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Abstract

This paper quantifies the "embodiment gap" be-
tween disembodied language models and em-
bodied agricultural knowledge communication
through mixed-methods analysis with 78 farm-
ers. Our key contributions include: (1) the
Embodied Knowledge Representation Frame-
work (EKRF), a novel computational architec-
ture with specialized lexical mapping that in-
corporates embodied linguistic patterns from
five identified domains of agricultural expertise;
(2) the Embodied Prompt Engineering Protocol
(EPEP), which reduced the embodiment gap by
47.3% through systematic linguistic scaffolding
techniques; and (3) the Embodied Knowledge
Representation Index (EKRI), a new metric for
evaluating embodied knowledge representation
in language models. Implementation results
show substantial improvements across agricul-
tural domains, with particularly strong gains in
tool usage discourse (58.7%) and soil assess-
ment terminology (67% reduction in embodi-
ment gap). This research advances both theoret-
ical understanding of embodied cognition in Al
and practical methodologies to enhance LLM
performance in domains requiring embodied
expertise.

1 Introduction

Can an Al that has never touched soil truly un-
derstand farming? This embodiment gap, the dis-
connect between physical experience and textual
knowledge, represents one of AI’s most fundamen-
tal limitations in domains requiring hands-on ex-
pertise.

Large Language Models (LLMs) have demon-
strated remarkable capabilities in generating text
across diverse domains, but their learning remains
fundamentally disembodied: derived entirely from
textual representations without direct sensory expe-
rience or physical interaction with the world. This
limitation raises significant questions about how
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Figure 1: Visualization of the embodiment gap between
farmers’ knowledge (left) and LLM knowledge (right).
The farmer’s linguistic expression is grounded in di-
rect physical experience, resulting in rich sensory de-
scriptions and embodied metaphors. In contrast, LLM
knowledge is derived solely from text without sensori-
motor grounding, leading to more abstract, feature-poor
descriptions. Our EKRF and EPEP frameworks help
bridge this gap by enhancing LLM outputs with embod-
ied linguistic features.

LLMs represent domains of knowledge that are
deeply rooted in embodied experience and tacit
expertise. The stakes are particularly high as dig-
ital agricultural advisory services increasingly re-
place traditional farmer-to-farmer knowledge trans-
fer, potentially disrupting millennia-old systems
of experiential learning that have sustained food
production across diverse ecosystems.

Agriculture represents an ideal domain for inves-
tigating these questions, as farming knowledge en-
compasses multiple dimensions of embodied exper-
tise that must be communicated linguistically: sen-
sory assessment (soil texture evaluation described
through specialized haptic vocabulary), procedural
knowledge embedded in physical movements (tool
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usage techniques communicated through sequen-
tial linguistic structures) and contextual awareness
developed through repeated physical interactions
with specific environments (weather prediction ar-
ticulated through complex conditional statements).

Previous research has examined how farmers
communicate their expertise (Ingram, 2008) and
how agricultural knowledge is documented in the
technical literature (Lindblom et al., 2017). How-
ever, little attention has been paid to the specific
challenges of representing embodied agricultural
knowledge in computational systems, particularly
LLMs.

1.1 Novel Contributions

We make two significant contributions to the field:

1. Embodied Knowledge Representation Frame-
work (EKRF) We introduce a comprehensive
computational architecture that bridges the gap be-
tween sensory experience and linguistic represen-
tation. The EKRF includes:

» Sensory-Linguistic Mapping Function that
mathematically projects from sensory feature
space to linguistic token space

* Contextual Adaptation Module that modulates
token probabilities based on environmental
context vectors

* Tacit Knowledge Extraction Pipeline with spe-
cialized components for identifying and pro-
cessing embodied knowledge markers in text

This framework provides both theoretical
grounding and practical implementation for enhanc-
ing LLMs’ ability to represent embodied knowl-
edge linguistically.

