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Abstract

Variation in human annotation and human per-
spectives has drawn increasing attention in nat-
ural language processing research. Disagree-
ment observed in data annotation challenges the
conventional assumption of a single "ground
truth" and uniform models trained on aggre-
gated annotations, which tend to overlook mi-
nority viewpoints and individual perspectives.
This proposal investigates three directions of
perspective-oriented research: First, annota-
tion formats that better capture the granularity
and uncertainty of individual judgments; Sec-
ond, annotation modeling that leverages socio-
demographic features to better represent and
predict underrepresented or minority perspec-
tives; Third, personalized text generation that
tailors outputs to individual users’ preferences
and communicative styles. The proposed tasks
aim to advance natural language processing re-
search towards more faithfully reflecting the di-
versity of human interpretation, enhancing both
inclusiveness and fairness in language technolo-
gies.

1 Introduction

Understanding human perspectives and designing
systems that cater to individual needs are criti-
cal goals in natural language processing (NLP)
research. However, traditional approaches often
rely on aggregated annotations in datasets and treat
them as a singular ground truth for model training
(Braylan and Lease, 2020; Qing et al., 2014).

In recent years, the assumption of a "single
ground truth" has been increasingly challenged
by researchers (Plank, 2022; Cabitza et al., 2023;
Sap et al., 2022; Frenda et al., 2024), drawing
attention to the limitations of conventional data
construction and modeling practices in capturing
the full spectrum of human perspectives. Beyond
NLP research, similar concerns have arisen in re-
lated fields, such as the legal domain (Braun and

Matthes, 2024; Xu et al., 2023), the medical do-
main (Miñarro-Giménez et al., 2018), and music
annotation (Koops et al., 2019).

Growing evidence suggests that annotator
perspectives are shaped by complex, context-
dependent factors, including individual beliefs,
their demographic backgrounds, context informa-
tion, text ambiguity or interpretive uncertainty.
Studies (Braun, 2024) also highlighted that human
annotators frequently provide different but equally
valid labels, challenging the assumption that there
is always a single correct answer. This shift calls
for a deeper investigation into annotation varia-
tion and human perspectives research in all stages:
annotation (Plank, 2022), modeling (Uma et al.,
2021; Mostafazadeh Davani et al., 2022; Mokhbe-
rian et al., 2024) and evaluation frameworks (Basile
et al., 2021; Rizzi et al., 2024) in order to improve
the inclusiveness and models’ alignment of human
perspectives.

This proposal aims to advance perspective-aware
approaches in NLP by providing insights into an-
notation methodologies that better capture the com-
plexity of human perspectives and improve model-
ing efficiency (Section 3), evaluating the influence
of socio-demographic factors on annotation varia-
tion modeling (Section 4), and exploring methods
to leverage persona information for personalized
textual generation (Section 5). Three tasks are il-
lustrated in Figure 1.

Annotation Format: This task explores different
formats of annotation types in representing perspec-
tives: binary labels vs. continuous or Likert scale
values. We assess whether continuous values or
Likert scales, rather than binary labels, better cap-
ture the uncertainty of annotators’ tendencies and
perspectives. The research outcome aims to im-
prove annotation practices and derive more refined
annotation methods for capturing the subtleties of
diverse annotator perspectives.

Perspective Annotation Modeling: This task in-
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Figure 1: Proposed Tasks of Perspective Aware Modeling

vestigates the extent to which socio-demographic
features can account for annotator perspectives or
variation in humans’ annotation patterns. We exam-
ine the effectiveness of predicting an individual’s
annotations based on their socio-demographic at-
tributes in application domains that have not yet
been explored.

Personalized Generation: This task explores
persona-based modeling and personalized textual
generation that reflect users’ preferences and com-
munication styles. We incorporate structured per-
sona information, such as socio-demographic fea-
tures, sentiment orientation, and linguistic com-
plexity as additional signals for text generation.
The objective is to produce responses or texts that
are not only contextually appropriate but also tai-
lored in terms of individual preference.

2 Related Studies

Recent studies have increasingly recognized the
presence of human disagreement and diverse per-
spectives in annotation tasks. Various terms have
been used to describe this phenomenon, includ-
ing subjectivity (Reidsma and Carletta, 2008), hu-
man uncertainty (Peterson et al., 2019), perspec-
tivism or perspectivist (Cabitza et al., 2023; Frenda
et al., 2024), human label variation (Plank, 2022)
and pluralism (Sorensen et al.; Feng et al., 2024).
Moreover, an increasing number of studies have
released datasets (Wang et al., 2023; Kumar et al.,
2021; Frenda et al., 2023; Passonneau et al., 2012;
Dumitrache et al., 2018) annotated by multiple in-
dividuals, in contrast with the single label from
the traditional majority-vote aggregation or score
averaging.

