67.0 34.7
SI 62.8 68.3 40.8

Table 4: Results of the ablation study on the demonstra-
tion retrieval strategy.

LVLM M & VizWiz Hateful-Memes Flicker30K
CLIP 72.1 76.9 41.1
GPT-40 EPR 75.6 79.0 429
DRUM 77.2 81.6 45.2
CLIP 71.5 76.2 38.2
Claude 3 Opus | EPR 73.3 78.3 41.6
DRUM 76.1 80.2 434

Table 5: Experiments on the transfer learning capabil-
ities of DRUM. We using the fine-tuned model £ to
retrieve demonstrations for GPT-40 and Claude 3 Opus.
€ being CLIP means no fine-tuning is conducted. &
being CLIP + EPR means fine-tuning with the EPR
method is conducted. £ being CLIP + DRUM means
fine-tuning with the DRUM method is conducted.

do not conduct iterative demonstration candidate
mining. The results are reported in Table 3.

The experimental results show that: (a) The
comparison between DRUM-1 and DRUM demon-
strates the
Ablation on the retrieval strategy This work
uses the SIT-IPDR strategy for example retrieval
in the main experiment (Table 2). To demonstrate
the rationality of the DRUM setup and this strategy,
we conduct an ablation study on the demonstration
retrieval strategy. Table 4 reports the performance
of the DRUM method using SIT-IP, ST-PDR, ST-P,
and SI strategies. The experimental results show:
(a) The SIT-IPDR strategy outperforms other strate-
gies. This strategy combines image and text infor-
mation for demonstration retrieval, utilizing the
maximum amount of semantic information avail-
able in the test sample, thus enabling it to recall the
most relevant demonstrations. (b) Retrieving exam-
ples based only on the prompt text content (ST-P)
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Figure 2: The effects of the number of demonstrations on DRUM, EPR, and CLIP.

performs poorly on image classification tasks and
image caption generation tasks. The primary rea-
son for this phenomenon is that these types of tasks
involve prompts that contain generic task instruc-
tions without directly related semantic information.
However, by combining the prompt text with the
draft response text (ST-PDR), there is a significant
improvement in performance. This result shows
that the draft response can effectively supplement
the semantic information needed for example re-
trieval.

Transferability across Different LMs Note that
during the fine-tuning of the embedding model £
using the DRUM method, the LVLM model M
needs to re-rank the recalled examples based on
conditional likelihood function values. Given that
different LVLM models have similar training mech-
anisms and are pre-trained on large amounts of
internet data, their internal mechanisms and cog-
nition share similarities. In this part of the ex-
periment, we will use the embedding model &,
fine-tuned with feedback from the Deeoseek-VL2
model, for example recall with GPT-40 or Claude
3 Opus models. The experimental results are pre-
sented in Table 5.

According to Table 5, the embedding model,
fine-tuned with feedback signals from the
Deeoseek-VL2 model, is able to recall higher-
quality examples, effectively enhancing the per-
formance of powerful commercial LVLM models
like GPT-40 or Claude 3 Opus in tasks such as
VQA (Visual Question Answering), image classi-
fication, and image caption generation. This ex-
periment demonstrates the practical significance
of the DRUM method: by fine-tuning an exam-
ple recall model with feedback from open-source
LVLM models, and then applying this example re-
call model to the contextual learning of commercial
LVLM models.

Impact of demonstration quantity In the main
experiments (Table 2), we set n to 4. We now com-
pare DRUM with CLIP and EPR under different
amounts of demonstrations, and the experimental
results are reported in Figure 2.

We can see that DRUM outperforms baselines
consistently across varying amounts of demon-
strations. Meanwhile, we can draw two conclu-
sions from the results: (a) The number of demon-
strations has a greater impact on the generation
task, VizWiz, than the classification task, Hateful-
Memes. Specifically, as the number of demon-
strations increases, VizWiz’ performance gets sig-
nificant improvements while Hateful-Memes’ has
slight improvements. (b) The quality of demon-
strations can be more important than their quantity.
Specifically, DRUM with one or two demonstra-
tions still outperforms EPR with 4 demonstrations.
These observations again reflect the strong demon-
stration retrieval ability of DRUM.

5 Conclusion

In this paper, we propose DRUM, a unifined ap-
proach of demonstration retrieval for large vision-
language models. To train DRUM, we cast the
LVLM’s feedback on a demonstration to a unified
list-wise ranking formulation, and propose the rank-
ing training framework with an iterative mining
strategy to find high-quality candidates. Experi-
ments on three visual question answering tasks,
two visual recognition tasks and two image cap-
tioning tasks show that our method significantly
outperforms the baseline demonstration retrieval
methods. Further analysis show the effectiveness
of each proposed components of the DRUM, and
the strong transferability of DRUM across different
LVLMs (3B to 175B), unseen datasets, and varying
demonstration quantities.
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Limitations

We showed that our proposed method can im-
prove the performance of in-context learning on
diverse vision-language tasks and different large
vision-language models. However, we acknowl-
edge the following limitations: (a) the number of
experimented open-sourced LVLMs is limited due
to limited computation resources. (b) Other vision-
language tasks, like visual information extraction,
were also not considered. But our framework can
be easily transferred to other LVLM backbone ar-
chitectures and different types of tasks. It would
be of interest to investigate if the superiority of our
method holds for other large-scaled backbone mod-
els and other types of tasks. And we will explore it
in future work.