2. Embodied Prompt Engineering Proto-
col (EPEP) We develop a structured method-
ology to elicit embodied knowledge from exist-
ing LLMs through specialized prompt engineering
techniques:

* Sensory Scaffolding: Decomposing and hier-
archically reconstructing sensory experiences
in prompts using a weighted template system

* Procedural Anchoring: Grounding abstract
knowledge in concrete physical sequences
through a formal grammar-based approach

* Contextual Variation Injection: Systemati-
cally introducing environmental variations us-
ing directed acyclic graphs

Additionally, we develop a comprehensive evalu-
ation approach that combines the Embodied Knowl-
edge Representation Index (EKRI)—a specialized
metric for assessing embodied knowledge com-
ponents—with established NLP metrics including
BLEU, ROUGE, METEOR, linguistic feature anal-
ysis, and BERTScore. This dual evaluation strat-
egy enables both targeted assessment of embodied
knowledge representation and standardized com-
parison with existing language generation systems.

These contributions provide both theoretical
foundations and practical methodologies for ad-
dressing the linguistic challenges of representing
embodied knowledge in language models. The four
figures in this paper illustrate key aspects of our
research: Figure 1 visualizes the conceptual gap
between embodied farmer knowledge and disem-
bodied LLM knowledge; Figure 2 (table format)
presents concrete examples highlighting linguistic
differences in sensory richness and metaphorical
grounding; Figure 3 demonstrates the dual archi-
tectural and prompting approaches of EKRF and
EPEP; and Figure 4 provides a detailed compari-
son of enhanced versus standard LLM outputs with
annotated embodied features.

2 Related Work

2.1 Embodied Cognition and Language

Barsalou’s (Barsalou, 2008) theory of grounded
cognition proposes that language comprehension
involves partial simulations of sensory and motor
experiences associated with concepts. More re-
cent work has extended these findings to compu-
tational linguistics. (Davis and Yee, 2021) devel-
oped a neural theory of simulation semantics that
models language comprehension as sensorimotor
simulation. (Xiang et al., 2023) further proposed
embodied simulation as a foundation for language
model knowledge representation, arguing that cur-
rent LLMs lack the grounding mechanisms present
in human cognition.

2.2 Agricultural Knowledge Systems

Agricultural knowledge encompasses multiple
knowledge types: explicit technical knowledge,
tacit procedural knowledge, and contextual ecologi-
cal knowledge (Morgan and Murdoch, 2000; Zhang
et al., 2025). The communication of agricultural
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Farmer’s Embodied Knowledge

LLM’s Disembodied Knowledge

Knowledge Source:
Direct physical experience with soil, plants, and
tools through years of practice.

Knowledge Source:
Processing text about agriculture without any
physical experience.

Example Description:

“The soil has this crumbly feel between your fin-
gers that feels like chocolate cake. There’s a
sweet earthiness when you smell it.

’

Example Description:

“Good quality soil has a crumbly texture known
as good tilth. It should hold together when
squeezed but then break apart. The soil should be
dark in color, indicating organic matter content.”

Figure 2: The embodiment gap: farmers develop knowledge through direct physical experience while LLMs learn
solely from text. This creates linguistic differences in sensory richness, metaphorical grounding,

, and

knowledge presents unique challenges. Ingram
(Ingram, 2008) analyzed knowledge exchange be-
tween agronomists and farmers, highlighting the
complexities of translating between scientific and
experiential knowledge. Carolan (Carolan, 2020)
further observed that contemporary agricultural
communication increasingly mediates embodied
knowledge through technological interfaces, rais-
ing questions about how such knowledge can be
effectively represented in digital forms.

2.3 LLMs and Knowledge Representation

Limited research has explored LLMs’ capacity to
represent embodied knowledge. (Xu et al., 2024)
found that language models struggle with physical
reasoning tasks that require understanding of object
affordances.