Prior research (Plank et al., 2014; Sheng et al.,
2008; Guan et al., 2018; Fornaciari et al., 2021;
Xu et al., 2024; Casola et al., 2023) has demon-
strated that incorporating labels from multiple an-

notators can enhance model performance by im-
proving the model’s generalization ability. Meth-
ods include the cost-sensitive approach, where the
loss of each instance is weighted based on label
distribution (Plank et al., 2014; Sheng et al., 2008),
as well as soft-loss approaches (Peterson et al.,
2019; Lalor et al., 2017; Uma et al., 2020; Forna-
ciari et al., 2021). Furthermore, researchers have
explored leveraging additional metadata, such as
socio-demographic features (Goyal et al., 2022;
Gordon et al., 2022), annotator IDs (Mokhbe-
rian et al., 2024), and partial annotation histories
(Milkowski et al., 2021; Sorensen et al., 2025), to
characterize individual annotation patterns and re-
fine learning procedures.

The alignment of large language models (LLMs)
with human annotation has also gained increasing
attention under the context of embracing human dis-
agreement, particularly in evaluating their ability to
capture diverse perspectives and which groups’ per-
spective that LLMs reflect (Hu and Collier, 2024;
Beck et al., 2024; Salemi et al., 2024; Muscato
et al., 2024). In the generation domain, MOR-
PHEUS (Tang et al., 2024) introduces a three-stage
framework to model roles from dialogue history.
It compresses persona information into a latent
codebook, enabling generalization to unseen roles
through joint training. Lu et al. (2023) disentan-
gle multi-faceted attributes in the latent space and
use a conditional variational auto-encoder to align
responses with user traits.

3 Annotation Formats for Perspective
Representation

This task explores two different annotation formats
(binary classification versus Likert-scale or contin-
uous values) for representing human perspectives
and investigates their influence on modeling effec-
tiveness. The study aims to provide guidance for
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future dataset construction by identifying annota-
tion formats that best support model learning and
more accurately capture the nuance of human per-
spectives.

3.1 Motivation and Research Hypothesis

Previous research (Plank, 2022; Mostafazadeh Da-
vani et al., 2022) has primarily focused on label
variation using discrete labels. Many studies, par-
ticularly in domains such as hate speech and offen-
sive language detection, rely on binary annotations
(Mostafazadeh Davani et al., 2022; Akhtar et al.,
2020). In some cases, ordinal Likert-scale ratings
are converted into binary labels in modeling proce-
dures (Orlikowski et al., 2023).

Ovesdotter Alm (2011) argues that acceptability
is a more meaningful concept than rigid "right" or
"wrong" labels. Human annotators exhibit vary-
ing degrees of uncertainty for specific items, and
some tasks inherently involve continuous variation,
such as the level of emotional arousal (Lee et al.,
2022). Simple binary classes can obscure impor-
tant nuances in annotation data. It may risk over-
simplifying the granularity of human perspectives,
ultimately impacting model reliability and the in-
terpretability of annotator uncertainty.

We hypothesize that continuous values or Likert
scales provide a more effective source for capturing
and modeling annotation variation. From the per-
spective of machine learning, incorporating finer-
grained annotations may help align better with hu-
man judgment and enhance model performance by
smoothing the decision boundary compared to rigid
binary labels.

3.2 Methodology

This study undertakes interdisciplinary approach
to investigate the impact of the annotation format
across multiple domains, including tasks such as
hate speech detection, offensive language detection
and sentiment analysis1. By examining diverse
datasets and modeling techniques, we aim to assess
whether adopting finer-grained annotation scales
improves the representation and learning of anno-
tators’ perspectives in a cross-domain context.

Data Construction: Two types of datasets will
be used for this purpose. First, for datasets with
Likert scales or continuous values, we will train

1These tasks are known that human annotation variation
exists and with relatively richer datasets annotated by multiple
individuals, seen Wang et al. (2023); Akhtar et al. (2020);
Waseem (2016) and Gruber et al. (2024).

models using the original values and also targets
that are transformed into binary labels2 for compar-
ison. Second, for datasets originally with discrete
labels, such as natural language inference, where
three labels (entailment, contradiction, and neutral-
ity) exist, we will annotate with an additional scale
representing human uncertainty of the label selec-
tion to capture the complexity inherent in human
judgment.

