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Abstract

Various evaluation metrics have been proposed
for Grammatical Error Correction (GEC), but
many, particularly reference-free metrics, lack
explainability. This lack of explainability hin-
ders researchers from analyzing the strengths
and weaknesses of GEC models and limits the
ability to provide detailed feedback for users.
To address this issue, we propose attributing
sentence-level scores to individual edits, pro-
viding insight into how specific corrections con-
tribute to the overall performance. For the at-
tribution method, we use Shapley values, from
cooperative game theory, to compute the con-
tribution of each edit. Experiments with ex-
isting sentence-level metrics demonstrate high
consistency across different edit granularities
and show approximately 70% alignment with
human evaluations. In addition, we analyze
biases in the metrics based on the attribution
results, revealing trends such as the tendency to
ignore orthographic edits. Our implementation
is available at GitHub: https://github.com/
naist-nlp/gec-attribute.

1 Introduction

Grammatical error correction (GEC) is the task of
automatically correcting grammatical or superfi-
cial errors in an input sentence. Automatic evalua-
tion metrics play a key role in improving GEC per-
formance, but their effectiveness depends on their
level of explainability. For example, metrics that
evaluate at the edit level are more explainable than
sentence-level metrics, as they allow us to identify
which specific edits are effective and which are
not, even when a GEC system makes multiple edits.
Such explainable metrics enable researchers to ana-
lyze the strengths and weaknesses of GEC models,
providing valuable insights into how models can be
improved. Furthermore, in education applications,
explainable metrics can provide language learners
with detailed feedback on their writing, supporting
their learning more effectively.
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(b) Our proposed method improves explainability.

Figure 1: Overview of the proposed method with an
example using three edits. Figure (a) shows the low-
explainability of existing metrics that only estimate the
sentence-level score, but Figure (b) shows that the edit-
level attribution solves this issue by explaining which
edit improves or worsens the sentence-level score.

In GEC, explainable reference-based metrics,
such as ERRANT (Felice et al., 2016; Bryant et al.,
2017) are limited because references cannot ac-
count for all valid corrections. Preparing test data
with comprehensive references is often impractical,
especially when targeting domains such as medi-
cal or academic writing that differ from existing
datasets. To address this issue, reference-free met-
rics have been proposed to evaluate corrected sen-
tences without relying on references (Choshen and
Abend, 2018b; Yoshimura et al., 2020; Islam and
Magnani, 2021; Maeda et al., 2022). Although
these reference-free metrics achieve high correla-
tion with human evaluations, many are designed to
assign scores at the sentence level, limiting their
explainability on individual edits. This lack of gran-
ularity makes it difficult to analyze how specific
edits contribute to the overall sentence score. For
example, as shown in Figure 1, a metric evaluates
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a corrected sentence created by applying the three
edits. As shown in Figure 1a, the sentence-level
metric assigns an overall score of 0.75, but it does
not indicate whether all edits are valid, or if both
valid and invalid edits have been applied.

To improve the explainability of metrics with low
or no explanation, we propose attributing sentence-
level scores to individual edits as illustrated in Fig-
ure 1b. In our method, the total contribution of
all edits is calculated as the difference between
the scores of the input sentence and the corrected
sentence. This difference is then attributed to the
individual edits. In Figure 1b, a difference of -0.05
is distributed among three edits with contributions
of 0.2, 0.1, and -0.35. The attribution results are
interpreted using the sign and magnitude of these
scores: the sign indicates whether an edit is valid
or not, while the magnitude represents the degree
of its influence on the final sentence-level score.
We employ Shapley values (Shapley et al., 1953)
from cooperative game theory to fairly distribute
the total score among the edits. By considering all
combination of edits, Shapley values allow us to
precisely attribute each edit’s contribution to the
overall sentence score, offering insights into their
individual impact. Unlike existing attribution meth-
ods which typically calculate contributions at the
token level (Lundberg and Lee, 2017; Sundararajan
et al., 2017), our novel approach computes contri-
butions for changes in a sentence.

