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Abstract

Recent approaches to Hierarchical Text Clas-
sification (HTC) rely on capturing the global
label hierarchy, which contains static and often
redundant relationships. Instead, the hierarchi-
cal relationships within the instance-specific
set of positive labels are more important, as
they focus on the relevant parts of the hierar-
chy. These localized relationships can be mod-
eled as a semantic alignment between the text
and its positive labels within the embedding
space. However, without explicitly encoding
the global hierarchy, achieving this alignment
directly in Euclidean space is challenging, as
its flat geometry does not naturally support hier-
archical relationships. To address this, we pro-
pose Hyperbolic Instance-Specific Local Re-
lationships (HyILR), which models instance-
specific relationships using the Lorentz model
of hyperbolic space. Text and label features are
projected into hyperbolic space, where a con-
trastive loss aligns text with its labels. This loss
is guided by a hierarchy-aware negative sam-
pling strategy, ensuring the selection of struc-
turally and semantically relevant negatives. By
leveraging hyperbolic geometry for this align-
ment, our approach inherently captures hier-
archical relationships and eliminates the need
for global hierarchy encoding. Experimental
results on four benchmark datasets validate the
superior performance of HyILR over baseline
methods.!

1 Introduction

Hierarchical Text Classification (HTC) is a sub-task
of multi-label classification where text is assigned
to one or more labels, organized hierarchically to
reflect relationships among them. HTC is particu-
larly useful in domains where labels are naturally
structured, such as news categorization (Sandhaus,
2008), product categorization (Shen et al., 2021),

'Code is  available
havelhakimi/HyILR

at:https://github.com/

and medical diagnosis (Yan et al., 2023). Despite
the advancements of large language models, spe-
cialized HTC models remain relevant due to chal-
lenges posed by complex hierarchical label struc-
tures, inherent label imbalance, and the lack of
sufficient annotated datasets.(Torba et al., 2024).

A common approach in dual-encoder-based
HTC methods is to model the global label hierar-
chy to learn label representations (Zhou et al., 2020;
Chen et al., 2021; Zhu et al., 2023, 2024). While
the global hierarchy provides important structural
information, the structure is static across all in-
stances (Wang et al., 2022a), which can introduce
redundancy and complexity into the classification
framework. In contrast, the hierarchical struc-
ture associated with instance-specific positive la-
bels represents dynamic and localized relationships,
capturing dependencies between relevant labels.
Modeling these local relationships can enable more
precise and context-aware classification. Although
several recent works (Kumar and Toshniwal, 2024,
Wang et al., 2024) incorporate instance-specific hi-
erarchical information, they still rely on encoding
the full global hierarchy.

In this paper, we address this limitation by di-
rectly modeling instance-specific local relation-
ships as a semantic alignment task, without requir-
ing any global hierarchy encoding. By bringing the
text closer to its positive labels in the embedding
space, the alignment ensures the capture of these re-
lationships. However, without encoding the global
hierarchy, achieving alignment in Euclidean space
is challenging because its flat, zero-curvature geom-
etry lacks the capacity for representing hierarchical
structures. Hyperbolic space, with its negative cur-
vature, supports exponential growth of distances
and volumes, making it well suited to naturally rep-
resent such structures. The inherent hierarchical
nature of hyperbolic space embeds the labels hi-
erarchically, and semantic alignment in this space
ensures the capture of relationships by aligning the
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labels according to the instance-specific local hi-
erarchy. We use the Lorentz model for hyperbolic
space, as it ensures numerical stability and reduces
geometric distortions compared to other hyperbolic
models (Nickel and Kiela, 2018; Chen et al., 2022).

We introduce Hyperbolic Instance-Specific Lo-
cal Relationships (HyILR), a method designed
to model instance-specific relationships using the
Lorentz model of hyperbolic space. During train-
ing, both text and label features are projected into
hyperbolic space, where a contrastive loss function
aligns the text with its associated positive labels.
The loss incorporates a hierarchy-aware negative
sampling strategy, that uses structural information
from the global hierarchy. For each positive la-
bel, the closest negative labels are selected from
both its descendants and siblings within the hier-
archy, as these represent different aspects of the
same category. This ensures the sampled negatives
are both structurally and semantically relevant, en-
abling the contrastive loss to effectively capture
instance-specific relationships based on the local
hierarchy. Our approach improves the represen-
tation of all features. Predictions are then made
using the text-label-aware composite features in
Euclidean space. The contributions of our work
are:

* We propose modeling instance-specific local
relationships in hyperbolic space, leveraging
its geometric properties to capture hierarchi-
cal relationships. Unlike prior dual-encoder
HTC methods, our approach does not require
explicit encoding of the global label hierarchy,
thereby simplifying the overall architecture.

