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Abstract

In education, peer instruction (PI) is widely
recognized as an effective active learning strat-
egy. However, real-world evaluations of PI
are often limited by logistical constraints and
variability in classroom settings. This paper in-
troduces PEERS (Peer Enhanced Educational
Realistic Simulation), a simulation framework
that integrates Agent-Based Modeling (ABM),
Large Language Models (LLMs), and Bayesian
Knowledge Tracing (BKT) to emulate student
learning dynamics. As an initial step, this study
focuses on evaluating whether LLM-powered
agents can effectively assume the roles of teach-
ers and students within the simulation. Human
evaluations and topic-based metrics show that
LLMs can generate role-consistent and contex-
tually appropriate classroom dialogues. These
results serve as a foundational milestone toward
building realistic, AI-driven educational sim-
ulations. Future work will include simulating
the complete PEERS framework and validating
its accuracy through actual classroom-based PI
sessions. This research aims to contribute a
scalable, cost-effective methodology for study-
ing instructional strategies in controlled yet re-
alistic environments.

1 Introduction
Classroom learning is an intricate process influ-
enced by various variables such as student participa-
tion, peer interactions, and instructional strategies.
Active learning, where students actively participate
in the learning process, has gained popularity due
to its effectiveness inside the classroom (Martella
and Schneider, 2024). One notable strategy in ac-
tive learning is Peer Instruction (PI), a pedagogical
approach that promotes student interaction.

PI facilitates critical thinking, improves reten-
tion, and improves problem solving skills by en-
couraging collaborative dialogue and shared under-
standing (Garrison and Vaughan, 2008). For exam-

Figure 1: PEERS Flowchart. PEERS has 2 parts in
order to deliver Peer Instruction. The Learning Dis-
cussion Stage shown is where the Student Agent gains
a base knowledge regarding the topic by updating its
memory and knowledge by BKT. The Peer Discussion
stage reflects the knowledge from the previous stage,
and then student agents discuss and give feedback on it.
Learning gains are computed from pre-and post-test.

ple, a decade-long study at Harvard demonstrated
the efficacy of PI over traditional lectures, show-
ing significant improvements in both conceptual
reasoning and quantitative problem solving perfor-
mance (Crouch and Mazur, 2001). This method has
become a vital component of modern educational
practices in disciplines such as physics, biology,
and chemistry (Vickrey et al., 2015).

Although PI has been shown to provide sub-
stantial benefits, evaluating its effectiveness in au-
thentic classroom environments presents significant
challenges. Factors such as variability in student
participation, personality types, dynamics of peer
relationships, and external pressures frequently ob-
scure the impact of instructional strategies (Black
and Wiliam, 1998). Furthermore, logistical con-
straints and resource-intensive requirements limit
the feasibility of conducting large-scale classroom
experiments to fully investigate broader learning
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dynamics (Bieda et al., 2020). Although a previous
work (Elendu et al., 2024) shows that simulation-
based studies provide an alternative by allowing
precise control over variables and exploration of
emerging learning behaviors, these models often
rely on assumptions that may not fully capture the
complexities of real-world interactions. This limi-
tation underscores the need for methodologies that
combine realism, scalability, and cost-effectiveness
to thoroughly investigate the dynamics of PI.

To address these challenges, this thesis proposal
introduces PEERS (Peer Enhanced Educational Re-
alistic Simulation), a novel Agent-Based Modeling
(ABM) framework augmented by Large Language
Models (LLMs) and Bayesian Knowledge Tracing
(BKT). Adopting ABM allows for the modeling
of individual students as agents with distinct and
evolving traits, such as knowledge level, engage-
ment, and interaction frequency, allowing for the
capture of emergent behaviors that reveal how indi-
vidual and group dynamics contribute to learning
outcomes. These behaviors, which are difficult
to observe in real-life scenarios, provide valuable
insights into the mechanisms underlying collabora-
tive learning. To enhance the realism of these sim-
ulations, we used LLMs to generate nuanced, con-
textually relevant dialogues that emulate human-
like classroom discussions, making the simulation
results more applicable to real-world settings. Fur-
thermore, we dynamically track the knowledge pro-
gression of each agent based on participation and
quiz performance by BKT, offering a probabilistic
mechanism to quantify learning outcomes during
instructional activities. Unlike conventional pre-
and post-test evaluations, this integrated approach
provides granular insights, such as access to the
peer conversations themselves, as well as a more
direct observation of the impact of PI, enabling a
more comprehensive understanding of its effective-
ness.