In the experiments, we apply our method to two
popular reference-free metrics, SOME (Yoshimura
et al., 2020) and IMPARA (Maeda et al., 2022),
as well as a fluency metric based on GPT-2 (Rad-
ford et al., 2019) perplexity. The results show that
the proposed attribution method assigns consistent
scores across different granularities of edits and
that edits with larger absolute attribution scores
align more closely with human evaluations. We
also introduce Shapley sampling values (Strum-
belj and Kononenko, 2010) to mitigate the time-
complexity issues of exact Shapley values. Addi-
tionally, we demonstrate that the proposed method
can explain metric decisions at both the sentence
and corpus levels, categorized by error types. These
analyses reveal the types of edits that metrics give
more weight to, as well as provide insights into the
strengths and weaknesses of GEC systems.

2 Background

Edits in GEC. The GEC task aims to correct
grammatical errors in a source sentence S and out-
put a corrected sentence H. The differences be-
tween S and H are often represented as N edits
e = {e;}, to enable evaluation (Dahlmeier and
Ng, 2012; Bryant et al., 2017; Gong et al., 2022; Ye
et al., 2023), ensembling (Tarnavskyi et al., 2022),
and post-processing (Sorokin, 2022) at the edit
level. These edits can be automatically extracted
using edit extraction methods (Felice et al., 2016;
Bryant et al., 2017; Belkebir and Habash, 2021;
Korre et al., 2021; Uz and Eryigit, 2023). Each
edit typically includes a word-level span in .S and
its corresponding correction, although it may also
include an error type (Bryant et al., 2017). The
error type categorizes each edit, indicating the part-
of-speech or grammatical aspect it relates to, which
helps analyze the strengths and weaknesses of GEC
systems.

Sentence-level Metrics. A sentence-level met-
ric M computes the score of the corrected sen-
tence given the source sentence, denoted as
M(H|S) € R. The source sentence is used
to assess meaning preservation, as GEC requires
correcting errors while maintaining the original
meaning of the source sentence. This formulation
has been adopted by several reference-free met-
rics (Yoshimura et al., 2020; Islam and Magnani,
2021; Maeda et al., 2022; Kobayashi et al., 2024a).
Sentence-level metrics aim to rank GEC systems in
alignment with humans judgments, as evidenced by
the fact that the meta-evaluation is performed using
the correlation between metric-generated rankings
or scores and those of humans. However, these
metrics are limited to sentence-level scoring and
cannot explain how individual edits contribute to
the final score.

Edit-level Weighting Some metrics already em-
ploy edit-level weighting. GoToScorer (Gotou
et al., 2020) weights edits using the correction suc-
cess rate of a pre-defined GEC system set, while PT-
ERRANT (Gong et al., 2022) weights based on the
difference of BERTScore (Zhang et al., 2019) when
applying and not applying an edit to the incorrect
sentence. CLEME (Ye et al., 2023) weights edits
according to their span length, and CLEME2.0 (Ye
et al., 2024) uses the same weighting strategy as
PT-ERRANT. The goal of GoToScorer is to pro-
mote error corrections that other systems cannot
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correct, while the goal of PT-ERRANT, CLEME,
and CLEME2.0 is to improve agreement with hu-
man evaluation results. MAEGE (Choshen and
Abend, 2018a) is a preexisting meta-evaluation
method which involves quantifying the contribu-
tion of edits to a score from a reference-based met-
ric. Unlike MAEGE, our approach is grounded in
the robust theory of Shapley values, and works on
reference-free metrics.

3 Method

Our attribution method assumes that the overall
contribution of edits is the difference in scores be-
fore and after correction. We distribute the differ-
ence AM(H|S) = M(H|S) — M(S|S) across
each edit e = {e;}¥,, where M (S|S) is the score
of the source sentence treated as its own corrected
sentence.