* We introduce HyILR, which models instance-
specific local relationships as a semantic align-
ment task, achieved through contrastive learn-
ing with hierarchy-aware negative sampling
in the Lorentz model of hyperbolic space. To
the best of our knowledge, no existing work
in HTC has utilized Lorentzian geometry for
this purpose.

» Experimental results across four distinct
datasets demonstrate the superiority of HyILR
in improving classification performance.

2 Related Work

HTC approaches are divided into local and global
methods. Local methods train separate classifiers
for different sections of the hierarchy but rely

on localized context, often leading to inconsisten-
cies (Kowsari et al., 2017; Wehrmann et al., 2018;
Shimura et al., 2018). In contrast, global methods
use a single classifier that incorporates the entire
label hierarchy, making them more efficient and
the focus of recent research. Several methods that
constrain the classifier using hierarchical path in-
formation, such as reinforcement learning (Mao
et al., 2019), meta-learning (Wu et al., 2019), and
capsule networks (Aly et al., 2019), have been ex-
plored for global HTC. Zhou et al. (2020) proposed
a graph encoder to explicitly model the entire label
hierarchy and introduced two variants for text and
label feature interaction. Building on this, several
methods based on dual-encoder frameworks have
been proposed. Deng et al. (2021) integrates an
information maximization module to link text sam-
ples with target labels while reducing the influence
of irrelevant labels. Chen et al. (2021) projects text
and labels into a shared embedding space, using
a semantic matching function to relate text to its
corresponding labels. Wang et al. (2022a) employs
contrastive learning to embed label information
into the text encoder. Wang et al. (2022b) injects
hierarchical label knowledge into soft prompts and
reformulates HTC as a masked language modeling
task. Zhu et al. (2023) builds a coding tree by min-
imizing structural entropy and uses a lightweight
graph encoder for hierarchy-aware feature extrac-
tion. Kumar and Toshinwal (2024) introduces a
custom multi-label loss to model label correlations
in a hierarchy-aware manner. Zhu et al. (2024)
introduces an information-lossless framework for
generating contrastive samples while preserving
semantic and syntactic information from the in-
put. Distinct from dual-encoder approaches, some
methods adopt a generative framework (Prajapat
and Toshniwal, 2024; Iso et al., 2024), formulating
HTC as a label sequence generation task based on
level and path dependencies (Huang et al., 2022;
Yu et al., 2022).

The application of hyperbolic methods for HTC
remains underexplored. Existing approaches (Chen
et al., 2020; Chatterjee et al., 2021) that use hyper-
bolic space rely on the Poincaré ball model for pro-
jection, which distorts distances near the boundary
and can introduce numerical instabilities (Nickel
and Kiela, 2018; Desai et al., 2023). In contrast, our
method utilizes the Lorentz model and incorporates
dynamic instance-specific label information.
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3 Preliminaries

A Riemannian manifold (M, g) is a smooth man-
ifold M equipped with a Riemannian metric g,
which assigns an inner product g, to the tangent
space T, M at each point p € M in a differentiable
manner. The tangent space T}, M, consisting of all
tangent vectors at p, is a vector space that provides
a linear approximation of M near p; the metric g,
equips T, M with an inner product structure, mak-
ing it locally resemble a Euclidean space.

Hyperbolic space, a type of Riemannian mani-
fold with constant negative curvature, differs fun-
damentally from Euclidean space, which has zero
curvature. Due to their incompatible curvatures
an n-dimensional hyperbolic space cannot be per-
fectly represented in Euclidean space R"™ without
distorting angles, distances, or both (e.g., Poincaré
model, Klein model). In our study, we use the
Lorentz model, which represents hyperbolic space
as a submanifold in R,

3.1 Lorentz Model

We represent the n-dimensional hyperbolic space
‘H" using the Lorentz model, which embeds the hy-
perbolic space as a sub-manifold within the higher-
dimensional ambient space R"*!. Geometrically,
this corresponds to the upper sheet of a two-sheeted
hyperboloid as shown in Figure 1. Formally, any
vector u € R™! has the form u = [us, u¢], where
u, € R” represents the space-like component, and
uz € R is the time-like component. This termi-
nology of space and time-like components origi-
nates from special relativity theory, where the hy-
perboloid’s axis of symmetry is associated with
the time-like component, while all other axes are
referred to as space components (Nickel and Kiela,
2017). The Lorentzian inner product (-, -) ~ for two
vectors u, v € R™ 1! is given as:

(u, v)z = (us, vs) — usvs (1

where (us,Vvs) is the standard Euclidean dot
product and the Lorentzian norm is given as:
lulle = v/(, ).