Modeling framework: To test the hypothesis (nu-
merical values better represent human perspectives
than binary labels, and models based on values
show better effectiveness in machine learning), we
will implement the three modeling architectures
(Figure 2) from Mostafazadeh Davani et al. (2022)
to compare the results of two types of targets (bi-
nary encoding vs. continuous values):

• Individual Annotator Modeling: Each annota-
tor’s annotations will be modeled separately
using distinct neural networks to capture indi-
vidual perspectives.

• Multi-target Methods: A shared neural net-
work will be trained with all annotators’ anno-
tations represented as target vectors, allowing
the model to learn patterns across annotators.

• Multi-Task Learning: A partially shared neu-
ral network will be employed, with shared
layers capturing common understanding and
annotator-specific layers or heads capturing
individualized annotation tendencies.

Evaluation and Result Analysis: Model perfor-
mance will be evaluated using both traditional
metrics based on aggregated labels, label distri-
butions and specialized evaluation on individual-
ized prediction accuracy to assess the advantages
of finer-grained annotations compared to binary
labels. Since direct comparison between binary
classification and regression outputs is inherently
challenging, we propose two complementary eval-
uation strategies to facilitate a meaningful compar-
ison:

• Binary Label Conversion: Continuous regres-
sion outputs will be converted into binary la-
bels using a predefined threshold (consistent
with the threshold used during training for
label derivation). We will then compute stan-
dard classification metrics such as F1 score

2Different threshold values can be set for partition to assess
the robustness.
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Figure 2: Neural Network Architectures for Perspective Annotation Modeling

and accuracy to evaluate the alignment be-
tween the binarized predictions and the target.

• Ranked Correlation Comparison: While clas-
sifier outputs do not offer the same level of
granularity as regression values, the predicted
probabilities or logits can serve as proxies for
prediction confidence or intensity (e.g., degree
of toxicity). These values enable a ranking-
based comparison with the ground truth labels.
We will compute the Spearman rank correla-
tion (r) between the model predictions and
the true target values, allowing us to compare
the correlation strength across both classifiers
and regressors.

4 Perspective Annotation Modeling with
Demographic Features

This task investigates the extent to which socio-
demographic features, such as age, gender, educa-
tion level, political affiliation, and domain expertise
contribute to explaining and modeling variation in
human annotation.

4.1 Motivation and Research Questions

While prior research has explored this question in
some NLP tasks, findings remain inconclusive with
various methods and datasets. In toxicity classifica-
tion, for example, Orlikowski et al. (2023) reports
that incorporating group-level socio-demographic
features does not significantly improve predictive
performance in toxicity classification tasks, when
compared to randomly assigned groups. In con-
trast, Gordon et al. (2022) discovered a correlation
between annotator perspectives and their socio-
demographic backgrounds, suggesting these fea-
tures may meaningfully inform model learning of
toxicity.

These conflicting results raise a question: in
which application domains and with what model-
ing methods do socio-demographic features act
effectively for modeling? Can we model the proba-
bility conditioned on socio-demographic features
Prob(annotation_pred|demographic_feature)
with a better accuracy than assuming an undifferen-
tiated perspective Prob(annotation_pred) with
neural networks?

We aim to explore whether socio-demographic
traits enhance the performance of predicting anno-
tations, particularly in domains that have received
limited attention in previous research. Prior re-
search primarily focuses on subjective domains
such as hate speech (Sachdeva et al., 2022; Kocoń
et al., 2021) or toxicity classification (Goyal et al.,
2022). In linguistic annotations, more objective
tasks such as natural language inference (Huang
and Yang, 2023; Jiang and de Marneffe, 2022) and
part-of-speech tag (POS) (Plank et al., 2014) are
detected with inherent human label variations.

Extending beyond tasks that received much atten-
tion in previous research, we apply this perspective
modeling framework to financial or economic do-
mains to investigate the interpretation variation of
business trends and sentiment of economic state-
ments3 (Malo et al., 2014; Liu et al., 2023).

Specifically, we address the following re-
search questions: First, to what extent do socio-
demographic attributes and domain expertise ac-
count for variation in annotator judgments in
business-related tasks? Second, which specific
attributes, if any, serve as reliable predictors of
annotation variation? And third, which modeling

3Related datasets such as Malo et al. (2014) and Liu
et al. (2023) are available with a single annotator’s decision.
Datasets with meta information, particularly with various
socio-demographic backgrounds, should be constructed for
the purpose of the current study.
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methods show advantages in modeling patterns of
various socio-demographic groups?