The goal of our attribution method is to compute
the contribution for each edit denoted as {¢; (M) €
R}i]\il, so that the following equation is satisfied:

N
AM(H|S) = ¢i(M). (1)
i=1

We refer to ¢;(M) as attribution scores. A posi-
tive score (¢;(M) > 0) indicates an edit that im-
proves the metric M (-), while a negative score
(¢i(M) < 0) indicates an edit that worsens it. The
absolute value |¢; (M)| represents the degree of the
edit’s contribution. Unlike previous studies, e.g.,
GoToScorer and CLEME, the purpose of the attri-
bution scores is to explain the internal decision of
metrics.

Shapley. For the attribution method, we intro-
duce Shapley values (Shapley et al., 1953) from
cooperative game theory. In cooperative game the-
ory, multiple players work together towards a com-
mon goal and share the total benefit based on their
contributions. Shapley values distribute this benefit
among players fairly, ensuring that those players
who contributes more receive a larger share. For
our purpose, we regard AM (H|.S) as the total ben-
efit, edits e as the players, and ¢; (M) as the Shap-
ley values. The Shapley value ¢;(M) for a given
metric M (+) is calculated as follows:

]IV — |e'| - 1)!
Gi(M)= N
e’'Ce\{es}
(AM(Serifey|S) — AM(Ser|S)),
2)

where S, denotes the source sentence af-
ter applying the edit set e. Equation 2
calculates the weighted sum of the differ-
ences in evaluation scores when including and
excluding the edit e;. For example, us-
ing Figure 1 with e = {ej,ez,e3} =
{[A — The], [job — work], [is — was]}, one of
the terms in the calculation for ¢ (M) with ' =

{ea} is

S(AM(S(, 0)18) — AM(5(.,)|5)
1
G
— AM (A work is performed by him.|S)).

(3)

(AM (The work is performed by him. |S)

Here, bold words indicate the edit being attributed,
and underlined words show other edits. The terms
fore’ = {¢}, {es}, and {e2, e3} are computed in a
similar way. Shapley values consider various com-
binations of edits, ensuring accurately attribution
of the i-th edit’s contribution. By design, Shapley
values naturally satisfy Equation 1 due to their ef-
fectiveness (Shapley et al., 1953). However, the
computational complexity is O(2V).

Shapley Sampling Values. To improve compu-
tational efficiency, we introduce Shapley sampling
values (Strumbelj and Kononenko, 2010), an ap-
proximation of Shapley values. Equation 2 can be
rewritten as:

1
¢i(M) = >
ocm(e)
(AM(S7 SPrei(o)U{ei})) - AM(S’ SPrei(o)))

“

where 7(e) is the set of all possible or-
ders of edits, and Pre’(o) is the set of ed-
its preceding e; in permutation o. In the
example from Equation 3, Prel(o) = {4}
when o = ey, e2,e3], and Pre'(o) =
{ea,e3} = {[job — work], [is — was|} when
o = [es,ez,e1]. To approximate Shapley val-
ues, we uniformly sample 7' permulations with-

out replacement from 7(e), denoted as 7(e) =
{01,...,0r}. Shapley sampling values are then

~

calculated using 7 (e) instead of 7 (e) in Equation 4.
This approximation reduces the computational cost
from O(2V) to O(TN).
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Normalized Shapley Values The calculated at-
tribution scores are not directly comparable across
different sentence-level scores. For instance, an
attribution score of 0.2 has a different relative im-
pact when distributing a sentence-level score of 1.0
versus 0.4. To enable meaningful comparison, we
apply L1 normalization to the attribution scores:

¢i(M) _
SN lei(M))]

This normalization, applied as a post-processing
step, adjusts only the magnitude of the scores while
preserving their original signs. Since the normal-
ized scores represent the ratio of each edit’s con-
tribution, they are assumed to be comparable even
when the sentence-level scores differ.

