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Abstract

Large language models often suffer from lan-
guage confusion, a phenomenon in which re-
sponses are partially or entirely generated in
unintended languages. This critically degrades
the user experience, especially in low-resource
settings. We hypothesize that this issue stems
from limitations in conventional fine-tuning ob-
jectives, such as supervised learning, which op-
timize the likelihood of correct tokens without
explicitly penalizing undesired outputs such
as cross-lingual mixing. Analysis of loss tra-
jectories during pretraining further reveals that
models fail to distinguish between monolingual
and language-mixed texts, highlighting the ab-
sence of inherent pressure to avoid such con-
fusion. In this work, we apply ORPO, which
adds penalties for unwanted output styles to
standard SFT, effectively suppressing language-
confused generations. ORPO maintains strong
language consistency, even under high decod-
ing temperatures, while preserving general QA
performance. Our findings suggest that incor-
porating appropriate penalty terms can effec-
tively mitigate language confusion in multilin-
gual models, particularly in low-resource sce-
narios.

1 Introduction

Scaling large language models has empirically
delivered substantial gains in multilingual capa-
bilities (Hurst et al., 2024; Cohere et al., 2025;
Yang et al., 2025), across diverse tasks such as
machine translation (Alves et al., 2024), summa-
rization (Forde et al., 2024), and reasoning (Son
et al., 2025). However, despite their growing capa-
bilities, LLMs often suffer from language confu-
sion (Marchisio et al., 2024), a failure mode in
which outputs inadvertently blend multiple lan-
guages. This hampers real-world deployment of
LLM systems as even the most minor language
confusion may be critical to user experience (Son
et al., 2024a). This issue is particularly pronounced

in low-resource settings, where limited supervision
exacerbates cross-lingual interference (Arivazha-
gan et al., 2019; Wang et al., 2023).

However, little research has been conducted on
why such behavior may happen. In this work, we
draw inspiration from the training methodology
proposed by Hong et al. (2024), which applies su-
pervised fine-tuning to preferred generation styles
while imposing penalties on disfavored ones.

In this work, we conduct two experiments to
investigate whether language confusion arises from
the absence of an explicit penalty against undesired
languages.

First, we track the training loss of two model
families (SmolLM2 (Allal et al., 2025) and
OLMo2 (OLMo et al., 2024)) throughout their pre-
training process. In both cases, the loss of language-
confused outputs steadily decreases over time, in-
dicating that the models do not learn to disfa-
vor confused generations. Additionally, by using
ORPO (Hong et al., 2024) for an additional three
epochs of fine-tuning, we show that introducing an
explicit penalty against unwanted languages effec-
tively restricts language confusion.

2 Preliminaries

2.1 Related Works

What is language confusion? Language con-
fusion, also known as language mixing or code-
mixing, occurs when two or more languages are
mixed within a single utterance (Chen et al., 2024;
Yoo et al., 2024). This phenomenon is particularly
prevalent in low-resource languages (Arivazhagan
et al., 2019) and even appears in state-of-the-art
models (u/VictorRM, 2025). Diverse discussions
have emerged regarding language confusion. Al-
though it can sometimes support multilingual trans-
fer (Wang et al., 2025), mixed-language responses
may undermine user experience, as they can be per-
ceived as signs of incompetence (Son et al., 2024a).
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2.2 Quantifying Language Confusion
Measurement of language confusion can be chal-
lenging, as LLM judges (Zheng et al., 2023) remain
unreliable (Son et al., 2024b), and rule-based meth-
ods cannot distinguish genuine confusion from
legitimate uses of foreign language (e.g., abbre-
viations). In this work, we leverage two metrics
Word Precision Rate (WPR) and Language Pre-
cision Rate (LPR) proposed by Marchisio et al.
(2024).

WPR computes the overall fraction of tokens
produced in the target language, offering a granular
view of how consistently a model sticks to one
language. Where T =

⋃N
i=1 Ti is the set of all

valid tokens across N outputs, WPR is defined as:
∣∣{ t ∈ T : is_Korean(t)}

∣∣
|T | (1)

LPR counts the proportion of sentences in which
at least 90% of tokens belong to the target lan-
guage, thereby penalizing any cross-lingual intru-
sions. Where I(·) denotes the indicator function
and si the i-th sentence, LPR is defined as:

1

N

N∑

i=1

I
(∣∣{ t ∈ si : is_Korean(t)}

∣∣
∣∣{ t ∈ si : is_valid(t)}

∣∣ ≥ 0.9
)

(2)
Additionally, as noted above, rule-based metrics

alone cannot distinguish true language confusion
from minor lexical variations, such as numerals,
named entities, or common loanwords. Therefore,
alongside WPR and LPR, we also report the propor-
tion of responses with WPR and LPR exceeding 0.9.
Empirically, we observe that many such responses
remain perfectly acceptable sentences containing
a few legitimate English terms. For examples of
sentences with varying WPR and LPR levels, see
Appendix D.