4.2 Methodology

In this task, we will improve the modeling meth-
ods in prior research to model socio-demographic
features and annotation variation more efficiently.
The following modeling methods are proposed for
exploration:

• Socio-Demographic Embedding Learning:
Embedding layers will be incorporated into
neural networks to encode socio-demographic
attributes, enabling the model to capture cor-
relations and patterns of annotator attributes
such as gender, nationality, and political ori-
entation. This embedding-based model will
be compared against a baseline where these
attributes are randomly shuffled to assess their
genuine contribution to model performance.

• Demographics-Enriched Prompts in Large
Language Models (LLMs): We will experi-
ment with prompt-based approaches to incor-
porate socio-demographic features into LLM
predictions. Specifically, we will present de-
mographic features in prompts with either
structured key-value formats or natural lan-
guage descriptions for a comparison study.

• Lightweight Fine-Tuning of LLMs: To fur-
ther enhance performance, this study will
adopt parameter-efficient fine-tuning tech-
niques such as prefix tuning (Li and Liang,
2021), the methods enable personalization
without extensive retraining, making them
suitable for incorporating socio-demographic
signals.

To assess the effectiveness of the proposed meth-
ods for modeling human perspectives, we design
comparative experiments to assess the effect of
socio-demographic features. Specifically, we con-
sider the following three experimental conditions:
(1) Single annotation modeling, which only makes
use of the aggregated annotations obtained from
multiple annotators. (2) Annotation distribution
modeling that leverages the distribution of annota-
tions without additional annotator attributes. Meth-
ods in Section 3 or approaches such as soft-loss
function (Fornaciari et al., 2021; Uma et al., 2021)
can serve for this purpose. (3) Socio-demographic
enriched learning with three proposed methods in

this section, in which predictions are conditioned
on socio-demographic features. This comparison
will shed light on whether demographic factors
serve as useful input features for the perspective
modeling of financial trends perception.

4.3 Evaluation

In the evaluation stage, we consider multiple met-
rics under different conditions. These include
(1) Accuracy and F1 score computed from aggre-
gated labels; (2) Measures that capture the distribu-
tional alignment of prediction and annotation, met-
rics including cross-entropy loss, Kullback-Leibler
(KL) divergence, and Jensen-Shannon divergence.
While, this study mainly focuses on (3) Model
performance within specific socio-demographic
groups to evaluate its effectiveness across diverse
populations. To examine the influence of particular
socio-demographic features on perspective attribu-
tion, we will apply statistical tests, specifically, the
Student’s t-test for binary features and ANOVA for
categorical features, to investigate correlations be-
tween these attributes and annotation behaviors or
perspectives.

5 Personalized Text Generation

Building on the perspective exploration of annota-
tion variation, namely label and value prediction
in the previous tasks, this section extends the re-
search to personalized text generation. The goal
is to generate language that aligns with individ-
ual users’ backgrounds, preferences, and commu-
nication styles. This includes conditioning gen-
eration on persona-related factors such as socio-
demographic attributes, historical dialogue context,
and language preferences. Personalized genera-
tion aims to adapt to user needs and enhance user
engagement and satisfaction.

5.1 Motivation

Generative models have demonstrated impressive
capabilities of text generation across a wide range
of tasks, such as summarization (Wang and Cardie,
2013), question answering (Duan et al., 2017), or
dialogue generation (Li et al., 2017). While models
may excel at producing coherent texts in a more
general setting, they lack the ability to adapt out-
put text to the various profiles of individual users
(Zhang et al., 2024). Personalized generation aims
to address this problem by integrating user-specific
data, such as stated preferences, topic familiarity,
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language proficiency or cultural background, to dy-
namically shape the generated content. This focus
on personalization unlocks potential across appli-
cations like adaptive education, health support, and
personalized suggestions, such as a diet plan or
career recommendations.

5.2 Methodology
To achieve the goal of personalized generation, we
proposed a two-stage framework: (1) Persona Re-
trieval and Representation; and (2) Generation with
Alignment to Individual Preferences.

