
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 884–897

July 28-29, 2025 ©2025 Association for Computational Linguistics

Are LLMs Truly Graph-Savvy? A Comprehensive Evaluation of Graph
Generation

Ege Demirci, Rithwik Kerur, Ambuj Singh
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA 93106

{egedemirci,rkerur,ambuj}@ucsb.edu

Abstract

While large language models (LLMs) have
demonstrated impressive capabilities across di-
verse tasks, their ability to generate valid graph
structures remains underexplored. We evaluate
fifteen state-of-the-art LLMs on five specialized
graph generation tasks spanning delivery net-
works, social networks, quantum circuits, gene-
disease networks, and transportation systems.
We also test the LLMs using 3 different prompt
types: direct, iterative feedback, and program-
augmented. Models supported with explicit rea-
soning modules (o3-mini-high, o1, Claude 3.7
Sonnet, DeepSeek-R1) solve more than twice
as many tasks as their general-purpose peers,
independent of parameter count. Error analysis
reveals two recurring failure modes: smaller
parameter size Llama models often violate ba-
sic structural constraints, whereas Claude mod-
els respect topology but mismanage higher-
order logical rules. Allowing models to refine
their answers iteratively yields uneven gains,
underscoring fundamental differences in error-
correction capacity. This work demonstrates
that graph understanding stems from special-
ized training methodologies rather than scale,
establishing a framework for developing truly
graph-savvy language models. Results and ver-
ification scripts available at github.com/Are-
LLMs-Truly-Graph-Savvy.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing by achieving state-
of-the-art performance on a diverse range of tasks,
from translation and summarization to on-the-fly
reasoning (Brown et al., 2020). Despite these im-
pressive advancements in text generation, their abil-
ity to handle structured data, particularly graphs,
remains work in progress. Graphs, which consist of
nodes (representing entities) and edges (represent-
ing relationships), are fundamental to a wide spec-
trum of applications including social network anal-

ysis, biological systems modeling, and transporta-
tion planning. However, while LLMs demonstrate
remarkable fluency in natural language, their per-
formance in generating and reasoning about graph
structures is often hindered by a persistent chal-
lenge: hallucination. In many cases, LLMs pro-
duce graph outputs that are syntactically plausible
yet factually or structurally incorrect (Merrer and
Tredan, 2024). While these failures are well docu-
mented on individual graph benchmarks, no broad,
cross-domain evaluation has yet been performed.

Classical graph generation research offers two
different paths: parametric deep generators such
as GraphRNN, NetGAN, Graphite, GRAN and
diffusion-based models (You et al., 2018; Bo-
jchevski et al., 2018; Grover et al., 2018; Liao et al.,
2019), and non-parametric construction methods
that rewire or optimize graphs with commute-
time or curvature objectives (Topping et al., 2022;
Sterner et al., 2024). These prior approaches re-
liably satisfy hard structural constraints but lack
the zero-shot flexibility and domain-aware seman-
tics that make LLMs attractive for real-time graph
design.

In this paper, our contribution is threefold:
(i) We introduce a novel evaluation framework

comprising five specialized graph problems de-
signed to challenge and assess LLMs’ structural
reasoning capabilities: (1) a Time-Dependent De-
livery Network with complex spatiotemporal con-
straints; (2) a Directed Social Network with hierar-
chical influence relationships; (3) a Quantum Cir-
cuit Design requiring an understanding of quantum
gate operations; (4) a Gene-Disease Association
Network modeling bipartite relationships; and (5)
an Optimal Transportation Network with robust
connectivity requirements. These problems inten-
tionally extend beyond conventional datasets to
mitigate the effects of memorization, identified as
confounding factors in the evaluation of LLM per-
formance. Since these problems are open-ended,

884

https://github.com/egedemirci/Are-LLMs-Truly-Graph-Savvy-A-Comprehensive-Evaluation-of-Graph-Generation
https://github.com/egedemirci/Are-LLMs-Truly-Graph-Savvy-A-Comprehensive-Evaluation-of-Graph-Generation

they allow for many structurally valid graphs in-
stead of a single canonical solution. The model
needs to explore a much larger design space and
cannot simply guess a unique template, which in-
creases the risk of hallucination and coverage fail-
ures.

(ii) We conduct a comprehensive evaluation us-
ing fifteen state-of-the-art LLMs spanning multiple
architectural families and parameter scales. This
selection enables us to conduct thorough compar-
isons across different architectures, which previous
taxonomies by Ren et al. (2024) indicate are crucial
for understanding the specific limitations of models
in graph processing.

(iii) We systematically investigate three prompt-
ing paradigms: direct prompting, iterative feed-
back, and program-augmented prompting. Build-
ing upon the reasoning frameworks of the study,
we examine whether these prompting approaches
can effectively address the hallucination challenges
documented by Tonmoy et al. (2024) and improve
structural fidelity in the graph output.

1.1 Prior Work
We review prior attempts to evaluate LLM graph
skills. Early efforts to explore the graph capabil-
ities of LLMs have yielded promising but mixed
results. Wu et al. (2025) introduce GraphEval36K,
a 40-problem, 36 900-case coding benchmark that
probes LLMs’ algorithmic graph reasoning and
highlights performance gaps between proprietary
and open-source models. Yao et al. (2024) intro-
duced LLM4GraphGen, which systematically eval-
uates the ability of LLMs to generate graphs based
on structural rules and distributions. Their find-
ings suggest that while models like GPT-4 exhibit
some capacity for rule-based and distribution-based
graph generation, conventional prompting methods
(e.g., few-shot or chain-of-thought) do not consis-
tently improve performance. In parallel, Wang et al.
(2023) proposed the NLGraph benchmark, a set of
graph reasoning tasks that ranges from basic con-
nectivity checks to complex algorithmic challenges
such as maximum flow and bipartite graph match-
ing. Their study showed that while LLMs demon-
strate preliminary reasoning abilities, their perfor-
mance deteriorates as task complexity increases,
and standard prompting strategies often fail to en-
hance results. Notably, both studies highlight that
LLMs have difficulty generalizing beyond exam-
ples they have seen. This raises concerns about
whether they genuinely learn graph structures or

simply rely on memorization, and shows the need
for more robust evaluations that go beyond stan-
dard datasets and assess LLMs’ ability to construct
and reason about unseen graphs.