In the agricultural domain specifically, Ra-
manathan et al. (Jewitt et al., 2021; Tzachor
et al., 2023) explored multimodal sensory integra-
tion frameworks for linguistic representation of
physical experiences related to crop assessment.
Evaluating embodied knowledge representation
presents unique challenges that standard NLP met-
rics may not fully capture. Traditional metrics like
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and METEOR (Banerjee and Lavie, 2005) assess
surface-level and semantic similarity between gen-
erated text and references but may not specifically
target embodied aspects of knowledge. However,
as noted by Bisk et al. (Bisk et al., 2020), evaluat-
ing physical commonsense and embodied knowl-
edge in language models remains an open chal-
lenge. Our work builds on these foundations to
specifically examine the representation of embod-
ied agricultural knowledge in LLM, introducing
new methods to measure these representational
gaps and practical frameworks to address them.

3 Methodology

We implemented a three-phase data collection pro-
cess with ethical oversight: (1) Knowledge Elicita-
tion from 78 farmers (22 organic, 18 conventional,
16 livestock, 12 vineyard, 10 indigenous; mean
experience=17.3 years, SD=9.7) who provided ver-
bal and written descriptions of five agricultural
tasks—soil assessment, plant disease identification,
tool usage, seed planting, and weather prediction.
All data was anonymized; (2) LLM Content Gen-
eration using GPT-4, Claude 3, and PalLM 2 with
three prompt variations (basic, detailed, and few-
shot), generating 225 total outputs (3 models x 5
tasks x 3 prompt types x 5 outputs) using licensed
API access; and (3) Comparative Analysis through
blind ratings by agricultural specialists (n=12), task
performance studies with novice gardeners (n=35),
and computational linguistic analysis comparing
features between farmer and LLM-generated con-
tent. Importantly, our framework addresses a criti-
cal equity issue in Al: current LLMs predominantly
reflect academic and technical knowledge while
systematically underrepresenting the embodied ex-
pertise of practitioners, particularly in Global South
agricultural contexts where such knowledge is most
vital for food security.

3.1 Evaluation Framework

We developed a comprehensive evaluation ap-
proach combining specialized embodied knowl-
edge assessment with established NLP metrics:

3.1.1 Embodied Knowledge Representation
Index (EKRI)

The EKRI development involved qualitative analy-
sis of agricultural texts, consultation with 14 agri-
cultural educators and cognitive linguists, two pilot
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studies (n = 25, n = 32), and validation against es-
tablished embodied cognition measures (r = 0.76
with Action-Based Language Assessment).

The final EKRI evaluates five dimensions: Sen-
sory Richness (o« = 0.86), measuring density and
diversity of cross-modal sensory vocabulary; Pro-
cedural Specificity (o« = 0.83), assessing preci-
sion of action descriptions and temporal sequenc-
ing; Contextual Adaptation (o« = 0.79), evalu-
ating environmental contingencies and adaptation
triggers; Tacit Knowledge Indicators (o = 0.81),
identifying markers of experiential learning; and
Metaphorical Grounding (o = 0.85), measuring
use of concrete physical metaphors.

Each component was scored on a 1-10 scale by
three raters with high inter-rater reliability (Krip-
pendorft’s o = 0.84, 95% CI [0.81, 0.87]). Exter-
nal validators not familiar with research hypotheses
conducted 20% of ratings to control for bias. EKRI
validation showed strong correlations with expert
performance ratings (r = 0.72, p < 0.001), task
completion success (r = 0.68, p < 0.001), and ex-
isting linguistic embodiment measures (r = 0.76,
p < 0.001).

3.1.2 Established NLP Metrics

To enable comparison with broader NLP litera-
ture and address potential methodological concerns
about using only a custom metric, we additionally
employed established evaluation methodologies:

1. BLEU, ROUGE, and METEOR: We ap-
plied standard natural language generation met-
rics to compare LLLM outputs with expert-written
descriptions: BLEU-4 (Papineni et al., 2002):
Precision-focused metric measuring n-gram over-
lap, ROUGE-L (Lin, 2004): Recall-oriented met-
ric focused on longest common subsequence, ME-
TEOR (Banerjee and Lavie, 2005): Metric incor-
porating stemming, synonymy, and word order.