(M) = 5)

4 Evaluation of Attribution

We evaluate the proposed attribution method from
two perspectives: faithfulness and explainabil-
ity (Wang et al., 2024). Faithfulness measures how
well the attribution results reflect the model’s in-
ternal decision, while explainability assesses the
extent to which the results are understandable to hu-
mans. To demonstrate the effectiveness of the pro-
posed method across various domains, we conduct
experiments using diverse datasets, GEC systems,
and metrics.

4.1 Experimental Settings
4.1.1 Datasets

We use CoNLL-2014 test set (Ng et al., 2014) and
the JFLEG validation set (Heilman et al., 2014;
Napoles et al., 2017). CoNLL-2014 is a benchmark
for minimal edits, focusing on correcting errors
while preserving the original structure of the input
as much as possible. In contrast, JFLEG is a bench-
mark for fluency edits, allowing more extensive
rewrites to produce fluent and natural sentences.

4.1.2 GEC Systems

We evaluate our attribution method on various GEC
systems, including two tagging-based models (the
official RoBERTa-based GECToR (Omelianchuk
et al., 2020) and GECToR-2024 (Omelianchuk
et al., 2024)), two encoder-decoder models
(BART (Lewis et al., 2020) and T5 (Rothe et al.,
2021)), and a causal language model (GPT-40
mini) (OpenAl et al., 2024). This allows us to as-
sess the explainability of attributions scores across
different GEC architectures. For GPT-40 mini, we
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Figure 2: Cumulative sentences ratio regarding the num-
ber of edits. The red line indicates the position where
the number of edits is 15.

used a two-shot setting following Coyne et al.
(2023), with examples randomly sampled once
from the W&I+LOCNESS validation set (Yan-
nakoudakis et al., 2018) and used for all input
sentences. Note that we use only the corrected
sentences containing 15 or fewer edits (N < 15)
due to the computational complexity of Shapley
values. According to Figure 2, which shows the
cumulative sentence ratio regarding the number
of edits, our experiments cover at least more than
98.9% of the sentences in all corrected sentences.

4.1.3 Reference-free Metrics

We use the following non-explainable metrics in
the experiments. Other metrics such as reference-
based metrics could also be used, but we do not use
such already explainable metrics in this paper.

SOME (Yoshimura et al., 2020) uses a BERT-
based regression model optimized directly on hu-
man evaluation results. We used the official pre-
trained model weights' and used the default coeffi-
cients for the weighted average of grammaticality,
fluency, and meaning preservation scores, from the
official script?.

IMPARA (Maeda et al., 2022) estimates evalua-
tion scores through similarity estimation and qual-
ity estimation. We use BERT (bert-base-cased)
as the similarity estimator and train our own model
for the quality estimator, as the official pre-trained
weights are not available. Our quality estimator
was trained following the same settings described
in Maeda et al. (2022), achieving a correlation with
the human ranking comparable to their reported
results.

GPT-2 Perplexity (PPL). Our proposed method
can be applied to metrics that evaluate only the
1https://github.c:om/kokeman/SOME

20.55*grammaticality + 0.43 * fluency + 0.02 * meaning
preservation.
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Figure 3: The results of consistency-based evaluation. Each row shows the different datasets and each column
shows different metrics. “Mag.” means the magnitude. Colors show the attribution scores.

quality of the corrected sentence’. To test this, we
use GPT-2 (Radford et al., 2019) perplexity, with
negative perplexity scores to ensure that higher val-
ues correspond to better quality. Perplexity is one
of the components employed in Scribendi score (Is-
lam and Magnani, 2021).

4.2 Baseline Attribution Methods

To evaluate the effectiveness of Shapley values,
we employ simpler variants, i.e., ADD and Sub, as
baseline attribution methods.

Add. This method observes the change in the
score when each edit is applied individually to
the source sentence. An edit that increases the
score is considered valid for the metric. This ap-
proach corresponds to using only € = {¢} in

Equation 2, with the attribution scores normalized
AM(H\S)

Y 55 5o SO that it satisfies Equation 1.
=1 %1

Sub. This method observes the change in the
score when each edit is removed individually from
the corrected sentence. An edit that decreases the
score upon removal is considered valid for the
metric. This approach corresponds to using only

e = e\ {e;} in Equation 2, with the attribution
AM(H]S)

so that it satisfies
Sy ¢i(M)

scores normalized by

Equation 1.