The present work focuses on the first phase of
this broader research agenda: Validating the ability
of LLMs to assume distinct classroom roles (e.g.,
teacher, average student, below-average student)
and engage in realistic, role-appropriate dialogues.
Initial experiments evaluate LLM consistency and
believability through human- and topic-based as-
sessments.

The following objectives structure the overall
direction of this research:

• Validate the ability of LLMs to assume class-

room roles through human- and metric-based
evaluation (current work).

• Simulate the full PEERS framework, integrat-
ing BKT and memory modeling to analyze
learning dynamics (future work).

• Conduct actual classroom-based PI sessions
to validate and calibrate the simulation frame-
work (future work).

2 Related Work
PI fosters active learning by encouraging struc-
tured peer discussions, improving conceptual un-
derstanding, and problem-solving skills across dis-
ciplines (Mazur, 1997). Theoretical foundations
include cultural evolutionary theory (Lew-Levy
et al., 2023), collaborative learning (Yang, 2023),
and cognitive constructivism (Keerthirathne and
Keerthirathne, 2020). PI is widely implemented
at all levels of education (Wang and Gao, 2021),
(Arthur et al., 2022), with research showing that
peer discussions and instructor explanations im-
prove learning gains (Smith et al., 2011). However,
social dynamics, time constraints, and logistical
issues hinder its large-scale evaluation (Themeli,
2023), (Knight et al., 2013). To address these chal-
lenges, PEERS provides a scalable and controlled
simulation framework that enables the systematic
analysis of PI interactions without the constraints
of traditional classroom settings. ABM enables the
simulation of complex learning environments, pro-
viding insight into the optimization of instructional
strategies (Vulic et al., 2024), (Ormazábal et al.,
2021). ABM models human decision-making and
social interactions, making it valuable for education
research An (2012). However, it struggles to repli-
cate the dynamics of a real classroom (Chopra et al.,
2024). Integrating AI can improve ABM realism,
particularly by using LLMs to generate human-like
discussions that capture peer interactions (Chen
et al., 2024).PEERS enhances ABM-based simula-
tions by integrating LLMs, allowing for dynamic
peer discussions that better reflect real classroom in-
teractions. Artificial intelligence (AI), particularly
LLM, has been widely used in education (Wang
et al., 2024). LLMs can simulate classroom discus-
sions by generating realistic dialogues, allowing for
emergent behaviors that enhance learning (Zhang
et al., 2024). Tools such as CodeAid provide LLM-
driven personalized guidance (Kazemitabaar et al.,
2024). However, the modeling of student behavior
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remains challenging (Nguyen et al., 2024). With
this, PEERS leverages LLMs to simulate student-
driven dialogues and peer discussions, capturing
emergent learning patterns that traditional mod-
els struggle to reproduce. BKT helps track and
quantify knowledge progression, refining the real-
ism of AI-driven classroom simulations (Corbett
and Anderson, 1994). Despite progress in using
ABM, LLMs, and BKT separately, little research
has explored their combined application in PI envi-
ronments. By integrating ABM, LLMs, and BKT,
PEERS creates a novel framework for evaluating
peer learning, enabling the continuous tracking of
student knowledge states and interactions in a scal-
able, data-driven manner.

3 Methodology

3.1 Simulation Framework

The simulation framework consists of two primary
agent roles: Teacher and Student agent. Each agent
interacts in a simulated classroom environment us-
ing a set of predefined parameters. The simulation
framework, illustrated in Figure 2, comprises two
primary stages: the Learning Discussion Stage and
the Peer Instruction Stage.

Each agent i is defined by a set of basic attributes
that determine its role R and behavior. These at-
tributes are further enhanced by the output gener-
ated from LLMs. In this simulation, there are two
primary roles, teacher and student roles.