Advances in reasoning-focused fine-tuning
frameworks further illustrate both the potential and
limitations of LLMs for graph-related tasks. The
graph chain-of-thought (Graph-CoT) framework of
Jin et al. (2024) promotes iterative reasoning by
structuring LLM reasoning paths through explicit
graph structures and demonstrating improved per-
formance in complex graph-related inference tasks.
Similarly, the Graph of Thoughts (GoT) framework
introduced by Besta et al. (2024) models reasoning
as a graph rather than a traditional tree, allowing
LLMs to explore non-linear reasoning paths that
better capture dependencies in structured data. Al-
though these methods significantly improve rea-
soning accuracy, they do not fully address graph
generation. Additionally, approaches such as the
GCoder by Zhang et al. (2024) have explored in-
tegrating LLM with code-based methodologies to
solve generalized graph problems, and have demon-
strated substantial improvements over traditional
natural language reasoning paradigms. Meanwhile,
broader investigations into hallucination mitigation,
such as the comprehensive survey by Tonmoy et al.
(2024), underscore the need for more robust evalu-
ation protocols that explicitly detect and quantify
structural inconsistencies in graph outputs. These
collective efforts indicate that while LLMs are be-
coming increasingly capable of handling graph-
based reasoning, their ability to reliably generate
novel, structurally valid graphs remains an open
challenge requiring further study. Very recent work
has begun using LLMs as agents that collabora-
tively grow dynamic social graphs (Chang et al.,
2025; Ji et al., 2025). These studies reinforce the
plausibility of LLM-driven graph construction but
also document emergent biases and rule violations,
echoing our motivation for a principled, multi-task
evaluation.

Lastly, Merrer and Tredan (2024) examined how
LLMs generate known graphs such as Zachary’s
Karate Club and Les Misérables. However, their
approach is limited in scope as it relies on a small
set of benchmark graphs, many of which are widely
available in public datasets and may have been seen
during model training. Furthermore, their evalua-
tion is based on single-prompt interactions without
testing the robustness of model responses across
multiple attempts or under varied prompt condi-

885

tions. This narrow evaluation methodology fails
to capture the broader generalization and reason-
ing abilities of LLMs in generating unseen graph
structures, leaving critical questions unanswered
regarding their ability to construct complex, struc-
tured graphs beyond memorization.

Through (i) crafting five diverse, unconstrained
graph tasks, (ii) benchmarking fifteen distinct LLM
architectures, and (iii) evaluating three prompting
strategies, we offer a comprehensive evaluation of
LLM graph-generation capabilities. Our results
quantify current performance boundaries with sta-
tistical rigor and establish a reusable framework
for assessing and improving structural fidelity in
LLM outputs. Via our unique approach of targeting
structural reasoning rather than memorization, we
directly address the gap identified by recent surveys
(Yu et al., 2025; Li et al., 2024), and take a step
toward building graph-savvy language models that
generate and reason about complex networks with
higher fidelity and consistency.

2 Methodology

In this section, we describe the procedures used to
design our five specialized graph-generation tasks,
the verification pipeline for evaluating generated
solutions, and the experimental setup employed to
assess model performance. We evaluate the abil-
ity of Large Language Models (LLMs) to generate
valid graphs using five tasks that each emphasize
a distinct set of structural and logical challenges.
These tasks are inspired by classical problem do-
mains, including combinatorial optimization, net-
work analysis, and biological systems modeling.
Full prompts and constraints can be seen in the
Appendix.

Time-Dependent Delivery Network: This sce-
nario requires scheduling deliveries across multiple
locations using a fleet of vehicles. Constraints in-
clude vehicle and storage capacities, dynamically
adjusted travel times, and delivery time windows.
It is similar to a time-windowed Vehicle Routing
Problem (VRP) (Toth and Vigo, 2001) often en-
countered in logistics and supply-chain manage-
ment, where resource utilization and schedule fea-
sibility are essential.

Directed Social Network with Influence Re-
lationships: We construct a social network in
which users (categorized by trust scores) exert di-
rected influence over others. The graph must re-
main acyclic while respecting category-based con-

straints (e.g., celebrities requiring sufficient outgo-
ing edges). This setup reflects common problems
in social network analysis (Amelkin and Singh,
2019), trust-based recommendation systems, and
hierarchical structures where influence needs to be
rigorously defined and free of feedback loops.

Quantum Circuit: This task involves organiz-
ing qubits, gates (single- and multi-qubit), and mea-
surement operations under strict limitations on gate
adjacency, temporal layering, and measurement
rules. It mirrors quantum circuit scheduling chal-
lenges (Romero-Alvarez et al., 2024), where quan-
tum gates must be placed in a Directed Acyclic
Graph (DAG)-like structure, to ensure no conflict-
ing operations and respect hardware constraints
(such as non-adjacent CNOT requirements).

Gene-Disease Association Network: A bipar-
tite graph is formed between genes and diseases,
with each node set governed by specific degree con-
straints and edges indicating association strengths
in the range [0.0,1.0]. In particular, our design
draws inspiration from recent findings on the bipar-
tite structure of vertebrate centromeres (Sacristan
et al., 2024). This problem is an example of biologi-
cal networks (e.g., gene-regulatory or gene-disease
association mappings) that capture the confidence
of links between genetic factors and clinical con-
ditions. The valid bipartite structure and bounded
association strengths are essential for realistic bio-
logical modeling.

Optimal Transportation Network: In this
problem, LLMs need to develop a strongly con-
nected, cost-effective, and resilient network of
cities (nodes) and directed roads (edges). Important
constraints include limits on road length and cost
to ensure accessibility for the population. Addi-
tionally, the design should incorporate redundancy
through multiple edges to enhance resilience (Me-
dya et al., 2018). This problem is similar to multi-
constraint transportation (Li et al., 2023) or flow
networks, with a particular focus on two-edge ro-
bustness and minimizing path lengths to ensure
that the network remains reliable and efficient un-
der stress.

We evaluate a set of fifteen state-of-the-art
LLMs, spanning multiple architectures and param-
eter sizes. These include GPT-4o (January 29 ver-
sion), GPT-4o-mini, o1, and o3-mini-high by Ope-
nAI (2024a,b,c); Claude 3.5 Sonnet, Claude 3.5
Haiku, and Claude 3.7 Sonnet (with extended think-
ing) by Anthropic (2024a,b,c); Gemini 2.0 Pro and
Gemini 2.0 Flash by Google (2024a,b); Llama 3.1

886

Graph Problems

Time-Dependent Delivery Network
Directed Social Network
Quantum Circuit Design

Gene-Disease Association Network
Optimal Transport Network

Language Models

GPT 4o, 4o-mini, o1, o3-mini-high (OpenAI)
Claude 3.5 Haiku, Sonnet, 3.7 Sonnet (Anthropic)

Gemini 2.0 Pro, 2.0 Flash (Google)
Grok-v3 (xAI)

Llama 3.1 (8B, 405B), 3.2 (3B) (Meta AI)
Deepseek R1, V3 (Deepseek)

Prompting Techniques

Direct, Iterative Feedback, Program-Augmented

Evaluation Process

5 independent runs per model, task and prompt combination
Verification script checks all problem constraints
Overall pass rate, error breakdown, avg. constraints passing

Figure 1: Experimental framework for evaluating LLMs’ graph generation capabilities.