*In this case, the sentence-level score is AM(S, H) =
M(H) — M(S)

4.3 Consistency Evaluation

To evaluate faithfulness, we test how well the attri-
bution scores represent the judgments of the met-
rics through consistency evaluation. Specifically,
we first calculate the attribution scores for individ-
ual edits and then group edits with the same sign,
treating them as a single edit. Next, we calculate
the attribution score for the grouped edits. We hy-
pothesize that the attribution score for a grouped
edit should equal the sum of the individual attribu-
tion scores of the edits comprising the group. If
this condition holds, the attribution method consis-
tently calculates the contributions of edits, making
its results reliable for practical use. We use an
agreement ration to measure the consistency of the
signs and use Pearson and Spearman correlations
to assess the consistency of the magnitudes.

For example, in Figure 1, we group two
positivity-attributed edits, [A — The] and [job —
work], into a single edit and compute attribution
scores for the grouped edit and the remaining edit,
[is — was]. Ideally, the attribution score for the
grouped edit should be 0.2 + 0.1 = 0.3, which can
be verified by sign agreement and closeness to 0.3.

Figure 3 presents the results for each metrics.
Our proposed Shapley method shows higher consis-
tency than the baseline attribution methods across
various domains and metrics. While the Sub metric
also demonstrates high consistency, its Spearman’s
rank correlation occasionally drops for certain met-
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for attributed scores, and the y-axis indicates the agreement rate with the labels. A larger value on the z-axis

indicates attribution scores with higher confidence.

rics, such as IMPARA. Low rank correlation can
misrepresent the relative importance of edits, pos-
ing a serious issue for explainability. These results
suggest that the attribution method is reliable across
different edit granularities, such as edits extracted
by ERRANT (Felice et al., 2016; Bryant et al.,
2017) or chunks created by merging multiple ed-
its (Ye et al., 2023). This flexibility enables a wide
range of applications for the proposed method.

4.4 Human Evaluation

To evaluate explainability, we assess the agreement
between attribution scores and edit-level human
annotation in SEEDA (Kobayashi et al., 2024b),
a meta-evaluation dataset based on CoNLL-2014.
The annotation in SEEDA are represented as binary
labels indicating whether an edit is valid or not. Ide-
ally, a positively attributed edit should align with a
valid edit in human evaluation, while a negativity
attributed edit should align to an invalid one. We
calculate accuracy at the corpus level by compar-
ing the validity (valid/invalid) of annotation with
the sign of attribution scores (positive/negative).
SEEDA assigns one to five hypothesis sentences
to each source sentence with each hypothesis an-
notated by three evaluators. We use the data cor-
responding to the first annotator, comprising 200
sources and 841 hypotheses *.

We also utilize a reference-based evaluation
framework to approximately obtain human edit-
level annotation. Evaluation with SEEDA are lim-
ited to CoNLL-2014 dataset and cannot be per-

4https ://github.com/tmu-nlp/SEEDA/tree/main/
data/EditEval_Stepl/annotatori

formed on data from other domains such as JF-
LEG, and newly annotating the edit-level validity
is expensive. Sentence-level references are gener-
ally provided for many datasets, and approximately
obtain edit-level human evaluation using the ref-
erences. Specifically, we extract hypothesis edits
given the source and hypothesis using ERRANT,
in addition to reference edits given the source and
reference. Then, we annotate a binary label to each
hypothesis edit: valid if the edit is included in the
reference edits, invalid otherwise. Here we use the
official two references for CoNLL-2014 and four
references for JFLEG. For each hypothesis, we se-
lect the one that has the highest accuracy with the
attribution scores.