3 Experimental Setup

3.1 Dataset Preparation
To facilitate pairwise preference learning, we con-
structed instruction-centered triplet datasets. Each
triplet comprises a Korean prompt (input), a fully
Korean response (chosen), and an alternative re-
sponse exhibiting code-mixing or a full unexpected
language (rejected).

We constructed three multilingual datasets based
on existing Korean corpora, each designed to rep-
resent a different form of language confusion. The

Figure 1: Dataset structure (OIG, Chosen-Rejected pair)

OIG dataset (LAION, 2022; Heegyu, 2023) and
HC3 dataset (Guo et al., 2023; Na, 2023) pair
Korean prompts with rejected responses written
entirely in English. In contrast, the KoAlpaca
dataset (Beomi, 2023) introduces more nuanced
confusion by synthetically injecting translated En-
glish or Chinese tokens into Korean outputs, re-
sulting in code-mixed responses. Additional pre-
processing and filtering steps are described in Ap-
pendix A.

3.2 Experiment Setup

We fine-tuned two publicly available instruction-
tuned language models: SmolLM2-1.7B (Allal
et al., 2025) and OLMo2-7B (OLMo et al., 2024),
selected for their ability to generate Korean text
among lightweight open source models. Detailed
training configurations are provided in Appendix B.

3.3 Evaluation Protocol

We evaluate three model variants: Base, the origi-
nal instruction-tuned model; SFT, supervised fine-
tuned on Korean prompt–response pairs from the
OIG dataset; and ORPO, fine-tuned using Odds Ra-
tio Preference Optimization, on the same dataset.

4 Main Results

Prior work shows LLMs default to high-frequency,
dominant-language tokens when uncertain, causing
language confusion (Marchisio et al., 2024). We
hypothesize that the standard next-token prediction
objective exacerbates this bias: softmax focuses
probability mass on the correct token but does not
explicitly penalize cross-lingual mixing.

4.1 Loss-Based Diagnostic: Do LLMs Penalize
Language Mixing?

We begin with the observation that, during pretrain-
ing, neither SmolLM2 (Allal et al., 2025) model
learns to penalize language confusion, as shown by
their loss trajectories in Figure 2.

1027



Model SmolLM2-1.7B OLMo2-7B

Temperature 0.7 1.0 1.2 0.7 1.0 1.2

Base ORPO Base ORPO Base ORPO Base ORPO Base ORPO Base ORPO

Metric

WPR > 0.9 ratio 96.1% 100.0% 94.3% 100.0% 81.4% 100.0% 96.3% 99.8% 91.8% 99.9% 7.5% 99.0%
LPR > 0.9 ratio 92.6% 99.9% 88.5% 100.0% 71.2% 99.9% 71.2% 99.7% 46.0% 99.8% 0.5% 96.8%
Average WPR 0.9821 0.9999 0.9696 1.0 0.8953 0.9999 0.9818 0.9998 0.9576 0.9998 0.6799 0.9962
Average LPR 0.9681 0.9996 0.9496 1.0 0.8434 0.9999 0.9379 0.9992 0.8684 0.9995 0.3044 0.9881

Table 1: Comparison of SmolLM2 and OLMo2 models across temperatures (Base vs. ORPO). All metrics are higher
is better: higher values indicate stronger language consistency.

Figure 2: Average loss for monolingual and code-mixed
responses across training tokens (SmolLM2)

In principle, a model that internalizes a robust lin-
guistic preference should learn to assign lower loss
to coherent Korean-only generations while preserv-
ing relatively higher loss for language-confused
outputs. Contrary to expectations, we observe a
monotonic decrease in loss for both chosen and
rejected responses. This trend may suggest that, in
the absence of explicit preference signals, models
eventually learn to prefer any sequence of tokens
they have seen during training, without distinguish-
ing linguistically coherent and code-mixed outputs.
Such behavior persists up to the 7B scale, suggest-
ing that model size alone cannot resolve the issue.
See Appendix C for results of OLMo2 models.