The Lorentz model 7", characterized by curva-
ture —k (where k£ > 0), is defined as the set:

H' ={ue R (u,u)r = —1/k} 2)

where all vectors in H" satisfy the constraint :

ue =/ 1/k + [Jus 2 &)

Geodesics. In the Lorentz model, geodesics
are curves formed by the intersection of the hy-
perboloid with hyperplanes that pass through the
origin of the ambient space R"*!. These curves
represent the shortest paths between points in hy-
perbolic space, analogous to straight lines in Eu-
clidean geometry, but they appear as hyperbolas
when viewed in the ambient space. The geodesic
distance in the Lorentz space is given by:

d(u,v) = \/1/kcosh™" (=k(u,v)r) ()]

Tangent Space. The tangent space at a point
p € H" is the set of all vectors orthogonal to p
under the Lorentzian inner product:

ToH" ={q e R""" : (p,q)z = 0} )

Given a vector z € R""1, it can be projected
onto the tangent space T, H" using the projection
formula:

q=proj,(z) =z+kp(p,2z)c (6)

Exponential Map. The exponential map
projects a vector q € TpH" from the tangent space
at point p € H" back onto the hyperboloid H™:

sinh(vklql|2)
Vklalle

In this study, we consider these maps by fixing
p at the origin of the hyperboloid, O = [0, 1/1/k],
where all spatial components are zero and the time
component is y/1/k.

x = expy,(q) = cosh(Vkl|ql )p+ q (7

4 Methodology

In this section, we explain the components of Hy-
ILR, including text-label-aware feature generation,
projection into hyperbolic space, and the loss func-
tions used. Figure 1 illustrates the overall architec-
ture of our model.

4.1 Text-Label-Aware Features

We use BERT for encoding the text, as it has been
widely used in previous HTC studies (Wang et al.,
2022a,b; Zhu et al., 2023, 2024). For an input docu-
ment D, the encoded text representation is given as:
X = fpert(D), where X € R¥*", with s represent-
ing the token sequence length and h denoting the
feature size. To compute text-label-aware features,
we apply a label-text attention mechanism using a
learnable parameter matrix Wy, € R"*¢, where ¢
is the number of labels:
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Figure 1: (a) Illustration of hyperbolic space #? in Euclidean space R? (b) For the focused positive label (blue dot),
one negative label each is selected from its descendants and siblings based on their distance to the text. This is
repeated for all positive labels to form the complete negative label set (c) Architecture of HyILR: The forward pass
computes text-label-aware features, which are passed through a classifier to generate predictions. During training,
features are projected into hyperbolic space, where contrastive loss captures instance-specific relationships.

A=XWr; F =softmax(A")X @®)

This process helps the model capture the seman-
tic relationships between the text and labels, al-
lowing it to focus on the most relevant tokens for
each label. The resulting feature matrix F' € R*"
is vectorized to obtain F/ € R®"*! and fed into a
classifier. Finally, we obtain the logit vector £ € R
as:

L=W/F +b

F' = vectorize(F); )

where W, € R"*¢ and b € R represent the
weights and bias of the classifier. The predicted
labels are obtained by applying the sigmoid(.) on
the logit vector as: § = sigmoid(£)

4.2 Projection onto the Lorentz Hyperboloid

Let eqe € R” be the encoded text/label vector.
To project it onto the Lorentz hyperboloid " em-
bedded in R"*!, we transform it into e = [es, e(],
where the space component e; = €.y and the
time-like component e; = 0. Thus, the extended
vector e € R"*1 is given as € = [eenc, 0]. The
vector e is orthogonal to the hyperboloid origin
O = [0, \/1/k] under the Lorentzian inner prod-
uct, i.e., (e, O), = 0, and thus lies in the tangent
space at O. Since the time-like component is ini-
tially set to zero, the exponential map can be used
to parameterize only the space component e, while
the time-like component can be recomputed later to
satisfy the hyperboloid constraint as given in Eqn
3. Thus, the exponential map can be derived from
the generalized formulation in Eqn. 7 as:

sinh(v/Elelle)

expg(es) = cosh(VE|e]|2)0 + Vilele s

10)

where the first term is zero. Additionally, the
Lorentzian norm ||e[|% (e,e), simplifies to
the Euclidean norm of the space components, i.e.,

le]|2 = (e,e)r = (es,e5) — 0 = ||es||>. The final
form for exponential map after all substitutions is:

sin(VEles]))

11
Villes] (o

(es) = expg(es) =

This approach efficiently embeds Euclidean vec-

tors into hyperbolic space while maintaining the
geometric properties of the Lorentz model.