Teacher Agent. The teacher agent is character-
ized by three core components: the Teacher Script
(T ), the Test Set (Qt) and the LLM Prompt (Pt).
Hence, we can define the teacher agent’s roles as

RT = {T,Qt, Pt}, (1)

where
· T is the teacher script that serves as the basic

outline of the lecture that the teacher agent
follows throughout the simulation. It provides
structure to the class discussion, highlights
key points, and determines where the discus-
sion ends.

· Qt is the test set that the teacher agent will
administer after the discussion. It assesses
the student’s learning and retention, and the
results are used to compute the student’s learn-
ing gain.

· Pt is the LLM prompt to generate the teacher
agent responses in the simulation. It de-
fines the interaction style and depth of the

responses, enabling the teacher agent to re-
spond naturally and contextually based on the
discussion.

Student Agent. The student agent is defined by a
set of personalized attributes that model individual
learning behaviors, which are implemented as be-
havioral parameters in the agent-based simulation.
These attributes are encoded directly in the simula-
tion code to guide the student agent’s actions and
responses. The student role is described as

RS = {Ki(t), Fi(t), Ei(t), Qi(t),Mi(t), Pi},
(2)

where
· Ki(t) is the Knowledge Level (KL) parame-

ter that represents the student’s understanding
of the subject at time t. This parameter in-
fluences the agent’s uncertainty, calculated as
1 −Ki(t). The knowledge level also affects
the student’s memory capacity,

MC = 5 + exp(4Ki(t)), (3)

following Miller’s Law ((Miller, 1956)).
· Fi(t) is the Interaction Frequency (IF) pa-

rameter. This parameter triggers whether the
agent actively participates (e.g. asks a ques-
tion) or passively listens during discussion.

· Ei(t) is the Engagement Level (EL) parame-
ter that affects the complexity of the questions
posed by the agent. Higher EL results in more
detailed or in-depth questions.

· Qi(t) means Question Trigger (QT) which
determines the threshold for the agent to ask
questions influenced by uncertainty. The stu-
dent will ask a question if Uncertainty >
Qi(t). It shows that the student agents with
higher uncertainty are more likely to seek clar-
ification.

· Mi(t) serves as the student’s memory. It is the
student agent’s knowledge repository, where
learned information is stored and accessed
for future discussions and tests. The memory
capacity is determined on the basis of Miller’s
law.

· Pi is the LLM parameter prompt that de-
scribes how the student agent responds in
class, from asking questions to participating
in peer discussions. It customizes the tone,
detail, and style of student response in the
simulation, making each student’s behavior
more realistic and varied.

910



Figure 2: PEERS Framework for Learning Discussion (upper) and Peer Instruction Stage (lower). Every
time agents engage in conversation, chunks of information are stored in their memory. The student agent’s base
knowledge is updated by BKT during the learning discussion stage. When the student agents take a test, they
retrieve the information stored in their memory. PEERS will be able to capture the learning gain from the pre- and
post-test.

This student agent model enables the simulation
to capture both individual learning dynamics and
group interactions, making it possible to measure
the impact of peer instruction on student knowl-
edge.

Memory Model. The memory model for student
agents represents student learning. The model con-
sists of two parts: storage and retrieval, as shown in
Figure 2. This model adopts a straightforward ap-
proach, focusing on Miller’s number to determine
how many chunks of information can be stored in
working memory. The information comes from the
conversations during the discussions. In this case,
the chunks are extracted from the conversation dia-
logue and stored in the form of textual information.
As such, chunks are groups of keywords extracted
from the discussion. This interprets the things a stu-
dent agent remembers when in a discussion; they
remember not all of it but key parts of the conversa-
tion (Stafford and Daly, 1984). For this method, we
use NLP to extract the key words from the conversa-
tion. In the storage model, when new information

arrives, the system first checks whether there is
sufficient storage space. If space is available, the
model stores the new information. However, if no
space is available, the model randomly removes a
memory chunk to accommodate the new informa-
tion. This memory erasure mechanism implies that
students tend to remember new information more
than older information.