(8B), Llama 3.1 (405B), and Llama 3.2 (3B) by
Meta AI (2024a,b); DeepSeek-V3 and DeepSeek-
R1 by DeepSeek AI (2025, 2024); and Grok-V3
by xAI (2025). Models from the Llama family are
run in Ollama (2025), allowing direct control over
parameter settings and token decoding, while the re-
maining models are accessed through their respec-
tive chat-based interfaces following each provider’s
recommended prompt-completion protocol. We ex-
plore three prompting paradigms:

• Direct Prompting: The model receives a sin-
gle, comprehensive prompt containing the en-
tire task description, without additional feed-
back during generation.

• Iterative Prompting: After the initial direct
prompt, if the model’s output is unsatisfac-
tory, it receives the verification script output
as feedback. This feedback helps to refine the
subsequent response, allowing for a multi-step
corrective process.

• Program-Augmented Prompting: In the ini-
tial prompt, we include both the task descrip-
tion and the verification script. The model is
encouraged to refer to this script during the
generation process to self-assess and ensure
that the output meets the specified structural
requirements.

For each of the five tasks, we generate solutions
using every model and prompting style combina-
tion across five independent runs. This approach

is necessary because LLMs are inherently non-
deterministic, meaning they can produce different
responses to the same prompt due to the stochastic
elements in their decoding processes. Conducting
multiple independent runs allows us to capture this
variability.

All models were evaluated in a zero-shot config-
uration: no demonstration examples were included
in any prompt, even during iterative feedback. Each
model received only the task description (and, for it-
erative prompting, the prior output plus verification
feedback) without few-shot exemplars. Decoding
parameters like temperature were left at their de-
faults for each interface to isolate the effects of the
model architecture and prompting paradigm.

We save each generated output in a JSON file,
which includes the graph definition (such as nodes
and edges) and any numerical attributes (like costs
and trust scores). After saving the output, we use a
task-specific verification script to validate the gen-
erated graph. This script parses the JSON file into
the required Python data structures and checks each
constraint. During this process, any errors or con-
straints that are not met in the output are recorded
in a separate JSON file. This file summarizes which
constraints were satisfied and explicitly lists any
errors made by the model. All violations are auto-
matically mapped—via the predefined constraint
groups lookup—to one of the three error categories
(Structural, Logical, Attribute) by the verification
script, so no manual post-processing is required.

We classify verification failures into three cate-
gories: Structural, Logical, and Attribute. Struc-

887

tural errors capture violations of global graph in-
variants, such as connectivity (e.g., missing a path
that ensures two-edge robustness in the Optimal
Transportation Network), acyclicity (e.g., the pres-
ence of a cycle in the Directed Social Network),
and bipartite-constraint breaches (e.g., gene–gene
edges in the Gene–Disease Association Network).
Logical errors correspond to domain-specific rule
violations, such as time-window compliance fail-
ures (deliveries scheduled outside the [9, 11] win-
dow in the Time-Dependent Delivery Network),
vehicle-capacity breaches (exceeding a vehicle’s
payload on a route), and strategic road-placement
errors (insufficient outgoing edges from hub cities
C0 or C7). Attribute errors refer to invalid node
or edge metadata, for example, trust scores outside
[0, 100], undefined gate types or qubit labels in the
Quantum Circuit Design, or association strengths
outside [0.0, 1.0] in the Gene–Disease network.

We then aggregate these files across the five runs,
and look at the following metrics:

• Overall Pass Rate: The fraction of outputs
that satisfy all constraints for a given (model,
prompt style) pair.

• Error Breakdown: The frequency of con-
straint failures in structural vs. logical vs. at-
tribute categories.

• Average Constraint Passing: The average
count of successfully met constraints, offers
more granularity than a strict pass/fail.

Finally, we compile all verification reports to
create a per-run summary of pass/fail outcomes.
Another report aggregates the results at the model
and prompting method level, computing average
pass rates and error counts across the five runs.

3 Results

Our evaluation reveals variations in graph genera-
tion capabilities among state-of-the-art LLMs, pro-
viding empirical evidence on the extent to which
LLMs are genuinely graph-savvy. The results show
critical insights into architectural differences, the
efficacy of different prompting strategies, and the
distinctive challenges posed by structured graph
problems.

3.1 Performance Stratification Across Model
Architectures

As shown in Figure 2(c), we observe a pronounced
stratification in performance across model fami-

lies, with specialized reasoning models demonstrat-
ing markedly superior capabilities. o3-mini-high
and o1 (OpenAI’s reasoning-focused models re-
leased in January 2025 and December 2024, re-
spectively) achieved exceptional performance with
average pass rates of 82.7% and 78.7%, substan-
tially outperforming the cross-model average of
34.0%. Claude 3.7 Sonnet, Anthropic’s hybrid rea-
soning model released in February 2025, followed
with a 69.3% success rate, while DeepSeek-R1, an-
other reasoning-specialized architecture, achieved
a 48.0% pass rate.

This performance distribution aligns with our
hypothesis that graph generation requires sophis-
ticated structural reasoning beyond basic pattern
recognition. Notably, the four models fine-tuned
with enhanced reasoning capabilities (o3-mini-
high, o1, Claude 3.7 Sonnet, and DeepSeek-R1)
occupy four of the top five positions in overall per-
formance, suggesting that training methodologies
targeting complex reasoning transfer effectively to
graph-related tasks.

In contrast, smaller parameter-count models and
those without explicit reasoning enhancements
struggled significantly. Llama 3.1 (8B) and Llama
3.2 (3B) achieved only 1.3% pass rates, while Chat-
GPT 4o-mini reached just 14.7%, indicating funda-
mental limitations in graph representation abilities.
This pattern supports our premise that graph gener-
ation constitutes a distinctive challenge requiring
specialized architectural capabilities rather than
merely scaling parameters. Although scaling pa-
rameters increases the performance of the model,
in the case of Llama 3.1, it does not bring it close to
any of the 4 models with reasoning enhancements.

3.2 Problem-Specific Performance
The performance gradient across tasks remained
consistent across model families: the Time-
Dependent Delivery Network presented the great-
est challenge (with error counts averaging 18-49
for most models under direct prompting), followed
by the Gene-Disease Association Network (10-38
errors). This hierarchy persisted despite iterative
feedback, suggesting fundamental differences in
task complexity rather than mere prompting limita-
tions. The consistency of this pattern indicates that
temporal reasoning with multiple interacting con-
straints presents a qualitatively different challenge
compared to static structural properties.