Ethics Statement

The finding and proposed method aims to im-
prove the in-context learning in terms of better task
performances. The used datasets are widely used in
previous work and, to our knowledge, do not have
any attached privacy or ethical issues. In this work,
we have experimented with Deepseek-VL2, a mod-
ern large vision language model series. As with
all LVLMs, Deepseek-VL2’s potential outputs can-
not be predicted in advance, and the model may in
some instances produce inaccurate, biased or other
objectionable responses to user prompts. However,
this work’s intent is to conduct research on differ-
ent in-context learning methods for LVLMs, not
building applications to general users. In the future,
we would like to conduct further tests to see how
our method affects the safety aspects of LVLMs.
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A Datasets

The DRUM method is evaluated on three bench-
mark visual-question answering (VQA) datasets,
two benchmark image captioning (ImageCap)
datasets, and two image classification (ImageCLS)
tasks. The specific VQA datasets are as follows:

* VQAV2 (Goyal et al., 2017). This dataset uses
images from the MSCOCO dataset (Lin et al.,
2014), with textual questions manually crafted
by annotators to ensure that each question re-
quires visual information to answer.

* VizWiz (Gurari et al., 2018). This dataset con-
tains low-resolution images, and some ques-
tions are unanswerable based on the images.
It is designed to evaluate whether models can
discern answerable questions and avoid hallu-
cination or overconfident responses.

¢ OK-VQA (Marino et al., 2019). This dataset
requires models to integrate visual informa-
tion, textual questions, and external world
knowledge to generate answers, posing sig-
nificant challenges.

The ImageCap datasets include:

¢ Flickr30K (Plummer et al., 2015). This
dataset contains images from the Flickr com-
munity?, with each image annotated by crowd-
workers to provide five reference captions.

* NoCaps (Agrawal et al., 2019). This dataset
uses images from the validation and test sets
of the Open Images dataset (Kuznetsova et al.,
2020), with human-annotated captions.

The ImageCLS tasks employ the following
datasets:

¢ Flowers102 (Nilsback and Zisserman, 2008).
This dataset requires classifying input images
into one of 102 common flower categories in
the UK.

¢ Hateful-Memes (Kiela et al., 2020). This
dataset collects internet memes and catego-
rizes them into "hateful” or "non-hateful"
classes.

For each dataset, the original training/valida-
tion/test splits were randomly reorganized to form

Zhttps://www.flickr.com/

the support set Dy, required by the DRUM work-
flow, the training set D), trqin and validation
set Deyip_dev for fine-tuning the example retrieval
model, and the test set Dy for evaluating the
in-context learning performance of the language
model. The statistics of each task’s dataset are
summarized in Table 6.

B Prompt templates

Prompt template for the VQA task If we do
not use any demonstrations, the prompt template
for the VQA task is:

<image>

Question: [question]

Instruction: answer with a short phrase.
Answer :

in which <image> is the placeholder for the input
image, [question] is the input question.

The prompt template for VQA with a group of
demonstrations is:

<demo_image >
Question: [demo_question]
Answer: [demo_answer]

<demo_image >
Question: [demo_question]
Answer: [demo_answer]

You will be engaged in a two-phase task.
Phase 1: Absorb the information
from a series of image-text pairs.

Phase 2: Use that context, combined
with an upcoming image and your own
database of knowledge, to accurately

answer a subsequent question.

<image>

Question: [question]

Instruction: answer with a short phrase.
Answer :

in which <demo_image> is the placeholder
for the image in the demonstration sample,
[demo_question] is the demonstration question,
and [demo_answer] is the corresponding ground-
truth answer.

Prompt template for the image captioning task
If we do not use any demonstrations, the prompt
template for the image captioning task is:

<image>

Instruction: write a concise caption for

the image.
Response:

in which <image> is the placeholder for the input
image.

The prompt template for VQA with a group of
demonstrations is:
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Table 6: The vision-language tasks used in the experiments.