3.2 Session Structure

As shown in Figure 2, the PEERS framework con-
sists of two stages: the Learning Discussion Stage
and the Peer Instruction Stage. These stages mimic
real-world classroom teaching strategies, where the
teacher first discusses a topic, and peer discussions
reinforce the learning from the covered material.

3.2.1 Learning Discussion Stage

The Learning Discussion Stage is designed to
mimic a conventional classroom environment in
which the teacher agent presents a lecture and the
student agents participate. In this stage, the teacher
agent follows the script T and discusses the ma-
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terial. In this paper, we demonstrate our frame-
work using a simulation with climate change as the
discussion topic. The student agents interact ac-
cording to their parameters. The discussion flows
naturally until all the points in the teacher script
T are covered. After completing the script, the
teacher agent would ask each student agent ques-
tions regarding the topic. This simulates the ques-
tion strategies used in classrooms to encourage crit-
ical thinking and analysis. After a student agent
answers a question, the teacher agent would pro-
vide feedback and a brief explanation of the answer.
This response will serve as an input to BKT.

The BKT method updates the KL of a student
dynamically based on their correct or incorrect re-
sponses to questions. For correct response, the
formula to use for the KL update is

KLnew =
Ki(1− p(S))

Ki(1− p(S)) + (1−Ki)p(G)
+p(T ),

(4)
and for an incorrect response, we have

KLnew =
Kip(S)

Kip(S) + (1−Ki)(1− p(G))
, (5)

where KLnew is the new KL after update, Ki is the
current KL of the student agent, p(S) is the prob-
ability of answering incorrectly despite knowing,
p(G) is the probability of guessing the answer cor-
rectly, and p(T ) is the learning rate. Using the BKT
process, the simulation offers a quantitative and
dynamic method to monitor each student agent’s
learning progress. In addition, the student agents
store information in their memory Mi throughout
the discussion.

3.2.2 Peer Instruction Stage

In the Peer Instruction stage, student agents engage
in peer instruction within a simulated row-column
classroom layout. The PI occurs in two rounds: In
the first round, each student pairs with the seatmate
to their right. If no rightward partner exists, they
pair with the student directly behind them. In the
second round, students pair with their seatmates
to the left. During PI, the student agents will dis-
cuss what they learned in the previous stage. The
students access their memory to contribute to the
discussion. Agents expand or reinforce their mem-
ory during PI based on their interaction with their
peers. New knowledge and insights shared by peers
are stored as memory entries, enhancing student
learning.

3.2.3 Simulation Parameters

The teacher and student agents are initialized to
implement the simulation framework employing
varied roles and behavioral parameters. The teacher
agent receives a curated script on the topic of cli-
mate change, derived from widely available lec-
tures, which serves as the basis for discussion. In
addition, a set of diagnostic test questions was ex-
tracted from the script to assess the knowledge of
the student agents at different stages.

The simulation features 20 student agents cat-
egorized into three distinct groups to represent a
realistic middle school classroom. These groups
include 10 average (Student _A), 4 above average
(Student _AA), and 6 below average (Student _BA)
students. The categorization was based on ranges
of key behavioral parameters such as KL, EL, IF,
and QT, as shown in Table 1.

The LLM used for both the student and the
teacher agents, OpenAI GPT-4, was configured
with a temperature setting of 0.1 to ensure relevant
and deterministic responses. It was estimated that
a single run uses 350k tokens at 12 USD.

Parameter Above Average Average Below Average

Knowledge Level 0.35 - 0.5 0.2 - 0.35 0.1 - 0.2

Engagement Level 0.25 -0.4 0.1 - 0.25 0.05 - 0.1

Interaction Frequency 0.6 - 1.0 0.4 - 0.6 0.1 - 0.4

Question Trigger 0.2 - 0.3 0.1 - 0.2 0.05 - 0.1

Table 1: Student Agent Parameters. These values
were randomly assigned within their respective ranges
to introduce diversity in learning behaviors.