Error analysis reveals that failures in the Di-
rected Social Network stemmed primarily from

888

Figure 2: Performance analysis of LLMs on graph generation tasks. Figure panels summarize key trends across
fifteen LLMs and five problem domains. (a) Pass rates per model and task reveal that only a few models consistently
satisfy all constraints across problems, with stronger results under iterative prompting. (b) Error heatmaps show
the specific types of graphs that each model struggles with. (c) Average pass rates across all tasks highlight the
performance stratification between reasoning-enhanced and general-purpose models. (d) Performance deltas from
iterative feedback quantify each model’s ability to self-correct, with Grok-v3 showing the largest improvement.

specific constraint violations. The Claude Son-
net family showed minimal errors, averaging be-
tween 0 and 1 errors per run, while others, like
ChatGPT 4o, produced between 6.6 and 7.8 er-
rors under direct prompting, particularly regard-
ing celebrity outgoing edge requirements. Further-
more, specialized reasoning models exhibited a
better ability to uphold global structural proper-
ties like acyclicity. The deliberately introduced
gap in trust score categorization (50-70) shows a
consistent tendency across models to hallucinate
classifications for these ambiguous values rather
than adhering strictly to provided rules. This clas-
sification completion bias persisted across multiple
prompt iterations especially for simpler models,
suggesting an intrinsic tendency to complete per-
ceived patterns rather than strictly adhering to ex-
plicit constraints. This is a concerning finding for

domain applications requiring rigid adherence to
rules.

The Gene-Disease Association task shows an-
other structural pattern. Traditional LLMs strug-
gled specifically with maintaining bipartite in-
tegrity (creating forbidden gene-gene or disease-
disease connections) and balancing degree con-
straints simultaneously. Llama 3.1 (405B) gener-
ated 35.4 errors on average under direct prompting,
with approximately 70% related to bipartite vio-
lations and degree constraint failures. Even with
iterative feedback, these models continued to gen-
erate structurally invalid networks, suggesting a
fundamental difficulty in conceptualizing strict cat-
egorical separation between node types. In con-
trast, reasoning-specialized models primarily made
errors in strength attribute assignments while main-
taining valid bipartite structures.

889

For the Quantum Circuit task, lower-
performing models like Llama 3.1 (8B) and
DeepSeek-V3 (which recorded 7.4 errors under
direct prompting) primarily struggled with gate
adjacency requirements and constraints related to
layered operations. This led to the creation of tech-
nically invalid quantum circuits. In contrast, errors
from Claude and OpenAI models focused more
on gate optimization and final state compliance.
These were more subtle violations that resulted in
operationally valid but suboptimal circuits. This
pattern suggests a hierarchy in understanding quan-
tum circuits, where basic structural validity must be
established before addressing optimization capabil-
ities. The tendency to selectively violate constraints
indicates that domain-specific requirements may
be overshadowed by more familiar structural pat-
terns, which raises concerns for specialized domain
applications.

The Optimal Transportation Network task re-
vealed a distinctive error pattern focusing on cost-
distance consistency and accessibility requirements.
Even models with high overall pass rates strug-
gled with balancing mutually constraining objec-
tives: Smaller parameter Llama models (8B, 3B)
generated 27.4-38.8 errors under direct prompt-
ing, primarily violating strategic road placement
constraints while maintaining valid connectivity.
In contrast, reasoning models made significantly
fewer errors (0-1.4) and effectively balanced mul-
tiple competing constraints. This suggests that
multi-objective optimization in graphs represents a
distinctive capability of reasoning-enhanced archi-
tectures that general-purpose models have not yet
mastered.

The most pronounced error pattern emerged
in the Time-Dependent Delivery Network task,
where even high-performing models exhibited cas-
cading failure modes. Error analysis reveals that vi-
olations typically began with time window inconsis-
tencies that propagated to vehicle capacity and stor-
age compliance failures. Claude 3.7 Sonnet’s un-
usually high error count (49.0) under direct prompt-
ing stems primarily from creating temporally im-
possible delivery sequences that subsequently vio-
lated multiple dependent constraints. This suggests
that temporal reasoning in graphs triggers a dis-
tinctive failure mode where local inconsistencies
propagate through interconnected constraint net-
works.

Furthermore, across multiple problems, we ob-
served that models frequently generated locally

valid edges (satisfying pairwise constraints) that
violated global structural properties such as acyclic
or strong connectivity. This pattern suggests a limi-
tation in maintaining coherent global graph prop-
erties while simultaneously satisfying local edge
constraints. This finding has significant implica-
tions for applications requiring global structural
guarantees.

These detailed error patterns across problem do-
mains collectively indicate that graph hallucination
is not a uniform phenomenon but manifests dif-
ferently depending on the structural properties re-
quired. Reasoning-enhanced models demonstrate
superior constraint reconciliation abilities, partic-
ularly for maintaining global structural properties
while satisfying local edge constraints, which is a
critical capability for real-world graph applications.

3.3 Constraint Satisfaction by Category
Figure 3(e) demonstrates that reasoning-enhanced
models (o3-mini-high, o1, Claude 3.7 Sonnet, and
DeepSeek-R1) consistently passed 10-12 struc-
tural constraints regardless of prompting strategy.
This suggests that structural reasoning capabilities
emerge from reasoning-focused training rather than
prompt engineering alone.

Figure 3(f) reveals greater variability in logical
constraint satisfaction, with iterative feedback sub-
stantially improving performance across most mod-
els (e.g., Grok-v3 improving from 11.6 to 14.0).
This differential responsiveness suggests that logi-
cal constraints, which often require multi-step rea-
soning about consequences, benefit most from de-
composed reasoning in iterative feedback loops,
aligning with prior findings on step-by-step reason-
ing (Jin et al., 2024).

Figure 3(g) reveals that attribute constraints pose
a relatively manageable challenge for most mod-
els, with top-performing reasoning models like
Claude 3.7 Sonnet, o1, and o3-mini-high consis-
tently achieving perfect or near-perfect scores of
9.0 passed constraints. Even models with moderate
overall performance generally exhibited strong at-
tribute constraint satisfaction, suggesting that han-
dling spatial, quantitative, and categorical graph
properties represents a more tractable aspect of
graph generation compared to structural or logical
constraints for current LLM architectures.