4.3 Loss Functions
4.3.1 Contrastive Loss

We apply contrastive loss in hyperbolic space to
align labels based on instance-specific local rela-
tionships. To achieve this, we utilize structural in-
formation from the global label hierarchy tree H in
our negative label selection, ensuring that negative
labels are not just arbitrarily close in embedding
space but also structurally meaningful. Specifically,
we select negative labels from both descendants
and siblings of each positive label. Negative de-
scendants, which represent more fine-grained sub-
categories, prevent the assignment of overly spe-
cific labels when the context does not warrant them.
Negative siblings, which belong to the same hier-
archical level but denote distinct categories, help
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differentiate between closely related but concep-
tually distinct labels. The following outlines the
overall steps in our contrastive loss formulation.
Exponential Map Transformation. For a batch
of m samples, let T € R™***" denote the con-
textualized token embeddings obtained from the
BERT encoder. The embedding of the [C'LS] to-
ken, Ticpg) € R™*%  aggregates the sequence’s
information and serves as the text feature. Label
features are derived from the transpose of learnable
parameter matrix as W, € R®*". The text and
label features are then projected into hyperbolic
space using the exponential map (Eqn. 11), as:

Ty = d(euTicrs); Lu=olaW,)  (12)

where a; and o are learnable scalars used to scale
the text and label features, respectively, ensuring
unit norm before projection.

Hierarchy-aware negative sampling. Given a
sample ¢ with a positive label set P (i), for each
positive label p € P(i), we select the negative de-
scendant label with the smallest geodesic distance
to the text as:

Ny ={ argmin d(Tx,;,Lu;)|p € P(i)} (13)
j€Desc(p,H)

where d(., .) represents the geodesic distance as
defined in Eqn. 4, and T3, and Ly denote the
hyperbolic embeddings of the text ¢ and label 7,
respectively. Desc(p, H) denotes the negative de-
scendant set, which consists of all nodes in the
subtree rooted at p within the global hierarchy tree
H that are not part of the positive label set. Simi-
larly, we select the negative sibling label with the
smallest geodesic distance to the text as:

Nz = { argmin d(Ty,, Lw,)|j ¢ Ni,p € P(i)} (14)

JjESib(p,H)

where the negative sibling set, denoted as
Sib(p, H), consists of all nodes at the same level as
p, excluding positive labels. Due to specific hierar-
chical constraints, a negative label may be selected
multiple times—for example, when all but one la-
bel at a level are positive, leading all positive labels
to choose the same remaining label as their nega-
tive sibling. We ensure that only unique negative
labels are selected. The overall negative label set
for sample i is obtained as: N (i) = N; U Na. For
each positive label, one negative label is selected
from each of the sets Desc(p, H) and Sib(p, H),
provided they are non-empty; no negative label is
chosen when both sets are empty. However, as

the contrastive loss utilizes the complete negative
set N (7) across all positive labels, the absence of
negatives for some labels does not hinder learning.

Loss Formulation. For a sample 7, a positive
pair (T3, L3,) consists of its hyperbolic embed-
ding and that of its positive label p. Similarly, a
negative pair (T’,, Ly, ) consists of its hyperbolic
embedding and that of a negative label n € N (7).
The contrastive loss is defined as:

1 &, 1
LOSSCLz—ZW Z — log

o dTr, L)/ 7
mizi pEP(i)

2ses( e Wy Lrg) /T
s)
where | P(i)| denotes the size of P(i), and S(i) =

N (i) U P(7). 7 is the temperature hyperparameter.

4.3.2 Total Loss

The overall loss for HyILR is the sum of Binary
Cross Entropy (BCE) and contrastive loss, ex-
pressed as: Losspyiir = Losspcr + ALosscr,
where Losspcg is calculated from the logit vector
obtained in Eqn 9, and A controls the weight of the
contrastive loss.

S Experiment

5.1 Experiment Setup

5.1.1 Datasets and Evaluation Metrics

We used four widely recognized benchmark
datasets for HTC in our experiments: WOS
(Kowsari et al., 2017), RCV1-V2 (Lewis et al.,
2004), NYT (Sandhaus, 2008), and BGC 2 (Aly
et al., 2019). The statistics for all datasets are pre-
sented in Table 1. While each sample in WOS
follows a single label path, the other datasets allow
for multiple label paths. Similar to previous works
(Wang et al., 2022a; Zhu et al., 2023, 2024), we
adopt the label taxonomy structure and data pre-
processing steps as described in Zhou et al. (2020).
For evaluation, we use the Micro-F1 and Macro-F1
scores, consistent with the existing HTC studies
(Chen et al., 2021; Wang et al., 2022a; Zhu et al.,
2023, 2024).