3.3 Actual PI Implementation

To evaluate the effectiveness of the PEERS frame-
work, we carried out a practical implementation
in a classroom setting. We observed two separate
classrooms: one designated as the control group
without any PI and the other implementing PI. Both
classrooms were provided with identical course ma-
terials for discussion. Observers were stationed in
each classroom to assess the interactions occur-
ring there. Interaction metrics included monitor-
ing the frequency of questions posed by both the
teacher and students, analyzing the depth and fre-
quency of student responses, and observing active
listening through visual cues. The observers docu-
mented these interactions for potential replication
in PEERS. Each classroom also participated in a
diagnostic exam to gauge their understanding of
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the subject matter. Classroom 1, with no PI, was
given a short test following the discussion, while
Classroom 2, which utilized PI, took the test af-
ter both the discussion and the implementation of
PI. Learning gains were evaluated using Hake’s
formula to assess student progress. The observed
classroom interactions will be inputted into PEERS
for comparison with the learning gain outputs. Fig-
ure represents the framework for the actual PI im-
plementation.

Figure 3: Actual PI ImplementationTwo classrooms
were observed to obtain realistic PI results. Classroom
1, which did not implement PI, served as the control
group, while Classroom 2 included PI. The resulting
metric measurements were inputted into PEERs, and
the learning gains were compared.

3.4 Evaluation Metrics

We evaluated how closely our simulation matches
the classroom experience in the real world by as-
sessing (1) how well the agents mimicked their
assigned roles and (2) whether student agents actu-
ally learned, as measured by the learning gains and
phenomena observed in a real classroom.

3.4.1 LLM Role Evaluation

To ensure that the LLM agents effectively assumed
their roles in the simulation, we evaluated them us-
ing both human evaluation and metric-based evalu-
ation.

For the human evaluation, we took the tran-
script of the dialogues produced by the simulation

and had them assessed by four human evaluators.
The evaluators were randomly selected, and before
participation, the details of the study were thor-
oughly explained to them. They were informed
that their task was to identify roles in a dialogue
within a given context. Additionally, they provided
explicit consent, acknowledging that no compen-
sation would be given and that their evaluations
would be used solely for research purposes. Their
responses were anonymized to ensure compliance
with ethical guidelines on data privacy and confi-
dentiality, as outlined in Annex A.

For the metric-based evaluation, we conducted
a topic-based analysis to assess the consistency of
the LLM agents in maintaining their assigned roles
throughout the simulation. The topic-based anal-
ysis allowed us to determine whether the agents
stayed focused on their assigned discussion topics
rather than deviating into unrelated areas, a com-
mon issue with LLMs. Furthermore, evaluating
the behavior of the student agents based on their
defined behavioral parameters ensured that they
behaved in alignment with their initial settings.

3.4.2 Learning Gain

The effectiveness of this simulation in fostering
knowledge acquisition through PI is quantified us-
ing learning gain, a widely recognized metric for
evaluating educational interventions ((Evans et al.,
2018)). By comparing pre-test and post-test scores,
the learning gain provides a normalized measure of
the improvement in knowledge achieved by the stu-
dent agents through PI. The formula for calculating
Learning Gain is based on Hake’s model ((Hake,
2002)):

LG =
Post− test Score − Pre− test Score

Max Score − Pre− test Score
(6)

This formula normalizes the gain by accounting
for the student agent’s initial level of knowledge,
allowing comparisons across a heterogeneous pop-
ulation of agents with varying prior knowledge and
engagement levels.

3.4.3 Statistical Analysis

T-test and ANOVA. We use paired t-test and
ANOVA on the learning gaining values to deter-
mine whether the student agents did learn. The
paired t-test is used to determine whether there is a
significant difference between pre-test and post-test
scores, indicating the effectiveness of peer instruc-
tion. The null hypothesis HO, is that there is no
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significant difference between pre-test and post-test
scores, implying that the peer instruction frame-
work does not significantly impact student learning.
ANOVA will be used to determine whether there
is a significant difference in learning gains across
multiple simulation trials. The null hypothesis HO,
is that there is no significant difference in learn-
ing gains among the different trials i.e., the mean
learning gains across trials are equal. Rejecting
HO would confirm the effectiveness of peer learn-
ing and the framework reliably produces similar
learning outcomes across different runs.