4.2 Generation-level evaluation: WPR and
LPR Comparison

To evaluate the effectiveness of preference-based
tuning method, we compare the generation per-
formance of the Base and ORPO-tuned models
using WPR and LPR under varying decoding tem-
peratures. Each model generated responses for the
same set of 1,000 prompts, repeated three times per
prompt, and all reported scores are averaged across
the three generations.

As summarized in Table 1, we observe the fol-
lowing trends:

• ORPO-tuned models consistently outper-

form the Base models, achieving near-perfect
WPR and LPR even at high temperature set-
tings (up to 1.2).

• Temperature significantly impacts the Base
models. For instance, average LPR of the
OLMo2 base model plummets to 0.3044 at
a temperature of 1.2, indicating a severe
degradation of linguistic consistency without
preference-based fine-tuning.

5 Additional Results

5.1 Comparison with other fine-tuning
methods

To evaluate how ORPO compares to other standard
fine-tuning approaches, we conducted additional
experiments using Supervised Fine-Tuning (SFT)
and Direct Preference Optimization (DPO) under
identical conditions.

Detailed results for both SmolLM2 and OLMo2
are presented in Appendix E. Across both model
families, ORPO consistently achieves high WPR
and LPR scores, matching or slightly exceeding
SFT and substantially outperforming DPO.

5.2 Do fine-tuned models internalize
penalties?

Figure 3: Loss of SmolLM2 models across tuning meth-
ods for both original and code-mixed responses
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To further investigate whether preference-based
learning offers additional internal modeling advan-
tages, we conduct a loss-based diagnostic analy-
sis on the evaluation subset HC3 and compare the
loss between original (chosen) and code-mixed (re-
jected) responses.

Figure 4: Loss of OLMo2 models across tuning methods
for both original and code-mixed responses

We found that ORPO assigns significantly
higher loss to code-mixed responses compared to
other models, indicating stronger penalization of
language-confused outputs. On the HC3 evaluation
set, ORPO yields an average delta loss of 0.8379 for
SmolLM2 and 4.6778 for OLMo2-both the high-
est among all fine-tuning methods. This increased
separation suggests that ORPO fine-tuning more ef-
fectively reinforces internal preferences for linguis-
tically consistent outputs, enabling more reliable
discrimination between coherent and code-mixed
generations (Figure 3 and 4).

5.3 Does ORPO Fine-Tuning Lead to a
Trade-off in General QA Capabilities?

We assess whether ORPO fine-tuning, which miti-
gates language confusion, adversely affects general
performance by evaluating our models on the HAE-
RAE benchmark—a Korean multiple-choice QA
suite covering general knowledge, history, loan-
words, and rare vocabulary (Son et al., 2023). We
omit more challenging reasoning benchmarks due
to the modest size of our models and limited train-
ing data. We compared three model variants: Base,
SFT and ORPO fine-tuned model.

Figure 5 reports the average accuracies in all
subcategories for the SmolLM2 and OLMo2 mod-
els. The results show no significant performance
degradation in the three tuning methods.

These findings suggest that neither SFT nor
ORPO introduces measurable harm to general QA

Figure 5: Average accuracy across training methods for
SmolLM2 and OLMo2.

capabilities. In particular, ORPO maintains general
QA performance while reducing language confu-
sion.

6 Conclusion

This work investigates the underlying causes of
language confusion in multilingual large language
models and empirically demonstrates that penaliz-
ing undesired languages via preference optimiza-
tion is an effective method for suppressing such
behavior.

Our primary contribution is the demonstration
that preference-based fine-tuning offers a highly
effective solution. By fine-tuning models to pre-
fer monolingual responses over language-confused
ones, we achieve robust linguistic consistency with-
out compromising general question-answering ca-
pabilities.

These results suggest that incorporating explicit
preference signals during fine-tuning provides a
promising approach for reinforcing linguistic fi-
delity in multilingual settings. Moreover, we sug-
gest that future research may explore the use of
penalty terms even in the pretraining phase to pe-
nalize language confusion earlier in the training
effectively.

Limitations

While our findings demonstrate the effectiveness
of ORPO for mitigating language confusion, we
acknowledge several limitations in this study.

First, our analysis does not include a sensitivity
analysis of ORPO’s hyperparameters. We used a
fixed value (β = 0.1) based on the original ORPO
paper. Future work should explore how varying
this hyperparameter affects the trade-off between
linguistic fidelity and general task performance.
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Second, our experiments were conducted pri-
marily on Korean-centric datasets and two specific
model families (SmolLM2 and OLMo2). Although
the results are strong, further research is needed to
ascertain whether our findings generalize to other
languages and other model architectures.