3.4 The Efficacy of Prompting Paradigms
As quantified in Figure 2(d), the improvement from
direct prompting to iterative feedback varied dra-

890

Figure 3: Constraint satisfaction and error analysis. Breakdown of model performance across constraint types
and error categories. (e–f-g) show the average number of structural, logical, and attribute constraints passed per
model and prompting strategy. Reasoning-enhanced models (e.g., o1, o3-mini-high, Claude 3.7 Sonnet) consistently
score higher, especially on logical constraints. (h) displays average error types by model, revealing that Llama
models tend to accumulate structural errors, while Claude models exhibit a higher proportion of logical errors.
This analysis shows consistent error signatures across architectures and shows that constraint handling is both
task-specific and model-dependent.

matically across model families. Grok-v3 exhibited
a striking 48% absolute increase, while reasoning-
specialized models showed more modest gains (16-
28%), suggesting these models possess inherent
graph reasoning capabilities less dependent on ex-
ternal guidance. Among the smaller Llama vari-
ants (3B and 8B), we observed only minimal im-
provement (less than 5%). However, the 405B
model demonstrated a significant increase of ap-
proximately 30% with iterative prompting. This
suggests that while increasing model size can help
reduce some limitations, it does not completely
eliminate them.

Contrary to our hypothesis, program-augmented
prompting, which provided explicit verification
code, did not consistently outperform iterative
feedback and sometimes produced worse results
than direct prompting. This finding challenges as-

sumptions about LLMs’ ability to leverage pro-
grammatic verification during generation and sug-
gests limitations in code comprehension or self-
monitoring capabilities. The pattern aligns with
Zhang et al. (2024)’s findings that code-based
methodologies require tight integration with model
architecture rather than simply being provided as
context.

3.5 Error Patterns

Figure 3(h) shows distinctive error patterns across
model families that illuminate the nature of graph
hallucination:

We identified two predominant error patterns:
(1) models with high structural but low logical er-
rors (smaller parameter Llama family), suggest-
ing fundamental difficulty with graph topology;
and (2) models with low structural but moderate

891

logical errors (Claude Sonnet family), indicating
stronger topological understanding but challenges
with constraint reasoning. These distinct profiles
suggest different mechanisms underlying graph hal-
lucination across architectures. OpenAI’s mod-
els (o1, o3-mini-high) displayed remarkably bal-
anced and minimal error profiles across all cate-
gories, while Llama models exhibited compounded
failures across structural, logical, and attribute di-
mensions. Anthropic models showed moderate
but balanced error distributions, suggesting a more
comprehensive but imperfect graph understanding.
These distinctive signatures indicate that architec-
tural design decisions create consistent patterns in
graph processing capabilities that transcend indi-
vidual prompting strategies or task types.

4 Discussion

Our thorough evaluation of fifteen advanced LLMs
across five different graph generation tasks pro-
vides an insightful answer to the question: "Are
LLMs truly graph-savvy?" Our results show that
proficiency in graph generation varies markedly
across models. Instead, it is closely linked to the de-
sign of the models, especially those enhancements
that focus on improving reasoning capabilities. Our
findings have several important theoretical impli-
cations for the development of graph-capable lan-
guage models:

The consistent superiority of reasoning-
enhanced models (o3-mini-high, o1, Claude
3.7 Sonnet, DeepSeek-R1) over larger but
general-purpose architectures indicates that graph
reasoning requires reasoning-focused training
regimens rather than merely scaling parameters
or training data. This contradicts the notion that
larger models will naturally develop sophisticated
graph reasoning, suggesting instead that train-
ing innovations specifically targeting complex
reasoning are necessary.

The pronounced performance gaps across prob-
lem types challenge the notion of general graph
reasoning capabilities. Models that excelled at op-
timal transportation networks often struggled with
time-dependent delivery networks, suggesting that
LLMs develop domain-specific structural compe-
tencies that transfer imperfectly across problem
domains. This domain-specificity has implications
for applications requiring cross-domain generaliza-
tion.

The variable efficacy of prompting strategies

across model families indicates that prompting can
enhance but not fundamentally transform an archi-
tecture’s graph processing capabilities, challenging
perspectives that view prompting as a substitute for
architectural innovation. This suggests that prompt-
ing should be viewed as complementary to, rather
than a replacement for, architectural improvements.

Despite our comprehensive evaluation, several
limitations should be acknowledged. First, our
iterative feedback paradigm utilized only a single
round of feedback, potentially limiting the improve-
ments possible through iterative correction. Future
work could explore multi-step interactive protocols
that better leverage the potential of decomposed
reasoning to address complex graph constraints.
Second, while our five graph problems span diverse
domains, they represent only a subset of possible
graph structures and constraint types. Expanding
the evaluation to include additional problem do-
mains such as knowledge graphs, molecule genera-
tion, and program synthesis graphs would provide
a more comprehensive assessment of LLMs’ graph
capabilities. Third, our evaluation focused primar-
ily on constraint satisfaction rather than genera-
tive creativity or optimization quality. Future work
could explore how models balance adherence to
constraints with the generation of novel or optimal
graph structures, particularly in open-ended design
tasks. Finally, the black-box nature of many com-
mercial LLMs limits our ability to analyze the un-
derlying mechanisms responsible for performance
differences. Future research could benefit from
more transparent model architectures that enable
detailed analysis of how graph structures are rep-
resented and manipulated internally. These limita-
tions suggest several promising directions for fu-
ture research. The development of specialized fine-
tuning approaches for graph-related tasks could ad-
dress the observed domain transfer limitations. Hy-
brid architectures that combine LLMs with graph
neural networks or constraint satisfaction solvers
might use the complementary strengths of different
approaches. In conclusion, our findings demon-
strate that while recent architectural advances have
significantly improved graph generation capabil-
ities, LLMs’ graph-savviness remains highly de-
pendent on architectural design, with specialized
reasoning capabilities playing a crucial role. Fu-
ture advances will likely come from architectural
or training innovations specifically targeting struc-
tured reasoning rather than simply scaling existing
models or refining prompting strategies.

892

References
Victor Amelkin and Ambuj K. Singh. 2019. Fighting

opinion control in social networks via link recommen-
dation. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, KDD ’19, page 677–685, New York,
NY, USA. Association for Computing Machinery.

Anthropic. 2024a. Claude 3.5 haiku. https://www.
anthropic.com/claude/haiku. Large Language
Model.

Anthropic. 2024b. Claude 3.5 sonnet. https://
www.anthropic.com/news/claude-3-5-sonnet.
Large Language Model.