5.1.2 Implementation Details

We conduct the experiments using an NVIDIA
Tesla V100 GPU with 16 GB of memory on a
system equipped with an Intel Xeon Gold 6248
processor (40 cores) and 192 GB of RAM. We use
the pretrained bert-base-uncased > as the text en-

2https://www.inf.uni-hamburg.de/en/inst/ab/lt/
resources/data/blurb-genre-collection.html

3https://huggingface.co/google—bert/
bert-base-uncased
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Name Levels Label Count Train  Val Test  Mean-|L|
WOS 2 141 30070 7518 9397 2.0
RCVI-V2 4 103 20833 2316 781265 33
BGC 4 146 58715 14785 18394 3.01
NYT 8 166 23345 5834 7292 7.6

Table 1: Statistical details for the datasets. Levels indi-
cates the number of hierarchy levels, Label count repre-
sents the total number of labels, and Mean-|L| denotes
the mean number of labels per sample.

coder. Text and label features have dimension #,
set to 768. The curvature k is a scalar initialized as
1, and the scalars o and oy are initialized as 1/ Vh.
We learn all the scalars in the logarithmic space as:
log(k), log(c), and log(«y). The weight \ of the
contrastive loss is set to 0.3 for WOS, 0.4 for RCV1-
V2 and BGC, and 0.6 for NYT, determined via grid
search with A € {0.1,0.2,...,1.0}. 7 is fixed at
0.07 for all datasets. During training, the batch size
is set to 10, and the Adam optimizer is used with
the learning rate fixed at 1e-5. We train the model
end-to-end using PyTorch. Training stops if neither
Macro-F1 nor the Micro-F1 score improves on the
validation set over six consecutive epochs.

5.1.3 Baselines

We compare HyILR against recent dual-encoder
HTC methods that model the global label hierarchy.
HiAGM (Zhou et al., 2020) constructs a graph en-
coder to model the global hierarchy and proposes a
bi-encoder framework for classification. HTCInfo-
Max (Deng et al., 2021) introduces an information
maximization module between the text and its pos-
itive labels to enhance HIAGM. HiMatch (Chen
et al., 2021) proposes a semantics matching net-
work by projecting text and labels in a joint embed-
ding space. HGCLR (Wang et al., 2022a) incorpo-
rates hierarchical information into the text encoder
by performing contrastive learning between the text
and positive samples constructed under hierarchy
guidance. HPT (Wang et al., 2022b) uses prompt
tuning to align the downstream task with the pre-
training objective by adding hierarchy-aware soft
prompts. HiTIN (Zhu et al., 2023) constructs a
coding tree using structural entropy and integrates
its hierarchical information into text features with a
graph encoder. HILL (Zhu et al., 2024) employs an
information lossless strategy, generating positive
samples for contrastive learning directly through
the graph encoder. In contrast to the encoder-based
approaches, Seq2Tree (Yu et al., 2022) and PAAM-
HiA-T5 (Huang et al., 2022) are generative models

that utilize the T5 (Raffel et al., 2020) architec-
ture. Seq2Tree formulates a constrained decoding
strategy with a dynamic vocabulary, while PAAM-
HiA-T5 employs path-adaptive attention to capture
path dependencies. Apart from these generative
models, all other baselines use BERT as the text en-
coder. We did not compare with the two hyperbolic
methods (Chen et al., 2020; Chatterjee et al., 2021)
based on the Poincaré ball model due to unclear
code details in their repositories but evaluated a
variant of our model using the Poincaré ball trans-
formation in the ablation study.

5.2 Main Results

The experimental results are presented in Table 2.
The first part of the table compares HyILR with
results reported in prior studies. Our method out-
performs existing approaches on all datasets except
WOS, where methods with a generative framework,
PAAM-HiA-T5 and Seq2Tree, performed better,
and HyILR achieved the second-best results. Hy-
ILR learns instance-specific relationships by align-
ing text with multiple positive labels. However, in
WOS, where each sample has only two positive
labels, this limited alignment reduces performance
gains compared to other datasets.

For comparison and analysis, we implemented
two existing contrastive learning-based approaches,
HGCLR and HILL, alongside our model, as shown
in the second part of the table. HGCLR constructs
contrastive samples with hierarchy guidance but
relies on a masking-based approach that may intro-
duce noise, whereas HILL improves upon this by
deriving positive samples directly from graph en-
coder representations, avoiding data augmentation.
To evaluate statistical significance, we performed
paired t-tests comparing HyILR against each base-
line. At a confidence level of 0.05, HyILR demon-
strates statistically significant improvements in per-
formance measures. Details of the statistical tests
and results are provided in the Appendix A.