3.4.4 Emergent Behavior

For this simulation, one of the key advantages of
employing an ABM framework is the ability to
observe emergent behaviors: complex, collective
phenomena arising from the interactions of indi-
vidual agents. In this study, the interplay between
teacher and student agents, governed by their pa-
rameters and decision-making rules, leads to sev-
eral emergent outcomes that provide valuable in-
sight into classroom dynamics. During the PI stage,
collaboration among agents fosters discussions and
knowledge exchange based on their stored memory.
These interactions can result in scenarios where stu-
dents with higher levels of knowledge reinforce the
understanding of their less knowledgeable peers by
sharing accurate information during discussions.

4 Initial Results and Discussion

4.1 LLM Role Experiments

4.1.1 Human Evaluation

We asked human evaluators to review the transcript
of the dialogues between the teacher and student
agents. These dialogues were extracted from the
Learning Discussion stage, where agents interacted
in the environment. We selected three unique di-
alogues for evaluation. Their task was to analyze
the dialogue and identify the speaker’s role based
on their perception and understanding of the script.
They classified speakers as teachers or students
and further classified students as below average,
average, or above average. To avoid bias, we did
not inform evaluators that an LLM generated the
dialogue.

We selected four respondents as evaluators: two
professors, one student, and one staff member. The
evaluator’s answers are compared with the true
values. We evaluated accuracy using f1-score and
Fleiss’ Kappa. The f1-score measures the balance

Dialogue Role f1-score Fleiss’ Kappa

1

Teacher 0.9925

0.52
Student (Overall) 0.99

Below Average –

Average 0.35

Above Average 0.09

2

Teacher 0.995

0.52
Student (Overall) 0.9925

Below Average –

Average 0.42

Above Average 0.09

3

Teacher 1.00

0.55
Student (Overall) 1.00

Below Average 0.31

Average 0.44

Above Average 0.15

AVERAGE 0.55

Table 2: Human Evaluation Result. Human evaluators
were able to capture the teacher ans student roles in the
dialogues, however had difficulty assessing the student
categorization. Dialogues 1 and 2 don’t have any true
value for Below Average student because no one in that
group participated in the discussion.

of precision and recall, particularly since below-
average students rarely participates in class. We
also used Fleiss’ Kappa to assess the reliability of
agreement among the evaluators.

Table 2 presents the measured f1-score and
Fleiss’ Kappa values. The results show that human
evaluators successfully identified the teacher and
student roles in the dialogues, with scores close
to 1.0. However, the f1-scores for student cate-
gorization were lower, indicating that evaluators
struggled to distinguish between student categories
based only on dialogue. This challenge is reflected
in the overall Fleiss’ Kappa score of 0.53, suggest-
ing moderate agreement among the respondents
in identifying roles. Despite this limitation, LLM
agents successfully generated a role-distinct dia-
logue with minor deviations in student classifica-
tion.

4.1.2 Metric-Based Evaluation

To further assess whether the LLM agents assumed
their roles correctly, we conducted a metric evalua-
tion for the student agents.

Topic-Based Analysis. We evaluated whether
the teacher agent effectively discussed its assigned
topic using topic modeling techniques. Specifically,
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we applied Latent Dirichlet Allocation (LDA) to
extract key discussion topics from the dialogues.
These topics served as representations of the main
points discussed by the teacher agent. Table 3
presents the top topics extracted by LDA.

The results indicate that the top topics across
the seven dialogues align with the intended topic
of climate change. Topics 1 and 2 prominently
feature terms like "climate," "gases," and "heat,"
demonstrating the teacher agent’s focus on climate
change. Additionally, the LLM appears to extend
the discussion by covering biodiversity, habitats,
and species, likely in response to student questions.
This suggests that the teacher agent dynamically
guided the discussion based on student input, mak-
ing the lesson more informative and interactive.
Interestingly, the final extracted topic appears more
educational in nature, indicating that the teacher
agent assumed a classroom-oriented role by struc-
turing discussions and responding effectively to
student inquiries.