Anthropic. 2024c. Claude 3.7 sonnet. https://
www.anthropic.com/news/claude-3-7-sonnet.
Large Language Model.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph
of thoughts: Solving elaborate problems with large
language models. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(16):17682–17690.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel
Zügner, and Stephan Günnemann. 2018. Netgan:
Generating graphs via random walks. In ICML, vol-
ume 80 of Proceedings of Machine Learning Re-
search, pages 609–618. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Serina Chang, Alicja Chaszczewicz, Emma Wang,
Maya Josifovska, Emma Pierson, and Jure Leskovec.
2025. Llms generate structurally realistic social
networks but overestimate political homophily. In
ICWSM, pages 341–371. AAAI Press.

DeepSeek AI. 2024. Deepseek-v3. https://
api-docs.deepseek.com/news/news1226. Large
Language Model.

DeepSeek AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Google. 2024a. Gemini 2.0 flash. https://deepmind.
google/technologies/gemini/flash/. Large
Language Model.

Google. 2024b. Gemini 2.0 pro. https://deepmind.
google/technologies/gemini/pro/. Large Lan-
guage Model.

Aditya Grover, Aaron Zweig, and Stefano Ermon. 2018.
Graphite: Iterative generative modeling of graphs.
CoRR, abs/1803.10459.

Jiarui Ji, Runlin Lei, Jialing Bi, Zhewei Wei, Xu Chen,
Yankai Lin, Xuchen Pan, Yaliang Li, and Bolin
Ding. 2025. Llm-based multi-agent systems
are scalable graph generative models. Preprint,
arXiv:2410.09824.

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Ku-
mar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng
Tang, Suhang Wang, Yu Meng, and Jiawei Han. 2024.
Graph chain-of-thought: Augmenting large language
models by reasoning on graphs. In Findings of the As-
sociation for Computational Linguistics: ACL 2024,
pages 163–184, Bangkok, Thailand. Association for
Computational Linguistics.

Xinguang Li, Jun Zhan, Fuquan Pan, Tong Lv, and
Shen Wang. 2023. A multi-objective optimization
model of urban passenger transportation structure
under low-carbon orientation considering participat-
ing subjects. Environmental Science and Pollution
Research, 30(54):115839–115854.

Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo
Sun, Hong Cheng, and Jeffrey Xu Yu. 2024. A survey
of graph meets large language model: Progress and
future directions. Preprint, arXiv:2311.12399.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Char-
lie Nash, William L. Hamilton, David Duvenaud,
Raquel Urtasun, and Richard Zemel. 2019. Efficient
graph generation with graph recurrent attention net-
works. In NeurIPS.

Sourav Medya, Arlei Silva, Ambuj Singh, Prithwish
Basu, and Ananthram Swami. 2018. Group centrality
maximization via network design. In Proceedings
of the 2018 SIAM International Conference on Data
Mining, pages 126–134. SIAM.

Erwan Le Merrer and Gilles Tredan. 2024. Llms hallu-
cinate graphs too: a structural perspective. Preprint,
arXiv:2409.00159.

Meta AI. 2024a. Llama 3.1. https://ai.meta.com/
blog/meta-llama-3-1/. Large Language Model.

Meta AI. 2024b. Llama 3.2. https://huggingface.
co/meta-llama/Llama-3.2-1B. Large Language
Model.

Ollama. 2025. ollama/ollama: Get up and running
with llama 3.3, deepseek-r1, phi-4, gemma 3, mistral
small 3.1 and other large language models. https:
//github.com/ollama/ollama. Version v0.7.0, ac-
cessed 2025-05-16.

OpenAI. 2024a. Gpt-4o. https://openai.com/
index/hello-gpt-4o/. Large Language Model.

OpenAI. 2024b. o1. https://openai.com/o1/.
Large Language Model.

893

https://doi.org/10.1145/3292500.3330960
https://doi.org/10.1145/3292500.3330960
https://doi.org/10.1145/3292500.3330960
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
http://dblp.uni-trier.de/db/conf/icml/icml2018.html#BojchevskiSZG18
http://dblp.uni-trier.de/db/conf/icml/icml2018.html#BojchevskiSZG18
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2025.html#ChangCWJPL25
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2025.html#ChangCWJPL25
https://api-docs.deepseek.com/news/news1226
https://api-docs.deepseek.com/news/news1226
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
http://dblp.uni-trier.de/db/journals/corr/corr1803.html#abs-1803-10459
https://arxiv.org/abs/2410.09824
https://arxiv.org/abs/2410.09824
https://doi.org/10.18653/v1/2024.findings-acl.11
https://doi.org/10.18653/v1/2024.findings-acl.11
https://doi.org/10.1007/s11356-023-30423-w
https://doi.org/10.1007/s11356-023-30423-w
https://doi.org/10.1007/s11356-023-30423-w
https://doi.org/10.1007/s11356-023-30423-w
https://arxiv.org/abs/2311.12399
https://arxiv.org/abs/2311.12399
https://arxiv.org/abs/2311.12399
https://arxiv.org/abs/2409.00159
https://arxiv.org/abs/2409.00159
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://github.com/ollama/ollama
https://github.com/ollama/ollama
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/

OpenAI. 2024c. o3-mini-high. https://openai.com/
index/openai-o3-mini/. Large Language Model.

Xubin Ren, Jiabin Tang, Dawei Yin, Nitesh Chawla,
and Chao Huang. 2024. A survey of large language
models for graphs. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’24, page 6616–6626, New York,
NY, USA. Association for Computing Machinery.

Javier Romero-Alvarez, Jaime Alvarado-Valiente, Jorge
Casco-Seco, Enrique Moguel, Jose Garcia-Alonso,
and Juan M. Murillo. 2024. Scheduling Process of
Quantum Circuits to Optimize Tasks Execution on
Quantum Computers . In 2024 IEEE International
Conference on Quantum Computing and Engineering
(QCE), pages 182–186, Los Alamitos, CA, USA.
IEEE Computer Society.

Carlos Sacristan, Kumiko Samejima, Lorena Andrade
Ruiz, Moonmoon Deb, Maaike L.A. Lambers, Adam
Buckle, Chris A. Brackley, Daniel Robertson, Tet-
suya Hori, Shaun Webb, Robert Kiewisz, Tristan Be-
pler, Eloïse van Kwawegen, Patrik Risteski, Kruno
Vukušić, Iva M. Tolić, Thomas Müller-Reichert, Tat-
suo Fukagawa, Nick Gilbert, and 3 others. 2024.
Vertebrate centromeres in mitosis are functionally
bipartite structures stabilized by cohesin. Cell,
187(12):3006–3023.e26.

Igor Sterner, Shiye Su, and Petar Veličković. 2024.
Commute-time-optimised graphs for gnns. Preprint,
arXiv:2407.08762.