Third, we did not perform an in-depth analysis
of why ORPO consistently outperforms DPO. Fur-
ther investigation is needed to fully understand the
optimization dynamics behind this difference.

Finally, although we have detailed our experi-
mental setup and dataset construction, we have not
yet released the code and training artifacts. To fa-
cilitate reproducibility, we plan to make all code
and training materials publicly available upon pub-
lication.
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A Dataset preprocessing

KoAlpaca (Code-Mixed Rejection): We con-
structed this dataset using the KoAlpaca1 corpus,
a Korean instruction-tuning dataset modeled after
Stanford Alpaca (Beomi, 2023). Each triplet con-
tains a Korean instruction, a fully Korean chosen
response, and a synthetically generated code-mixed
rejected response, created by injecting randomly
selected English or Chinese tokens—translated via
the Google Translate API—at random word-level
positions.

1https://huggingface.co/datasets/beomi/
KoAlpaca-v1.1a

To ensure high linguistic purity, we applied the
following preprocessing steps: (1) filtered for cho-
sen responses written entirely in Korean, guaran-
teeing a WPR and LPR of 1.0; (2) applied string
normalization (e.g., whitespace trimming) to in-
struction, chosen, and rejected fields.

OIG (Fully English Rejection): We constructed
a triplet dataset using the OIG-small-chip2-ko2

corpus, which contains over 210K instruction-
response pairs translated into Korean from the orig-
inal English OIG dataset (LAION, 2022). Each
triplet comprises a Korean instruction, a fully Ko-
rean chosen response, and a fully English rejected
response. This dataset is designed to evaluate the
model’s ability to distinguish between clearly sepa-
rated linguistic domains.

We applied several preprocessing steps to im-
prove data quality: (1) applied string normaliza-
tion; (2) filtered for chosen responses containing
only Korean text; (3) discarded samples where the
length ratio between chosen and rejected responses
fell outside the range of 0.4 to 2.0; (4) removed
duplicate instructions. Each dataset contains ap-
proximately 10,000 instruction-response triplets,
selected for linguistic consistency and diversity.

HC3 (Fully English Rejection): We also con-
structed dataset using the HC3-ko3, which contains
24.3k instruction pairs, each containing a human-
written and a GPT-generated response, translated
into Korean (Guo et al., 2023; Na, 2023).

Each triplet contains a Korean instruction, a fully
Korean chosen response, and a synthetically gen-
erated code-mixed rejected response. This dataset
is designed to evaluate the model’s generalizing
ability to use the unseen data during training.

We applied several preprocessing steps to im-
prove data quality: (1) applied string normaliza-
tion; (2) filtered for chosen responses containing
only Korean text; (3) discarded samples where the
length ratio between chosen and rejected responses
fell outside the range of 0.4 to 2.0; (4) removed
duplicate instructions. (5) removed responses ex-
hibiting generation failures caused by the language
model, such as repeated phrases or malformed out-
puts due to server errors.

2https://huggingface.co/datasets/heegyu/
OIG-small-chip2-ko

3https://huggingface.co/datasets/nayohan/
HC3-ko
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B ORPO Training Configuration

Table 2 outlines the training configuration used
for ORPO fine-tuning. Both SmolLM2-1.7B and
OLMo-2-1124-7B were trained for 3 epochs with a
global batch size of 128. ORPO’s weighting coeffi-
cient β was set to 0.1 across experiments, and train-
ing was performed using the DeepSpeed ZeRO-2
framework.

Parameter SmolLM2-1.7B (ORPO) OLMo2-7B (ORPO)

GPUs A6000 × 1 H100 × 2
Max sequence length 8192 4096
Micro batch size 8 8
Gradient accumulation 16 8
Global batch size 128 128
Training steps 223 223
Epochs 3 3
ORPO β value 0.1 0.1
Optimizer AdamW AdamW
Framework DeepSpeed ZeRO-2 DeepSpeed ZeRO-2

Table 2: Training configuration for ORPO fine-tuning on
SmolLM2 and OLMo2 models.

C Average loss tracking for OLMo2

Figure 6: The average loss of original (monolingual)
and code-mixed responses across training checkpoints
for OLMo2 models.

To assess whether the failure to penalize lan-
guage confusion generalizes across architectures,
we also tracked the loss trajectories of OLMo2
models (1B and 7B) throughout pretraining. As
shown in Figure 6, both original and code-mixed
responses exhibit a steady decrease in loss, mir-
roring the trend observed in SmolLM2 (Figure 2).
Despite the increase in model capacity, the gap be-
tween two responses does not widen. This suggests
that pretraining objectives alone may not induce
meaningful linguistic preferences.