Topic No. Associated Words

1 "greenhouse", "climate", "change", "gases", "heat"

2 changes", "biodiversity", "species", "climate", "habitat"

3 "student", "answer", "climate", "weather", "aligns"

Table 3: Topic extraction from LDA. The topics ad-
heres with the topic assigned to the teacher agent to
discuss which is climate change.

Role Consistency in Behavior. To verify whether
student agents behaved according to their assigned
roles, we analyzed four key metrics. First is Stu-
dent Engagement that is measured engagement by
counting how often each student participated in
the dialogue and dividing it by the total number
of dialogues. Then, Question Trigger calculated
by how frequently each student asked questions by
determining their proportion of total questions in
the discussion. Third, Interaction Frequency where
we analyzed how often each student performed an
action by counting their dialogue entries and di-
viding by the total number of actions. And lastly
Knowledge Level it was measured in the final part
of the discussion, when the teacher asked a ques-
tion, we counted how many correct responses each
student provided to evaluate their base knowledge
level.

Figure 4 presents a heatmap of the measured
values across dialogues. The results indicate that
almost no overlap exists between the student agent

Figure 4: Heatmap of Measured Metrics. The fig-
ure shows a distinct differences (colors) in the student
categorization within the four metrics.

categories, meaning their behavior aligned with
their assigned roles. Additionally, while some val-
ues deviated slightly, they remained within the pre-
defined parameter ranges for each student category.
This confirms that student agents effectively cap-
tured their assigned roles and behaved accordingly
in the discussion.

5 Conclusion
This thesis presents initial findings from the PEERS
framework, focusing on evaluating the effective-
ness of LLMs in assuming teacher and student roles
during simulated classroom interactions. Through
human evaluation and topic modeling, the study
demonstrates that LLM agents are capable of pro-
ducing role-consistent, contextually appropriate di-
alogues. These results validate the feasibility of
using LLMs as agent surrogates in educational sim-
ulations and mark an important step toward model-
ing more complex classroom dynamics.

While the broader PEERS framework incor-
porates memory modeling, Bayesian Knowledge
Tracing (BKT), and agent-based learning simula-
tions, these components remain outside the scope
of the current study and are reserved for future
work. The next steps include:

• Simulating the complete PEERS framework
with learning discussions and peer instruction
stages.

• Validating simulation accuracy through actual
classroom PI implementations.

By establishing the role fidelity of LLM agents,
this work lays the groundwork for future investiga-
tions into how AI-driven simulations can enhance
our understanding of collaborative learning, offer-
ing a scalable alternative to traditional classroom
research.
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6 Limitations

This study has several limitations that future re-
search can address. First, it does not explicitly
categorize student behavior into predefined types;
instead, it models learning dynamics through var-
ious parameters. The parameters of the student
agent are assumed in this study. The literature
lacks a definitive categorization of students. Ad-
ditionally, the framework does not focus on mod-
eling long-term memory retention in LLM agents,
since the memory system primarily functions as
a knowledge-recall mechanism. The peer instruc-
tion dynamics in this study is structured and se-
quential and assesses immediate learning gains but
does not track long-term retention, which could
be addressed through delayed post-tests or longi-
tudinal simulations. Addressing these limitations
will enhance the realism, scalability, and cognitive
modeling of AI-driven classroom simulations.

7 Ethical Considerations

This study involved human annotators to evalu-
ate the dialogues produced by the LLM-powered
student agents. The annotators evaluated the dia-
logue produced by the agents to validate that the
LLM assumes their role. Since the study did not in-
volve real human subjects providing personal data
or performing experimental interventions, the insti-
tutional ethics review board deemed it exempted it
from formal ethics review.

To uphold ethical research standards, all annota-
tors were informed of their roles and responsibili-
ties prior to participation. They gave their consent
to evaluate the generated dialogues and were in-
structed to assess them objectively. No personally
identifiable information was collected or processed
during the evaluation, and all data used were gener-
ated in a controlled simulation environment.
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A Sample Human Evaluator’s Guide
This is the guide given to the annotators for the LLM role evaluation.

Figure 5: Evaluation Form for Classroom Dialogue This is the first page where general instruction and consent
were discussed with the administrators before they answered the questionnaire.

918