Dataset |Dsupp| | Detip_train| | Detip_dev|  |Drest| Labels Type Metric

VQAvV2 180k 10k 10k 14k - VQA acc
VizWiz 2.0k 1.0k 0.5k 0.8k - VQA acc
OK-VQA 2.0k 1.0k 0.5k 1.6k - VQA acc

Flickr30K 20.0k 5.0k 1.0k 5.8k - ImageCap rouge-l-ic

NoCaps 2.0k 1.0k 0.5k 1.0k - ImageCap rouge-l-ic
Flowers102 4.0k 1.0k 1.0k 1.2k 102 ImageCLS acc
Hateful-Memes 6.0k 2.0k 1.5 3.0k 2 ImageCLS acc

<demo_image>
Response: [demo_caption]

<demo_image >
Response: [demo_caption]

You will be engaged in a two-phase task.
Phase 1: Absorb the information
from a series of image-text pairs.

Phase 2: Use that context, combined
with an upcoming image and your own
database of knowledge, to accurately
provide a caption for the following
image.
<image>
Instruction: write a concise caption for
the image.
Response:

in which <demo_image> is the placeholder

for the image in the demonstration sample,

[demo_caption] is the ground-truth caption.

Prompt template for the image classification

task If we do not use any demonstrations, the

prompt template for the image classification task

is:

<image>

Instruction: assign one of the following
labels to the input image.

[label_list]
Response:

in which <image> is the placeholder for the input
image, and the [label_list] is the collection of label
names specified in the given classification task.

The prompt template for VQA with a group of
demonstrations is:

<demo_image >
Response: [demo_label]

<demo_image>
Response: [demo_label]

You will be engaged in a two-phase task.
Phase 1: Absorb the information
from a series of image-text pairs.
Phase 2: Use that context, combined
with an upcoming image and your own
database of knowledge, to accurately

assign a label from the provided
label list for the following image.
<image>
Instruction: assign one of the following
labels to the input image.
[label_list]
Response:

in which <demo_image> is the placeholder for the
image in the demonstration sample, [demo_label]
is the ground-truth caption.

C Sample embedding strategies

How to transform a input vision-language sam-
ple to an embedding vector is essential for demon-
stration retrieval. Now, we summarize a series of
specific retrieval strategies mentioned in the litera-
ture (Li et al., 2024) and new ones proposed in our
work.

Random sampling (RS) This strategy simply
obeys the uniform distribution to randomly sam-
ple n-shot triplets from D to form the in-context
sequence S.

Retrieving via similar image (SI) This method
retrieve n images from D which are most simi-
lar to the querying image and then use the corre-
sponding triplets of these retrieved images as the
demonstrations. For example, given the test sam-
ple ztest = (image,..;, prompt,,,), suppose the
i-th image image, is similar to image,,,;, then the
whole i-th triplet z; = (image;, prompt,, response;)
will be used as one demonstration. Here we assume
we have access to an high-quality image embed-
ding model at hand, which can transform each im-
age to a separate vector in the semantic space in
which the similarity between two vectors reflect
their similarity in contents.

Retrieving via similar texts (ST). Besides retriev-
ing via images, we can also retrieve n triplets which
contain the most similar text contents to the query-
ing sample, where the embeddings of these texts
are used to calculate the cosine similarity. Here

1062



we assume we have access to an high-quality text
embedding model at hand, which can transform a
piece of text to a separate vector in the semantic
space in which the similarity between two vectors
reflect their similarity in contents. We consider
three kinds of texts:

* Retrieving via similar prompts (ST-Q). We
use the prompts in the supporting set as the
contents to build the vector database, and use
the prompt of the test sample as the input text
for retrieving, i.e., comparing the similarity
between prompt,, ., and prompt;.

¢ Retrieving via similar prompts & draft re-
sponse (ST-PDR). This strategy, since the
ground truth answer is not available dur-
ing inference, we can not retrieve demon-
strations with the querying sample’s answer.
However, note that the LVLM itself can
generate a draft response by only generat-
ing conditioned onthe prompt or using strat-
egy ST-Q. Thus, we first generate a draft
response responsel’ ! to the test sample
Ttest, and then compare the semantic similar-
ity between (prompt,,,,, response’’ ') and
(prompt;, response;). Note that generating the
draft response response’” ! introduces addi-
tional latency for the whole system. To ensure
small latency, we ask the model to generate at

most 2 tokens.

Retrieving via Similar image-texts (SIT). Be-
sides retrieving via only images or texts, we can
also retrieve the demonstrations via the concate-
nation of image embeddings and text embeddings.
Note that (Li et al., 2024) neglect this group of
strategy. Since the CLIP model can generate two
vectors for the text and image contents separately,
these two vectors will be concatenated.

Thus, similar to the previous strategies based on
text input, we can have the following strategy:

* Retrieving via similar image and prompts
(SIT-IP). We concatenate the querying im-
age embedding and prompt embedding for
retrieval on a vector database, which are con-
structed by concatenating supporting samples’
image embeddings and prompt embeddings.

* Retrieving via similar image prompt and
draft response (SIT-IPDR). This strategy is
introduced Section 3.2 in the main contents.
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