2. BERTScore: We calculated contextual seman-
tic similarity between generated content and refer-
ence texts using BERTScore (Zhang et al., 2020),
which has been demonstrated to correlate well with
human judgments of quality.

The multi-metric evaluation approach used in
this study addresses potential concerns about circu-
larity in measuring embodied knowledge. While
EKRI was derived from analyzing differences be-
tween farmer and LLM descriptions, the consis-
tent improvements observed across established
NLP metrics (BLEU-4, ROUGE-L, METEOR,

BERTScore) provide independent validation that
our frameworks enhance output quality beyond sim-
ply matching pre-defined linguistic patterns. Fur-
thermore, the strong correlation between EKRI im-
provements and practical task outcomes (r = 0.73,
p < .001) demonstrates that our metric captures
aspects of embodied knowledge that translate to
real-world performance, not merely surface-level
linguistic features.

3.2 Methodology of Frameworks

3.2.1 Embodied Knowledge Representation
Framework (EKRF)

We implemented the EKRF as a comprehensive
computational architecture with key components:

Sensory-Linguistic Mapping Function (SLMF):
The SLMF projects from sensory feature space to
linguistic token space:

¢(s) = softmax(Ws-ReLU(Wis+b1)+b2) (1)

where s € R?is a vector representation of sen-
sory features, W, € R"*? and Wy € RV*" are
learnable weight matrices, b; € R"and by € RY
are bias vectors, h is the hidden dimension size,
d is the sensory feature dimension, and v is the
vocabulary size. The function ¢ maps sensory fea-
tures to a probability distribution over vocabulary
tokens.

For implementation, sensory feature vectors
were constructed from: Annotated corpus of sen-
sory descriptions (12,500 examples), ratings by
sensory experts (n=7) on 5-dimensional sensory
scales and embeddings derived from multimodal
sensory datasets. Training used Adam optimizer
with learning rate Se-5, batch size 32, for 15 epochs
on 4 NVIDIA A100 GPUs.

Practical example: When a farmer describes
soil as having “good tilth,” the SLMF would map
this abstract concept to concrete sensory features
including granular structure (visual), crumbliness
(tactile), earthy aroma (olfactory), and moisture
level (tactile). These sensory mappings are then
used to generate more embodied language.

For instance, given input describing soil quality
in abstract terms, the system transforms it to:

“The soil should have good structure”

SLMF_ ., .
—— “When you squeeze the soil

gently, it should crumble into small,
rounded clumps—almost like chocolate
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Embodied Knowledge Representation Framework (EKRF)
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Embodied Prompt Engineering Protocol (EPEP)

Standard Output:
“Check soil texture. Sandy
feels gritty; clay forms
ribbons.”

Standard Prompt:
“Explain how to assess
soil quality.”

Enhanced Output:

“Soil should crumble like
chocolate cake, with a
sweet earthy aroma.”

EPEP Prompt:

“Describe soil assessment
with tactile sensations and
adaptations.”

Figure 3: Our dual approach bridges the embodiment gap in agricultural language: EKRF enhances LLM outputs
through architectural modifications, while EPEP transforms prompts to elicit embodied responses without modifying

the underlying model.

cake crumbs—rather than forming a
solid mass or falling apart completely.
It should leave a slight earthy stain on
your palm that brushes off easily.”

Contextual Adaptation Module (CAM): The
CAM modulates token probabilities based on envi-
ronmental context through an attention mechanism:

exp(h! Wee)

a(hg, e) =
() N7 exp(h] Wee))

2

where h; € R is the hidden state at time step
t, e € RC° is the environmental context vector,
W, € RM*¢is a learnable projection matrix, E
is the number of possible environmental contexts
considered, and «(hy, €) represents the attention
weights that determine the importance of each en-
vironmental context.