Although the above method approximately eval-
uates the sign of the attribution scores, it cannot
evaluate the reliability of their magnitude. For the
evaluation of magnitude, we follow standard attri-
bution evaluation practices (Petsiuk, 2018; Fong
and Vedaldi, 2017) by applying a threshold to the
absolute values of the scores. To compute the agree-
ment rate, we only consider edits whose normalized
absolute attribution scores are below the specified
threshold. The threshold starts at 0.1 and increases
in steps of 0.1 until it reaches 1.0, where all ed-
its are included. Ideally, the larger the threshold,
the higher the accuracy, because more confidently
attributed edits are used.

Figure 4 presents the results. Overall, the re-
sults show that including edits with larger abso-
lute attribution scores improves the agreement with
human evaluation, indicating that the magnitude
of attribution scores is meaningful. Figure 4a at
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Metric | Error  Time | Shapley values dist.
SOME 0.014 3.86 0.019 £ 0.020
IMPARA | 0.074 3.77 0.052 £ 0.071
PPL 19.610 0.82 34.549 £ 59.472

Table 1: The average error and average computation
time (seconds) when using Shapley sampling values. It
also shows the distribution of the absolute exact Shapley
values (the average =+ the standard deviation).

threshold=1.0 shows 60 % to 70% accuracy, which
constantly agrees with the human evaluation con-
sidering that the random baseline is 50%. Figure 4b
and Figure 4c also show a similar trend to Figure 4a,
indicating that the use of direct human annotation
can be replaced by the reference-based evaluation
to investigate the agreement between attribution
scores and human judgment.

When comparing attribution methods, Shapley
rarely achieves the worst agreement. For instance,
in JFLEG, SOME shows the order Add > Shap-
ley > Sub, while IMPARA shows Sub > Shapley >
Add. Either Add or Sub often results in the worst
agreement, whereas Shapley demonstrates more
stable performance across different metrics and
domains. When comparing metrics, the rank or-
der among metrics is reversed between directly
annotated labels by humans and approximate la-
bels by referential evaluation: IMPARA > SOME
> PPL in Figure 4a, but PPL > SOME > IMPARA
in Figure 4b and Figure 4c. There is a divergence
in results between using direct and approximated
labels. This suggests that using approximated la-
bels might be inappropriate when discussing which
metric yields the highest agreement with human
evaluation.

4.5 Efficiency of Shapley Values

One limitation of Shapley values is their high com-
putational cost. In our preliminary experiments
using a single RTX 3090, we observed that the
computation time reaches about 30 seconds when
the number of edits in a corrected sentence ex-
ceeds 11. This observation shows that sentences
with more than 11 edits are impractical to attribute
within a reasonable time. As indicated by Figure 2,
although only 3% of GEC outputs have more than
11 edits, those tasks involving a higher number
of edits, e.g., text simplification, could face even
greater challenges.

As discussed in Section 3, we address this is-
sue by employing Shapley sampling values and

Metrics

Error types

Figure 5: The heatmap indicating the average of nor-
malized Shapley values per error type. The deeper color
indicates higher values.

evaluate their ability to approximate exact Shapley
values by measuring the average absolute differ-
ences between them. In the experiments, we use
a dataset combining all GEC model hypotheses
on the JFLEG validation set. We set 7' = 64 and
restrict examples to 10 < NV < 15 3,

Table 1 reports average errors and computation
times for each metric. With Shapley sampling val-
ues, the computation time per sentence can be re-
duced to as little as four second in average®. To
assess the impact of errors, we also show the distri-
bution of absolute exact Shapley values in Table 1.
If the error exceeds the mean in this distribution,
the likelihood of misunderstanding the contribution
relationship between edits increases. While SOME
and PPL show errors below the mean, IMPARA
exhibits higher errors. IMPARA’s higher error may
be due to its smaller variance in evaluated values,
making it less effective at quantifying impact with
a limited number of calculations.

S Applications of Attribution Scores

We demonstrate practical applications of attribution
scores for users. All results in this section are based
on Shapley values for the attribution method.