S. M Towhidul Islam Tonmoy, S M Mehedi Zaman,
Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha,
and Amitava Das. 2024. A comprehensive survey of
hallucination mitigation techniques in large language
models. Preprint, arXiv:2401.01313.

Jake Topping, Francesco Di Giovanni, Benjamin Paul
Chamberlain, Xiaowen Dong, and Michael M. Bron-
stein. 2022. Understanding over-squashing and bot-
tlenecks on graphs via curvature. In ICLR. OpenRe-
view.net.

Paolo Toth and Daniele Vigo, editors. 2001. The vehicle
routing problem. Society for Industrial and Applied
Mathematics, USA.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2023.
Can language models solve graph problems in natural
language? In Thirty-seventh Conference on Neural
Information Processing Systems.

Qiming Wu, Zichen Chen, Will Corcoran, Misha Sra,
and Ambuj Singh. 2025. GraphEval36K: Bench-
marking coding and reasoning capabilities of large
language models on graph datasets. In Findings
of the Association for Computational Linguistics:
NAACL 2025, pages 8095–8117, Albuquerque, New
Mexico. Association for Computational Linguistics.

xAI. 2025. Grok-v3. https://x.ai/blog/grok-3.
Large Language Model.

Yang Yao, Xin Wang, Zeyang Zhang, Yijian Qin, Zi-
wei Zhang, Xu Chu, Yuekui Yang, Wenwu Zhu,
and Hong Mei. 2024. Exploring the potential of
large language models in graph generation. Preprint,
arXiv:2403.14358.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamil-
ton, and Jure Leskovec. 2018. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In
ICML, volume 80 of Proceedings of Machine Learn-
ing Research, pages 5694–5703. PMLR.

Shuo Yu, Yingbo Wang, Ruolin Li, Guchun Liu, Yan-
ming Shen, Shaoxiong Ji, Bowen Li, Fengling Han,
Xiuzhen Zhang, and Feng Xia. 2025. Graph2text or
graph2token: A perspective of large language models
for graph learning. Preprint, arXiv:2501.01124.

Qifan Zhang, Xiaobin Hong, Jianheng Tang, Nuo Chen,
Yuhan Li, Wenzhong Li, Jing Tang, and Jia Li.
2024. Gcoder: Improving large language model
for generalized graph problem solving. Preprint,
arXiv:2410.19084.

Appendix: Graph Generation Problem
Statements

This appendix contains the detailed problem state-
ments for the five graph generation tasks used in
our evaluation framework.

A.1 Time-Dependent Delivery Network
Problem Description:
Create a delivery network that schedules deliveries
across multiple locations using a fleet of vehicles.
The network must account for vehicle capacities,
location storage capacities, delivery time windows,
dynamic travel times, and vehicle speeds to ensure
efficient and timely deliveries.

Constraints:

1. Locations:

• Total Locations: 15, labeled from L0 to
L14.

• Attributes:
– Storage Capacity: Each location

has a storage capacity specified in
kilograms (kg). Example: L0 has a
capacity of 500 kg.

– Time Window: Each location has a
delivery time window represented as
a list of two integers [start_hour,
end_hour] in 24-hour format. Ex-
ample: L3 has a time window of [9,
11] corresponding to 09:00-11:00.

2. Vehicles:

894

https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://doi.org/10.1145/3637528.3671460
https://doi.org/10.1145/3637528.3671460
https://doi.org/10.1109/QCE60285.2024.10275
https://doi.org/10.1109/QCE60285.2024.10275
https://doi.org/10.1109/QCE60285.2024.10275
https://doi.org/10.1016/j.cell.2024.04.014
https://doi.org/10.1016/j.cell.2024.04.014
https://arxiv.org/abs/2407.08762
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
http://dblp.uni-trier.de/db/conf/iclr/iclr2022.html#ToppingGC0B22
http://dblp.uni-trier.de/db/conf/iclr/iclr2022.html#ToppingGC0B22
https://openreview.net/forum?id=UDqHhbqYJV
https://openreview.net/forum?id=UDqHhbqYJV
https://doi.org/10.18653/v1/2025.findings-naacl.452
https://doi.org/10.18653/v1/2025.findings-naacl.452
https://doi.org/10.18653/v1/2025.findings-naacl.452
https://x.ai/blog/grok-3
https://arxiv.org/abs/2403.14358
https://arxiv.org/abs/2403.14358
http://dblp.uni-trier.de/db/conf/icml/icml2018.html#YouYRHL18
http://dblp.uni-trier.de/db/conf/icml/icml2018.html#YouYRHL18
https://arxiv.org/abs/2501.01124
https://arxiv.org/abs/2501.01124
https://arxiv.org/abs/2501.01124
https://arxiv.org/abs/2410.19084
https://arxiv.org/abs/2410.19084

• Total Vehicles: 7, labeled from V1 to V7.
• Attributes:

– Capacity: Each vehicle has a spe-
cific capacity in kilograms (kg). Ex-
ample: V1 has a capacity of 100 kg.

– Speed: Each vehicle has a defined
speed in kilometers per hour (km/h).
Example: V1 travels at 60 km/h.

3. Edges (Routes):

• Definition: Represents travel paths be-
tween two distinct locations.

• Attributes:
– From: The starting location ID (e.g.,
L0).

– To: The destination location ID (e.g.,
L1).

– Base Travel Time: The fundamental
travel time for the route in minutes.

– Hourly Adjustments: A dictionary
where keys are time ranges in the
format "HH-HH" (24-hour format)
and values are additional travel time
in minutes applicable during those
hours. Example: {"8-10": 15}
adds 15 minutes to the base travel
time between 08:00-10:00.

– Maximum Weight Limit: The max-
imum weight a vehicle can carry on
that route in kilograms (kg).

4. Operational Constraints:

• Storage Capacity Compliance: The
sum of incoming goods to any location
must not exceed its storage capacity.

• Vehicle Capacity Compliance: No ve-
hicle should exceed its capacity on any
edge it traverses.

• Time Window Compliance: Departures
and arrivals must respect the time win-
dows of locations. Specifically:

– Departure Time: Must be within
the from location’s time window.

– Arrival Time: Must be within the
to location’s time window.

– Loading Time: Assume a fixed load-
ing time of 10 minutes at each loca-
tion, which must be accounted for
when scheduling departures.

Required Output Format:
<FORMAT>

A.2 Directed Social Network with Influence
Relationships

Problem Description:
Create a social network graph representing influ-
ence relationships among users. Each user has
specific attributes, and influence connections must
adhere to defined constraints to maintain the in-
tegrity and intended structure of the network.