Practical example: The CAM adapts descrip-
tions based on contextual factors like soil type, cli-
mate, and season. For instance, when discussing
seed planting:

Base: “Plant seeds at appropriate depth”

Sandy soil: “Plant 30% deeper than
usual, as looser structure and faster
drainage causes quicker drying.”

Clay soil: “Plant slightly shallower with
wider depression to prevent waterlog-

ging.”

Tacit Knowledge Extraction Pipeline (TKEP):
We developed specialized components for identify-
ing and processing embodied knowledge markers
in text. For example, the Embodied Metaphor Clas-
sifier identifies and extends metaphors that commu-
nicate physical knowledge:

Example:

Original: “The soil structure should al-
low for proper drainage.”

TKEP: “Soil should be like a good
sponge—holding moisture without wa-
terlogging. After rain, it should feel
damp not soggy, with small air pockets
throughout.”
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Standard LLM Output

EKRF/EPEP Enhanced Output

To assess soil quality, examine the texture with
a . Moistened soil will feel gritty
(sandy) or form ribbons (loamy/clay). Check
color - darker soils indicate higher or-
ganic matter.

When assessing soil, feel it carefully - good loam

crumble gently not clump or fall apart.

It feels like chocolate cake crumbs
with pleasant resistance.
slight earthy residue

The soil has a
sweet, mushroom-like aroma, not  sour,
and makes a soft whisper not a gritty scratch.

feels slick sticks like cement

Feature Standard Enhanced
Sensory terms | 4 (visual, texture) | 18 (touch, smell, sound, visual)
Metaphors None 5 (chocolate cake, cement, etc.)
None 2 (residue and moisture)
1 (generally) 2 (should, appropriate certainty)

Figure 4: Comparison of standard vs. EKRF/EPEP enhanced soil assessment outputs, highlighting embodied

knowledge features: sensory terms (blue), metaphors (purple), conditionals (

The TKEP implementation included a custom
NER model for identifying embodied knowledge
markers (F1=0.83), a metaphor detection system
trained on agricultural texts (precision=0.79, re-
call=0.81), a conditional rule extraction module
using dependency parsing, and an integration layer
connecting to LLM decoding process.

For proprietary models (GPT-4, Claude 3, PaLM
2), we used an API-based implementation with
pre-processing of queries through our EKRF com-
ponents, post-processing of generated text using
the TKEP, and re-ranking of candidates based on
embodiment scores. Open source models allowed
direct integration into the transformer architecture
by adding SLMF as an additional layer before fi-
nal language modeling head, incorporating CAM
within the attention mechanism, and integrating
TKEDP into the decoding process.

3.2.2 Embodied Prompt Engineering Protocol
(EPEP)

The EPEP is a structured methodology with four
components that transform standard prompts into
ones that elicit more embodied knowledge from
existing LLMs:

1. Sensory Scaffolding (SS): Sensory scaffold-
ing decomposes and reconstructs sensory experi-
ences in prompts. The formal implementation is:

), and epistemic markers ( ).

D
SS(T) = ’YlTbase + Z ’Yz,fz(dz)
=1

3)

where Tj, . is the base template prompt, d; rep-
resents the i-th sensory domain (e.g., visual, tactile,
olfactory), 7; is a template function that generates
prompting text for sensory domain ¢, D is the total
number of sensory domains considered, and ~; are
weighting coefficients determining the importance
of each sensory domain (with ZZD: +11 v =1).

Practical example:

Standard: “Explain how to identify pow-
dery mildew.”

Sensory: “Explain how to identify pow-
dery mildew: appearance (color, tex-
ture, pattern), tactile qualities, smell, and
changes across lighting conditions and
growth stages.”

2. Procedural Anchoring (PA): Procedural an-
choring grounds knowledge in physical sequences
and concrete actions through a specialized gram-
mar.

Example transformation:

Standard:
tively?”