5.1 Case Study

Attribution scores can be used to identify which
edits improve or worsen the sentence-level score.
Table 2 provides an example, showing attribution
scores and their normalized version. The original
sentence and its corrections are chunked according
to edit spans, omitting scores for non-edited chunks
which are all zeros. One observation is that the
sentence-level score of IMPARA declines primarily
due to the edit [u — you], which is inconsistent with

SWhen T = 64 and 10 < N, the computation cost of
Shapley sampling values is consistently lower than that of
exact Shapley values, as 2 > 64« holds for z > 9.20....

®Refers to Appendix A for more detailed results.
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Original (.5) - Further more by these  evidence u will agree
Correction (H) - Further more s with this evidence s you will agree

Metrics (M) | AM(-) | Shapley values ¢; (M)

SOME 0.298 - 0.068 0.064 0.033 - 0.038  0.066 - 0.030
IMPARA -0.027 - 0.068 0.029 0.124 - 0.145 -0.361 - -0.033
PPL 1266.3 - 250.7 103.8 216.0 - 674  366.6 - 261.5

| | Normalized Shapley values

SOME - 0.229 0.215 0.111 - 0.126  0.220 - 0.099
IMPARA - 0.090 0.039 0.163 - 0.191 -0.475 - -0.043
PPL - 0.198 0.082 0.171 - 0.053  0.290 - 0.207

Table 2: An example of the proposed method’s results using actual sentence.

human intuition. In contrast, SOME and PPL prefer
this edit. This observation of IMPARA suggests a
problem with IMPARA’s scoring, does not imply a
problem with our attribution method, and rather it
reveals weaknesses in metrics through case studies.

Normalized Shapley values enable comparison
of attribution scores across metrics. For example,
while SOME and IMPARA assign the same Shap-
ley value to the edit [¢ —,], their normalized scores
reveal different impacts. This feature is particularly
useful for comparing metrics with different value
ranges, such as SOME and PPL.

Beyond case studies, we also investigate met-
ric bias at the corpus level. To investigate these
biases, we calculate the average normalized Shap-
ley values for each error type (Bryant et al., 2017).
We merge the corrected sentences from five GEC
systems for the JFLEG validation set to mitigate
biases specific to individual GEC models. Figure 5
shows the results for error types with a frequency
greater than 30 and indicate that different metrics
emphasize different error types. For instance, or-
thography (ORTH) edits, such as case changes and
whitespace adjustments, tend to be downplayed.
Note that such a bias in the metrics is not neces-
sarily a bad thing. By introducing this bias, it is
possible that the reference-free evaluation has im-
proved its alignment with human evaluations.

5.2 Precision per Error Type

While the analyses so far have discussed general
attribution results, here we investigate attribution
results specific to GEC models. Typically, metrics
with low explainability provide only a single nu-
merical score at the corpus level. We decompose
this score is into performance across different error
types via our attribution. Specifically, we treat edits
with positive attribution scores as True Positives,
and those with negative attribution scores as False

Positives, enabling the calculation of precision for
each error type. To handle attribution scores across
multiple sentences, we use normalized Shapley val-
ues:

P (M)
PR (M) + [ (M)

where ¢"°™ (M) and ¢"°"™ (M) represent the sum
of positive and negative normalized attribution
scores at the corpus-level, respectively.

Figure 6 shows the precision for each error type
using the JFLEG validation set and SOME as the
evaluation metric. The parentheses in the y-axis la-
bels indicate the corpus-level scores, with each row
of the heatmap explaining these scores in terms
of error types. By analyzing precision by error
type, we can see that for GPT-4o0-mini, edits re-
lated to adverbs (ADV) and orthography (ORTH)
contribute relatively highly to the score. This indi-
cates that errors involving these error types are play
into GPT-40 mini’s strengths. On the other hand,
despite achieving the highest corpus-level score
among the five systems, GPT-40 mini’s precisions
are not particularly high. Notably, TS5 appears to
perform better in terms of precision, as indicated
by more dark-colored cells. This discrepancy may
stem from an overcorrection issue, leading to a low-
precision, high-recall trend in performance (Fang
et al., 2023; Omelianchuk et al., 2024). While this
trend is intuitive in the reference-based evaluation
because the valid edits in it are limited to the ref-
erences, we also observed a similar trend even for
reference-free evaluation metrics.