In the first stage, persona information can be
composed of both explicit and implicit sources.
Explicit features include annotator metadata such
as age, gender, education level, and profession,
which were collected during the dataset construc-
tion phase. Implicit cues, on the other hand, are
derived from users’ historical text, such as writing
style, expressed interests or behaviors. These re-
quire a preliminary persona prediction or persona
representation. Two strategies will be pursued for
persona representation: (1) Structured persona rep-
resentation, where retrieved information is format-
ted as key-value pairs and provided as additional
context in the input prompts. (2) Latent persona em-
bedding, building on approaches like MORPHEUS

(Tang et al., 2024) and MIRACLE (Lu et al., 2023),
which encode user attributes into latent vectors.
These embeddings can then serve as conditioning
signals during the generation phase, enabling fine-
grained personalization.

In the second stage, we focus on aligning the lan-
guage model’s generation behavior with the identi-
fied user preferences and persona attributes. Two
methodologies will be explored:

• Prompt-Based Personalization: Persona at-
tributes will be incorporated into structured
or natural language prompts to gauge the gen-
eration task with an explicit user role. This
approach leverages the in-context learning ca-
pabilities of large language models (LLMs)
and offers a transparent, controllable mecha-
nism for personalized input.

• Latent Representation Learning and LLM
Fine-tuning: To enable integration of per-
sonalization signals into neural networks, we
will investigate lightweight fine-tuning tech-
niques such as prefix tuning (Li and Liang,
2021), LoRA (Low-Rank Adaptation, Hu
et al., 2022). These methods allow LLMs

to condition on user-specific embeddings with
minimal training and data requirements. Be-
yond model tuning, this stage may also in-
clude reinforcement learning with user feed-
back (RLHF) or preference modeling, where
iterative refinement is guided by explicit or
implicit user evaluations.

5.3 Evaluation

Evaluating personalized generation poses addi-
tional challenges besides the conventional evalu-
ation of text generation quality. Multiple evalua-
tion strategies will be adopted to assess generation
performance: (1) Standard Generation Metrics: In-
cluding BLEU, ROUGE and METEOR to assess con-
tent quality, coherence, and relevance. While these
metrics may not capture personalized generation,
they are useful for verifying baseline generation
quality. (2) Persona-Based Metrics: We will evalu-
ate the alignment between generated outputs and
persona information by measuring the overlap or
differences between generated texts and persona
sentences in datasets like PersonaChat (Jandaghi
et al., 2023). To assess whether generated texts
reflect target attributes, we will use classification or
clustering-based evaluations, measuring whether
the generated texts reflect certain persona attributes.
(3) Human Evaluation: For a subset of outputs, hu-
man annotators will be used to rate the relevance,
fluency, and personalization of responses with re-
spect to their persona profiles.

6 Conclusion

This proposal advances perspective-aware model-
ing in natural language processing by addressing
three key components: annotation format design,
annotation variation modeling by leveraging socio-
demographic features, and personalized text gener-
ation. First, it investigates how finer-grained anno-
tation formats, such as Likert scales, better capture
the nuances of human perspectives compared to bi-
nary labels. Second, it examines the extent to which
socio-demographic features influence annotation
variation, particularly in relatively underexplored
domains of business and economics. Finally, meth-
ods for personalized generation that align output
with user-specific attributes are proposed. These
tasks aim to enhance the inclusivity and fairness of
NLP systems by modeling the diversity of human
perspectives.
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Limitations

This proposal does not aim to comprehensively
resolve all challenges associated with human an-
notation variation and annotator perspectives, par-
ticularly given its cross-domain property. In addi-
tion, the availability of suitable datasets for certain
tasks, especially those that include detailed anno-
tator background information required for certain
modeling and generation tasks, poses challenges to
this research. To address this, the study will involve
the construction of new datasets or the design of
additional annotation tasks tailored to perspective
research.

Ethical Considerations

Research involving socio-demographic attributes
and personal perspectives inherently carries ethical
risks, particularly concerning the privacy and po-
tential misuse of annotators’ personal information.
This study will take careful measures to protect the
identities and privacy of all participants. All col-
lected and analyzed data will be fully anonymized
and handled in accordance with privacy-preserving
protocols.

Special attention will be given to the ethical chal-
lenges of persona inference and demographic mod-
eling. Minority and underrepresented viewpoints,
which are essential to the study’s objectives, will
be treated with care and used solely for academic
purposes to prevent any harm or stigmatization.
Moreover, in the analysis and presentation of find-
ings, efforts will be made to use neutral, respect-
ful language and to avoid reinforcing stereotypes
or generalizations associated with specific demo-
graphic groups.
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