“How to use a hoe effec-
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Procedural: “Describe using a hoe effec-
tively: (1) body position, (2) hand posi-
tions/grip pressure, (3) tool angles, (4)
sensations indicating correct technique,
(5) adjustments for resistance, (6) com-
mon mistakes and their physical feed-
back.”

3. Contextual Variation Injection (CVI): CVI
systematically introduces environmental variations
to prompt adaptations:

Example application:

Base: “Explain when to harvest toma-
toes.”

CVI: “Explain when to harvest tomatoes,
adapting for: (a) hot/dry vs. cool/humid
climates; (b) after rain vs. drought; (c)
cherry vs. beefsteak varieties; (d) dis-
eased vs. healthy plants; (¢) immediate
use vs. storage/processing.”

The complete EPEP pipeline applies these com-
ponents sequentially:

EPEP(q,d) = CVI(PA(55(q)), d, conf(q,d))

“)

where ¢ is the original query, d represents the

domain-specific knowledge (agricultural domain in

our case), and con f(q, d) is a confidence function

that determines the appropriate level of contextual
variation based on the query and domain.

3.2.3

The experimental design included:

Main Experiments

1. Baseline Assessment: Evaluated all three
LLMs on agricultural tasks without enhance-
ment

2. EKRF Evaluation: Implemented EKRF ex-
tensions to each LLM architecture

3. EPEP Evaluation: Applied optimized
prompting techniques without model modi-
fication

4. Combined Approach: Tested EKRF+EPEP
integration

Each experiment was conducted across all five
agricultural domains with 25 task variations per
domain.

Table 1: EKRI Scores Across Experimental Conditions
and Agricultural Domains

Approach Soil Dis.” Tool Seed Wea.’

Farmer (Ref.) 8.7 8.2 7.9 7.4 7.8
Baseline LLM 5.3 4.8 3.6 5.1 4.5

EKRF 7.5 7.0 5.7 6.8 6.3
EPEP 7.2 6.7 59 6.5 6.2
Combined 8.0 7.5 6.5 7.1 6.8

“Disease, *Weather

Table 2: Key Linguistic Features in Farmer vs. LLM
Descriptions

Feature Farmer LLM Sig.

Sensory terms/100 words 8.7 2.8 < .001
Haptic adj. diversity 274 9.8 < .001
Ist-person markers/desc. 7.8 0.3 < .001
If-then w/ sensory cues 6.4 23 < .001
Embodied metaphors 7.3 2.5 < .001
Domain hedging devices 9.2 3.6 < .001

4 Results

4.1 Quantitative Analysis of the Embodiment
Gap

The EKRI scores revealed significant differences
between farmer and LLM descriptions across all
five domains of agricultural expertise (Table 1).

The largest gaps appeared in domains requiring
fine motor skills (tool usage) and multisensory in-
tegration (soil assessment). The smallest gap was
in seed planting, which has been more thoroughly
documented in agricultural literature with specific
measurements.

4.2 Corpus Linguistic Analysis of Embodied
Agricultural Knowledge

To systematically analyze the linguistic patterns as-
sociated with embodied agricultural knowledge, we
performed a comprehensive corpus analysis com-
paring farmer descriptions with LLM-generated
content. A representative excerpt from this analy-
sis is shown in Table 2. Our linguistic analysis re-
vealed that farmer descriptions demonstrate signifi-
cantly higher use of domain-specific sensory terms
and employ much more diverse haptic vocabulary.
Furthermore, farmers’ descriptions showed sophis-
ticated patterns of experiential framing through
first-person markers and deictic expressions an-
chored in physical space.

Perhaps most striking was the metaphorical
language analysis, which revealed that farmers
employed 189% more embodied metaphors with
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source domains in physical experience. Consider
these comparative examples:

Farmer: “Soil has this crumbly feel be-
tween fingers — breaks apart in rounded
pieces like chocolate cake. Sweet earth-
iness when you smell it, slight stain on
palm but brushes off. If it sticks to tools
like cement, it’s too wet.”