D Samples of different levels of WPR and
LPR

To enable interpretable comparisons across mod-
els, we report the proportion of generations that
exceed a threshold of 0.9 for both WPR and LPR.
This threshold was chosen based on manual inspec-
tion by a native Korean speaker, who reviewed a
large number of generated samples and heuristi-
cally identified 0.9 as a practical cutoff that sepa-
rates mostly monolingual responses from visibly
code-mixed ones. This level of tolerance allows
minor lexical variation (e.g., loanwords, numerals)
while still maintaining strong target-language align-
ment. It also aligns with real world expectations
for language consistency, particularly in Korean,
where partial foreign-language inclusions are not
uncommon but still undesirable in many contexts.
Representative examples illustrating this threshold-
ing effect are shown in Figure 7.

E Generation-level evaluation: other
models

In addition to ORPO, we evaluate two other fine-
tuning methods: Supervised Fine-Tuning (SFT)
and Direct Preference Optimization (DPO) across
multiple decoding temperatures and model families
(SmolLM2, OLMo2).

Direct Preference Optimization (DPO) is a
preference-based tuning method that trains models
to maximize the log-probability margin between
preferred and rejected responses (Rafailov et al.,
2023).

Table 3 describes the detailed training configura-
tions used for DPO fine-tuning. All settings were
selected to closely match the original DPO imple-
mentation where possible.

Table 4 and Table 5 summarize the generation
performance of each model across three decoding
temperatures (0.7, 1.0, 1.2) and three fine-tuning
methods (SFT, DPO, ORPO). We report four key
metrics: the ratio of outputs with WPR > 0.9, LPR
> 0.9, average WPR, and average LPR.

Across both model families, ORPO consistently
outperforms DPO and performs on par with or
slightly better than SFT in terms of language fi-
delity. In particular, ORPO maintains near-perfect
WPR and LPR values across all temperature set-
tings, while DPO exhibits significant degradation at
higher temperatures, most notably on the OLMo2
model at temperature 1.2 (LPR > 0.9 ratio drops to
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52.1%. SFT remains relatively stable across tem-
peratures.

Parameter SmolLM2-1.7B (DPO) OLMo2-7B (DPO)

GPUs A6000 × 1 A6000 × 4
Dataset size 10,000 10,000
Max sequence length 8192 4096
Micro batch size 8 4
Gradient accumulation 8 4
Global batch size 64 64
Training steps 467 467
DPO β value 0.1 0.1
Optimizer RMSprop RMSprop
Framework DeepSpeed ZeRO-2 DeepSpeed ZeRO-2

Table 3: Training configuration for DPO fine-tuning on
SmolLM2 and OLMo2 models.
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Table 4: Performance of SmolLM2 across temperature and tuning methods (SFT, DPO, ORPO)

Metric temperature = 0.7 temperature = 1.0 temperature = 1.2

SFT DPO ORPO SFT DPO ORPO SFT DPO ORPO

WPR > 0.9 ratio 99.9% 94.2% 100.0% 100.0% 96.9% 100.0% 100.0% 95.0% 100.0%
LPR > 0.9 ratio 99.8% 92.3% 99.9% 100.0% 94.4% 100.0% 99.7% 90.5% 99.9%
Average WPR 0.9998 0.9760 0.9999 1.0000 0.9857 1.0000 0.9998 0.9823 0.9999
Average LPR 0.9994 0.9705 0.9996 1.0000 0.9780 1.0000 0.9993 0.9629 0.9999

Table 5: Performance of OLMo2 across temperature and tuning methods (SFT, DPO, ORPO)

Metric temperature = 0.7 temperature = 1.0 temperature = 1.2

SFT DPO ORPO SFT DPO ORPO SFT DPO ORPO

WPR > 0.9 ratio 99.8% 99.5% 99.8% 99.9% 99.4% 99.9% 99.1% 94.4% 99.0%
LPR > 0.9 ratio 99.7% 92.7% 99.7% 99.8% 89.4% 99.8% 96.8% 52.1% 96.8%
Average WPR 0.9996 0.9959 0.9998 0.9998 0.9938 0.9998 0.9970 0.9649 0.9962
Average LPR 0.9988 0.9847 0.9992 0.9997 0.9791 0.9995 0.9915 0.8897 0.9881

1034



Figure 7: Samples of generated responses at varying WPR and LPR levels
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