Precision =

(6)

6 Conclusion

This paper proposes a method to improve the ex-
plainability of existing low-explainable GEC met-
rics by attributing sentence-level scores to indi-
vidual edits. Specifically, we employed Shapley
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Figure 6: The heatmap indicating the precision for each
GEC systems. We used JFLEG validation set as a
dataset and SOME as a metric.

values to perform attribution while accounting for
various contexts in which edits are applied. The
quantitative analysis indicates that the sign (posi-
tive or negative) of the attribution score has approx-
imately 70% agreement rate with the correctness
or incorrectness of edit-level human evaluations.
We demonstrated through case studies that metric
judgments can be displayed at the edit level, and
analyzed them broadly as biases based on error

type.
Limitations

Treating False Negative Corrections. The pro-
posed method is limited to analyzing corrections
made by the GEC system, i.e. True Positives (TP)
and False Positives (FP), and does not address False
Negatives (FN). Possibly, FN can be inferred by
performing error detection, but we cannot apply
our attribution unless it is treated as an “edit” con-
taining the corrected string, thus it is not easy to
treat FN. One solution can be considered is that the
use of reference sentences, but it loses the advan-
tage that a reference-free metric does not require
reference sentences. In the proposed method, we
assume that the effect of FN is canceled out by
AM(H|S) = M(H|S) — M(S|S) because FN is
included in both .S and H. Thus FN does not affect
the computation of attribution scores for TP and FP.
A more detailed investigation into this issue is left
for future work.

Treating dependent edits Edits might exhibit
dependencies. For example, the correction [model
s prediction -> prediction of the model] can be split
into two dependent edits: [model ’s -> ¢] and [¢ ->
of the model]. Although multiple corrections with
such dependencies should be applied or not applied
together in the process of computing the Shapley
values, this study treats all edits independently. One
difficult point is that there is no dataset to which
the dependencies of edits are annotated, and no

tools to identify edit dependencies in the current
GEC field. Therefore, it is difficult to handle de-
pendencies with the current technology. Note that
CLEME (Ye et al., 2023) addressed the correction
independence assumption, and they have actually
succeeded in their evaluation metric that treats cor-
rections independently. Their results suggest the
validity of treating corrections independently in our
study.

Rectifying Metric Biases The case study results
(Section 5.1) revealed that metrics exhibit biases to-
wards specific error types. While one could attempt
to mitigate such biases, we believe that sentence-
level metrics benefit from implicitly weighting ed-
its, making these biases beneficial for evaluation.
However, biases related to social factors such as
gender or nationality, should be resolved. A deeper
investigation into metric biases is beyond the scope
of this work, but remains an important area for
future research. Our work provides a strong foun-
dation for exploring these biases.
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A Computation Costs

Figure 7 shows the relationship between the num-
ber of edits in a sentence and its computation cost
to compute attribution scores. This includes the
results of both exact Shapley values and Shapley
sampling values, for the metrics introduced in Sec-
tion 4.1.3. In exact Shapley values, the computation
takes more than 30 seconds when the number of
edits exceeds 11 edits. In contrast, Shapley sam-
pling values reduces these times to less than five
seconds. For each metric, the lines for the exact
Shapley values and the Shapley sampling values
intersect at N = 9. This reason is that the num-
ber of samples to be evaluated will be almost the
same; NT = 9 x 64 = 576 for sampling values,
and 2V = 29 = 512 for the exact values.
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Figure 7: The relationship between the number of edits
and computation time per sentence. The solid lines are
average time and ranges are standard deviation.
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