LLM: “Good soil has crumbly tex-
ture (good tilth). Holds together when
squeezed then breaks apart. Dark color
indicates organic matter. Assess texture,
color, structure, and organisms.”

4.3 Ablation Study

We conducted a systematic ablation study to quan-
tify individual component contributions across all
five agricultural domains. Table 3 presents the key
results.

Table 3: Component Ablation Results (EKRI Scores)

Configuration Soil Tool Seed Avg
Full Framework 8.0 6.5 7.1 7.2
- SLMF 63 48 52 54
- Sensory Scaffolding 6.6 5.7 59 6.1
- Procedural Anchoring 7.3 5.0 6.1 6.1

- Contextual Adaptation 7.1 5.9 6.4 6.5

The Sensory-Linguistic Mapping Function
(SLMF) emerged as the most critical component,
with its removal causing the largest performance
drop (-1.8 EKRI points on average). This confirms
sensory grounding as fundamental to bridging the
embodiment gap. Sensory Scaffolding showed the
second-largest impact (-1.4 points average), partic-
ularly for soil assessment where tactile descriptions
are crucial.

Procedural Anchoring demonstrated strong do-
main specificity, contributing most to tool usage
(+1.5 points) where step-by-step physical proce-
dures are essential. The Contextual Adaptation
Module showed consistent but moderate contribu-
tions (+0.9 points average) across all domains.

Component interactions revealed synergistic ef-
fects: no single component achieved full frame-
work performance, with the best individual com-
ponent (SLMF alone) reaching only 78% of the
combined system’s effectiveness. Standard NLP
metrics showed similar patterns, with SLMF re-
moval causing the largest drops across BLEU-4 (-
0.09), ROUGE-L (-0.08), and BERTScore (-0.06).

Table 4: EKRI Scores Across LLM Architectures and
Approaches

Model Baseline EKRF EPEP Combined
GPT-4 53 7.6 7.2 8.1
Claude 3 5.1 7.4 7.0 7.9
PalLM 2 4.7 7.1 6.6 7.5

Table 5: Standard NLP Metrics Across Experimental
Approaches

Metric Baseline EKRF EPEP Combined
BLEU-4 0.32 0.47 0.45 0.51
ROUGE-L 0.41 0.58 0.55 0.61
METEOR 0.38 0.53 0.50 0.56
BERTScore 0.78 0.86 0.84 0.89

4.4 EKRF Implementation Results

We implemented the Embodied Knowledge Rep-
resentation Framework as a modular extension to
three existing LLM architectures. Implementation
results demonstrated significant improvements in
embodied knowledge representation (Table 4).

The most substantial improvements came from
the Sensory-Linguistic Mapping Layer, which
alone accounted for approximately 60% of the over-
all enhancement. Particularly notable was the im-
provement in soil assessment descriptions, where
the integration of haptic data with linguistic repre-
sentations reduced the embodiment gap by 67%.

Assessment using standard NLP metrics also
showed significant improvements with EKRF im-
plementation (Table 5).

4.5 Addressing Evaluation Circularity
Through Task Performance Validation

To address potential circularity in our evaluation
approach, we conducted an independent validation
study measuring actual task performance outcomes
rather than linguistic features.

We randomly assigned 89 novice gardeners
(mean age = 28.4, SD = 8.2) with no prior
agricultural experience to three instruction condi-
tions: standard LLM-generated instructions (n=30),
EKRF/EPEP-enhanced instructions (n=30), or
farmer-written instructions as gold standard (n=29).
Participants completed five agricultural tasks in
controlled greenhouse conditions over three weeks.

We measured objective outcomes including soil
assessment accuracy (compared to expert soil anal-
ysis), plant health at 2-week follow-up (5-point
scale), tool usage technique quality (rated by blind
agricultural instructors), seed planting success (ger-
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mination rates), and weather prediction accuracy
(10 attempts).