Constraints:

1. Users:

• Total of 20 users labeled from U0 to U19.
• Each user has a "trust_score" ranging

from 0 to 100.
• Each user belongs to a "category" based

on their trust score:
– "celebrity" (trust_score ≥ 80)
– "expert" (70 ≤ trust_score < 80)
– "regular" (trust_score < 50)

2. Edges (Influence Relationships):

• Directed edges where Ux → Uy indi-
cates that Ux influences Uy.

• No self-loops: A user cannot influence
themselves.

• Category Constraints:
– Celebrities: Must have at least 5 out-

going edges.
– Regular Users: Cannot influence ex-

perts.
• Graph Structure:

– The graph must be acyclic (no cycles
in influence relationships).

Required Output Format:
<FORMAT>

A.3 Quantum Circuit Design

Problem Description:
Design a quantum circuit consisting of multiple
qubits and quantum gates. The circuit must adhere
to specific constraints to ensure proper gate oper-
ations, circuit efficiency, and overall functionality.
The design should incorporate structural elements
like depth and a Directed Acyclic Graph (DAG)
while simplifying some of the gate-related rules to
enhance accessibility.

Constraints:

1. Qubits:

895

• Total Qubits: 10, labeled from Q0 to Q9.
• Initialization: All qubits must start in

the |0⟩ state.

2. Gates:

• Types of Gates to Include:
– Single-Qubit Gates: Hadamard (H),

Pauli-X (X), Pauli-Z (Z)
– Multi-Qubit Gates: Controlled

NOT (CNOT), SWAP
– Measurement: Measure (Measure)

• Gate Operations:
– Each gate operates on specific qubits

at designated times.
– CNOT Gates: Must operate on

qubits that are not adjacent (e.g., Q0
and Q2 are valid; Q0 and Q1 are in-
valid).

– SWAP Gates: Must operate between
pairs of qubits that have identical
gate sequences up to that point.

– Measurements: Each qubit can be
measured only once and must be the
last operation on that qubit.

• Gate Restrictions:
– Gate Frequency: No single-qubit

gate can be applied more than twice
consecutively on the same qubit.

3. Circuit Structure:

• The circuit must be a Directed Acyclic
Graph (DAG); no repeated times for the
same qubit.

• Layered Operations: Gates at the same
time step must operate on disjoint sets
of qubits (i.e., no two gates at the same
time can act on the same qubit).

• Depth Constraint: The total number of
time steps (layers) must not exceed 30.

4. Operational Constraints:

• Circuit Reversibility: Measurements
must be the final operations on their re-
spective qubits to maintain circuit re-
versibility.

• Gate Optimization: The circuit should
minimize the total number of gates while
satisfying all other constraints.

• Final State: After all operations, all
qubits must either be measured or re-
turned to the |0⟩ state.

Required Output Format:
<FORMAT>

A.4 Gene-Disease Association Network
Problem Description:
Create a bipartite network that models the asso-
ciations between genes and diseases. This net-
work will represent which genes are associated
with which diseases, capturing the strength of each
association. The network should adhere to defined
constraints to ensure biological relevance and struc-
tural integrity.

Constraints:

1. Nodes:

• Genes:
– Total of 20 genes labeled from G0 to

G19.
– Each gene has a "name" and a "func-

tion".
• Diseases:

– Total of 20 diseases labeled from D0
to D19.

– Each disease has a "name" and
a "severity_level" (e.g., "Low",
"Medium", "High").

2. Edges (Associations):

• Represents the association between a
gene and a disease.

• Bipartite Constraint: Associations can
only exist between genes and diseases,
not within the same set.

• Association Strength: Each association
has a "strength" value ranging from 0.0
to 1.0, indicating the confidence of the
association.

3. Degree Constraints:

• Genes:
– Each gene must be associated with at

least 2 and at most 5 diseases.
• Diseases:

– Each disease must be associated with
at least 3 and at most 10 genes.

4. Structural Constraints:

• The network must be bipartite; no edges
should connect nodes within the same
set (i.e., no gene-gene or disease-disease
associations).

896

• There should be no duplicate edges (i.e.,
each gene-disease pair is unique).

Required Output Format:
<FORMAT>

A.5 Optimal Transportation Network

Problem Description:
Design an optimal transportation network repre-
sented as a directed graph where nodes represent
cities and edges represent one-way roads. The net-
work must satisfy constraints to ensure efficiency,
connectivity, robustness, and cost-effectiveness.

Constraints:

1. Nodes (Cities):

• Total: 8, labeled from C0 to C7.
• Attributes:

– Population: Number of inhabitants
in each city.

* C0: 1,000

* C1: 500

* C2: 750

* C3: 600

* C4: 900

* C5: 400

* C6: 800

* C7: 650

2. Edges (Roads):

• Definition: Represents a one-way road
from one city to another.

• Attributes:
– Distance: Length of the road in kilo-

meters (km). (Each road must be ≤
300 km.)

– Construction Cost: Cost to build
the road in thousand dollars ($K).

3. Additional Constraints:

(a) Connectivity: The network must be
strongly connected, meaning there is a
directed path from any city to every other
city.

(b) Road Capacity: No single road should
be longer than 300 km.

(c) Cost Optimization: The total construc-
tion cost of all roads should not exceed
$10,000K.

(d) Population Accessibility: Each city
must have at least two incoming roads
to ensure redundancy and accessibility.

(e) Strategic Road Placement: Cities C0
and C7 are major hubs and must have
at least three outgoing roads each to
distribute traffic efficiently.

(f) Avoiding Redundancy: No two cities
should have more than one direct road
connecting them in the same direction.

(g) Minimizing Total Distance: The sum
of all road distances should be mini-
mized to ensure efficient transportation.

(h) 2-Edge Robustness: The network must
remain strongly connected if any sin-
gle road is removed (i.e., there must be
two edge-disjoint paths between every
ordered pair of cities).

(i) Edge-Disjoint Paths Guarantee: For
every pair of distinct cities, there must
exist at least two completely indepen-
dent (edge-disjoint) paths connecting
them.

(j) Balanced Outgoing Degree: Except for
the designated hubs (C0 and C7), the dif-
ference between the maximum and mini-
mum number of outgoing roads among
all cities must not exceed 2. This pre-
vents "overloaded" junctions.

(k) Path Efficiency Constraint: For every
pair of cities, the shortest route (by total
distance) should be less than 500 km to
ensure quick intercity transit.

(l) Cost–Distance Consistency: For every
road, the construction cost (in $K) must
be between 1.0 and 1.5 times its dis-
tance (in km). Example: A road that
is 90 km long must have a cost between
90K and 135K.

(m) Maximum Edge-Hop Constraint: For
every pair of cities, you need to be able
to get to every other city in at most 3
edges.

Required Output Format:
<FORMAT>

897