Among our implemented models, the second-
best results are achieved by HGCLR on WOS and
by HILL on the remaining datasets. In terms of
Macro-F1 score, HyILR outperforms HGCLR by
0.9% on WOS and surpasses HILL by 2%, 3%, and
1.7% on RCV1-V2, BGC, and NYT, respectively.
Similarly, for Micro-F1 score, HyILR improves
upon HGCLR by 0.4% on WOS and exceeds HILL
by 0.6%, 1.4%, and 1.5% on RCV1-V2, BGC, and
NYT, respectively. While HGCLR and HILL rely
on modeling the static global hierarchy, HyILR
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Model . WoS ' RCV1-V2 ' BGC . NYT
Micro-F1 Macro-F1 Micro-F1 Macro-FI Micro-F1 Macro-F1 Micro-F1 Macro-F1
BERT (Wang et al., 2022a) 85.63 79.07 85.65 67.02 - - 78.24 66.08
HiAGM (Wang et al., 2022a) 86.04 80.19 85.58 67.93 - - 78.64 66.76
HTCInfoMax (Wang et al., 2022a) 86.30 79.97 85.53 67.09 - - 78.75 67.31
HiMatch (Chen et al., 2021) 86.70 81.06 86.33 68.66 78.89 63.19 76.79 63.89
Seq2Tree (Yu et al., 2022) 87.20 82.50 86.88 70.01 79.72 63.96 - -
PAAM-HiA-T5 (Huang et al., 2022)  90.36 81.64 87.22 70.02 - - 77.52 65.97
HGCLR (Wang et al., 2022a) 87.11 81.20 86.49 68.31 - - 78.86 67.96
HPT (Wang et al., 2022b) 87.16 81.93 87.26 69.53 - - 80.42 70.42
HiTIN (Zhu et al., 2023) 87.19 81.57 86.71 69.95 - - 79.65 69.31
HiLL (Zhu et al., 2024) 87.28 81.77 87.31 70.12 - - 80.47 69.96
HyILR (Ours) 87.48 81.96 87.41 71.20 81.52 67.85 81.26 70.71
Our Implementation
HGCLR 87.094+026 81.0841028 86.27 4027 68.094030 79.864031 64.104034 78.53+028 67.20+035
HILL 86.511023 80.93 1930 86.761027 69.151036 80.121 030 64.824037 79.74 1030 69.051035
HyILR (Ours) 87.48 019 81.96102 87.411023 71.204030 81.521004 67.851028 81.26-1023 70.71102s

Table 2: Comparison of results. The original studies of HHAGM and HTCInfoMax do not use a BERT encoder; we
compare results from (Wang et al., 2022a), which implements their BERT-based version. The results for HiMatch
on BGC and NYT are reported by (Yu et al., 2022) and (Huang et al., 2022), respectively. For our implemented
models, we report the average scores over 8 runs with random seeds, in addition to the results from their respective

source papers. Second-best results are underlined in both parts of table. + denotes standard deviation.

. : : . . RCVI-V2 BGC NYT
focuses on local hierarchical relationships, avoid- ~ Model T T o MaF T M - VaF L N varT
1 1 1 1 HGCLR 85.94 67.51 79.43 63.60 78.04 66.27
ing the complexity and redundancy associated with 10 Seae el T o e u

encoding the entire hierarchy. Moreover, their con-
trastive loss formulation relies on batch-based im-
plicit negatives, whereas HyILR uses hierarchy-
aware negative sampling for more challenging con-
trasts.

5.3 Hierarchy-consistent evaluation

We perform a hierarchy-consistent evaluation,
where the hierarchical structure of labels is based
on the predefined global label hierarchy. In this
stricter evaluation, a label is considered correct
only if all its ancestor labels are also predicted cor-
rectly. Table 3 presents the Hierarchy-consistent
Micro-F1 (Hi-MiF1) and Macro-F1 (Hi-MaF1)
scores for our implemented models on datasets with
deeper hierarchies (RCV1-V2, BGC, and NYT).
HyILR demonstrates an increase in Hi-MaF1 by
1.6%, 2.6%, and 1.7% on RCV1-V2, BGC, and
NYT, respectively, compared to the second-best
score. In contrast to graph encoder-based meth-
ods that explicitly encode the global hierarchical
structure, HyILR only utilizes hierarchical infor-
mation during negative sampling to enhance con-
trastive learning in hyperbolic space. This enables
it to implicitly capture instance-specific hierarchi-
cal label dependencies, resulting in better hierarchy-
consistent predictions.

HyILR (Ours) 87.13 70.18 80.76 66.50 80.55 69.06

Table 3: Comparison of Hierarchy-consistent scores.
The second best results have been underlined

5.4 Ablation Study

We conducted five ablation studies (Table 4). First,
we removed the contrastive loss (w/o CL) and
trained the model only with BCE loss. The sig-
nificant drop in performance highlights the impor-
tance of contrastive learning in modeling instance-
specific relationships. Next, we removed the projec-
tion of features into hyperbolic space (Eqn. 12) and
applied contrastive loss directly in Euclidean space,
using Euclidean distance as the similarity measure
(CL-Euclidean (Distance)). However, alignment
in Euclidean space is less effective, as its geome-
try does not naturally capture hierarchical relation-
ships, explaining its underperformance compared
to HyILR. A similar performance drop was ob-
served when using cosine similarity in Euclidean
space.