Results showed participants using enhanced in-
structions significantly outperformed those using
standard LLM instructions: soil assessment accu-
racy (78% vs. 52%, p < .001), plant health scores
(4.2 vs. 2.8, p < .001), tool technique accuracy
(87% vs. 61%, p < .001), germination rates (81%
vs. 64%, p < .001), and weather prediction (73%
vs. 51%, p < .001). Crucially, enhanced instruc-
tion users performed statistically equivalently to
farmer instruction users on four of five measures
(all p > .05).

This independent task performance validation
demonstrates that EKRI improvements translate to
meaningful real-world outcomes, addressing cir-
cularity concerns by showing that our linguistic
enhancements genuinely improve embodied knowl-
edge transfer rather than merely optimizing for pre-
determined linguistic patterns.

5 Discussion and Conclusion

5.1 The Nature of the Embodiment Gap

Our results demonstrate a substantial and consistent
gap between how farmers represent embodied agri-
cultural knowledge linguistically and how LLMs
conceptualize the same domains. This gap appears
to be fundamental rather than merely an issue of
content coverage, as even the most advanced LLMs
with extensive agricultural training data showed
similar limitations.

The embodiment gap is shown in the following
linguistic areas:

1. Sensory-Lexical Grounding: LLMs lack the
sensorimotor foundations that ground human
conceptual understanding of physical tasks.
This is evident in the reduced sensory lexical
specificity and haptic vocabulary diversity in
LLM descriptions.

2. Contextual Adaptation Linguistics: Farm-
ing requires constant adaptation to changing
environmental conditions, which farmers ex-
press through complex conditional structures
and deictic expressions anchored in physi-
cal space. LLMs struggle to represent this
dynamic, responsive aspect of agricultural
knowledge linguistically.

5.2 Limitations and Future Work

While our frameworks demonstrate significant im-
provements in embodied knowledge representation,

several limitations should be acknowledged:

First, our evaluation relies primarily on linguis-
tic features as proxies for embodied knowledge.
Although we validated EKRI against task per-
formance outcomes, future work should incorpo-
rate more direct measures of embodied knowledge
transfer, such as motion capture during task perfor-
mance or sensor-based assessment of agricultural
techniques learned from different instruction types.
Second, the enhancement approaches demonstrated
variable effectiveness across domains, with tool us-
age descriptions remaining challenging (58.3% im-
provement but still the largest remaining gap). This
suggests that certain highly kinesthetic knowledge
domains may require multimodal approaches be-
yond purely linguistic enhancement. Future work
could explore augmenting text with visual demon-
strations, haptic feedback, or interactive simula-
tions. Finally, our study focused specifically on
agricultural knowledge, and while we hypothesize
that our findings would generalize to other domains
of embodied expertise (e.g., crafts, culinary arts,
medicine), this remains to be empirically validated.

5.3 Conclusion

This study provides the first comprehensive investi-
gation of how LLMs represent embodied agricul-
tural knowledge compared to the lived expertise
of practicing farmers. We quantify a significant
and consistent “embodiment gap” across multiple
domains of agricultural knowledge, with the largest
disparities in areas requiring sensory integration,
physical technique, and contextual adaptation.

Beyond merely identifying this gap, we devel-
oped and validated two novel frameworks to ad-
dress it: the Embodied Knowledge Representation
Framework (EKRF) and the Embodied Prompt En-
gineering Protocol (EPEP). Each of these frame-
works demonstrated substantial improvements in
how LLMs represent embodied knowledge, with
domain-specific strengths.

Our findings suggest that the embodiment gap is
not unique to agricultural knowledge but represents
a fundamental challenge in Al systems attempting
to represent domains requiring physical experience.

Future applications could extend beyond agricul-
ture to medical training, where surgeons must learn
tactile feedback for tissue assessment, or to manu-
facturing, where quality control requires embodied
expertise in material properties and tool handling.
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