We also replaced the Lorentz model with the
Poincaré ball model for hyperbolic contrastive
learning (CL-Poincaré). While the Poincaré vari-
ant outperforms the Euclidean-based variant, it still
lags behind HyILR. We further ablated the label-
text attention module by replacing it with elemen-
twise multiplication between the text feature of
the sample X(crs) € R" and the label features
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Model ' WoS . RCV1-V2 . BGC ' NYT
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

w/o CL 86.10 80.18 85.90 67.33 79.10 63.42 78.70 66.95
CL-Euclidean (Distance)  86.32 80.54 86.23 68.20 79.58 63.84 78.97 68.10
CL-Poincaré 87.03 81.05 86.92 69.74 80.10 66.06 79.95 69.42
w/o Label-text att. 86.55 80.62 86.70 68.82 79.72 64.33 79.20 68.74
w/o HNS CL-Lorentz 86.80 80.73 86.55 68.96 79.90 64.57 79.16 68.95
HyILR (Ours) 87.48 81.96 87.41 71.20 81.52 67.85 81.26 70.71

Table 4: Ablation study results for HyILR

W,/ € R, yielding F € R" (w/o label-
text att.). The performance drop highlights the
importance of label-text attention, which computes
text-label-aware features using weighted attention
scores over the token representations. Finally, we
validate the effectiveness of our Hierarchy-aware
Negative Sampling (HNS) by replacing it with a
random negative sampling strategy in the Lorentz
model (CL-Lorentz w/o HNS), which results in re-
duced performance. By focusing on semantically
and structurally relevant negative labels, the neg-
ative sampling strategy in HyILR enables more
effective contrastive learning in hyperbolic space.
We did not ablate the BCE loss, as it optimizes
independent label predictions, which is essential
in multi-label classification. While the contrastive
loss aligns texts with relevant labels, it does not pro-
vide supervision for individual label predictions;
removing BCE slowed convergence in our experi-
ments due to the absence of this supervision.

5.5 Performance under imbalanced hierarchy

We analyze model performance under hierarchical
imbalance, considering two key aspects: (1) the
uneven distribution of labels across hierarchy levels
and (2) the long-tail effect caused by varying label
frequencies. Figure 2 presents the performance
on the RCV1-V2 and NYT datasets, which have
four and eight hierarchy levels, respectively, with
the ratio of samples between the most and least
frequent labels exceeding 100 in both. A similar
analysis for the WOS and BGC datasets is provided
in the Appendix B.

Figure 2 (a-b) illustrates the performance of our
implemented models across various hierarchy lev-
els. The mid-levels have a larger number of labels,
whereas the deeper levels, which are increasingly
fine-grained, contain fewer labels. HyILR shows
improvements in performance, especially at mid
and deeper levels, where labels become increas-
ingly specific and fine-grained. To analyze the
long-tail effect, we sort the labels in descending
order by document count and divide them into four

equal-sized groups (C1-C4). C1 and C2 represent
frequent labels, while C3 and C4 correspond to
increasingly sparse labels. Figure 2 (c-d) shows
model performance across these categories, with a
decline as sparsity increases in categories C3 and
C4. However, HyILR consistently outperforms
the others, demonstrating its ability to mitigate the
long-tail effect. Overall, its instance-specific mod-
eling allows it to focus on each label regardless
of granularity or frequency, leading to improved
performance across all hierarchy levels and label
categories.

‘‘‘‘‘‘‘‘‘‘‘

(¢) RCV1-V2 (d)NYT

Figure 2: Performance under imbalanced hierarchy :
(a-b) Level-wise, (c-d) Label frequency categories

5.6 Model Performance in Relation to Label

Path Complexity

In HTC, labels for each sample can belong to one
or multiple paths in the label hierarchy, reflect-
ing the multi-label and hierarchical nature of the
task. Analyzing model performance across differ-
ent numbers of label paths provides insights into
how well models handle varying levels of label
path complexity. Figure 3 illustrates model per-
formance across samples grouped by the number
of label paths they belong to, for the RCV1-V2,
BGC, and NYT datasets, all of which include mul-
tiple label paths. Across all datasets, our proposed
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model, HyILR, consistently outperforms as label
path complexity increases, demonstrating its ability
to effectively navigate and classify within complex
hierarchical structures.
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Figure 3: Performance comparison across label paths

5.7 Computational Efficiency

We conducted our experiments on an NVIDIA
Tesla V100 GPU. The training time for each ex-
periment was approximately 8, 13, 25.5, and 14
hours for the WOS, RCV1-V2, BGC, and NYT
datasets, respectively. In Table 5, we compare the
computational efficiency of HyILR with two exist-
ing baselines on the RCV1-V2 dataset. Although
all methods are based on contrastive learning, Hy-
ILR demonstrates a lower training computation
time and faster inference. Furthermore, the param-
eter count of HyILR is comparable to that of the
existing methods.

Model #Params Training time Inference
M) (min/epoch) (ms/sample)
HGCLR 119 20.08 10.55
HILL 116 14.33 11.03
HyILR (Ours) 117 10.11 10.29

Table 5: Comparison of parameters and runtime on
RCV1-V2 dataset

6 Conclusion

In this paper, we introduced HyILR, a method for
modeling instance-specific local relationships in hy-
perbolic space. By leveraging the Lorentz model,
our approach frames the problem as a semantic
alignment task in hyperbolic space, aligning text
with its positive labels based on their local hierar-
chical relationships. This alignment is achieved
through contrastive loss, which is equipped with

a hierarchy-aware negative sampling strategy to
incorporate both structural and semantic informa-
tion while selecting negative labels. Our approach
removes the need for global hierarchy encoding,
thereby simplifying the classification framework.
Comparisons with existing baselines demonstrate
that HyILR outperforms state-of-the-art methods
and achieves better hierarchical consistency, even
without modeling the redundant global structure.

7 Limitations

HyILR is sensitive to the hyperparameter A\, which
controls the weight of the contrastive loss, and re-
quires tuning for each dataset. Additionally, HyILR
relies on the hierarchy structure to obtain challeng-
ing negatives, but in some cases, no negative labels
may be available for a given positive label. This can
happen, for example, when a leaf label node has no
siblings or when a label’s only negative sibling has
already been selected as a negative descendant for
another label. While the model currently utilizes
the complete negative set across all positive labels
to mitigate this issue, exploring new strategies to
obtain negative labels in such cases could further
improve contrastive learning.
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A Details of statistical test

We used Micro-F1 and Macro-F1 scores to eval-
uate our model’s performance. Each experiment
was run eight times with random seeds, and the
average scores were reported. To determine the sta-
tistical significance of the observed improvements,
we performed one-sided paired t-tests, comparing
our model’s performance with that of other imple-
mented models, as shown in Table 6. Except for the
Micro-F1 score in the HyILR vs. HGCLR compar-
ison on the WOS dataset, all p-values were below
0.05, confirming the statistical significance of our
model’s improvements.

B Performance under imbalanced
hierarchy for WOS and BGC

We present the results under an imbalanced hier-
archy for the WOS and BGC datasets in this sec-
tion. While WOS has a shallow two-level hierar-
chy, BGC has a deeper four-level hierarchy. More-
over, both datasets exhibit varying label frequen-
cies, with the ratio of samples between the most
and least frequent labels exceeding 1,000. Figure 4
(a-b) illustrates the performance across hierarchy
levels, showing a consistent improvement for Hy-
ILR at all levels. Similarly, Figure 4 (c-d) presents
the results under label frequency categories, where
HyILR performs better, particularly for sparse la-
bels in categories C3 and C4.
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Dataset Metrics Model Pair p-value (t-test)

HyILR vs. HILL 1.1e-5
Micro-F1 HyILR vs. HGCLR 2e-4
WOS HyILR vs. HILL 2e-4
Macro-F1 HyILR vs. HGCLR 0.06
HyILR vs. HILL 5.9¢-5
Micro-F1 HyILR vs. HGCLR 1.7e-5
RCV1-V2 HyILR vs. HILL 2.9e-5
Macro-FI ~ HyILR vs. HGCLR 3.2e-8
HyILR vs. HILL 1.4e-5
Micro-F1 HyILR vs. HGCLR 8.1e-6
BGC HyILR vs. HILL 9.7e-7
Macro-F1 HyILR vs. HGCLR 2.1e-7
HyILR vs. HILL 4.1e-7
Micro-F1 HyILR vs. HGCLR 2.7e-7
NYT HyILR vs. HILL 2.6e-7
Macro-F1 HyILR vs. HGCLR 2.6e-7

Table 6: One-sided t-test results for model comparisons
on different datasets

Z A Micro-F1  Macro-F1
w 0.1 68.94 79.96
o Level(#label) 209 o ? Mm{eveux\abenj”” e 0-2 69.23 79.72
03  69.33 79.64
(2) WOS (b) BGC 0.4 71.40 81.36
" < oo 05  70.16 80.52
. o 06 7173 81.64
) 0.7  69.98 79.90
08  71.12 80.83
; 09  69.84 80.10
: AN L0 70.92 80.73

Table 7: Performance of HyILR on the NYT validation
(©) WOS (@ BGC set for varying values of \.

Figure 4: Performance under imbalanced hierarchy :
(a-b) Level-wise, (c-d) Label frequency categories

C Hyperparameter sensitivity

The performance of our proposed approach is sen-
sitive to the value of A, which controls the weight
of the contrastive loss in the overall loss function of
the model. We conducted a grid search on A values
ranging from 0.1 to 1 (in increments of 0.1) to find
the optimal value for each dataset. Table 7 shows
the results on the validation set for the NYT dataset
with different values of \. Similarly, we obtained
the optimal value of A for the other datasets.
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