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Jakub Binkowski, Grzegorz Chodak, Tomasz Kajdanowicz

Wrocław University of Science and Technology

Abstract

Large Language Models (LLMs) are typically
trained to predict the next token in a sequence.
However, their internal representations often
encode signals that go beyond immediate next-
token prediction. In this work, we investigate
whether these hidden states also carry informa-
tion about the remaining length of the generated
output—an implicit form of foresight (Pal et al.,
2023). Accurately estimating how many tokens
are left in a response has both theoretical and
practical relevance. From an interpretability
perspective, it reveals that the model may in-
ternally track its progress through a generation.
From a systems perspective, it enables more ef-
ficient inference strategies, such as LLM infer-
ence via output-length-aware scheduling (Sha-
hout et al., 2024). In our work we show that
by using graph-based approach one can pre-
dict length of the generated text after prefilling
stage. The findings presented in this study may
be particularly valuable for organizations pro-
viding LLM-based services that seek to manage
and forecast inference costs more effectively.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable ability to generate coherent text,
but understanding what latent information they
maintain during generation remains a challenge. A
key question is whether an LLM internally tracks
how much output remains to be produced. This is
relevant both for interpretability—understanding
a model’s sense of progression—and for practical
systems such as efficient request scheduling (Qiu
et al., 2024; Zheng et al., 2023). This aspect is par-
ticularly important from the perspective of energy
savings for LLM providers.

Prior work suggests that transformer hidden
states may encode signals beyond immediate next-
token prediction. For instance, Pal et al. (2023)
showed that a single hidden state can predict sev-
eral future tokens with notable accuracy, indicating

that models internalize aspects of future output.
Building on this, Shahout et al. (2024) used inter-
mediate layer embeddings to estimate the number
of tokens remaining in a response, identifying lay-
ers 8–15 as especially informative. Formally, this
can be modeled as learning a parametrized function
f(h; θ), where h is a hidden state from a selected
layer and θ denotes the learnable parameters.

Accurately estimating the remaining output
length offers practical benefits. It enables strate-
gies like adaptive early stopping and intelligent
scheduling in multi-user environments. A particu-
larly promising use case is integration with Shortest
Job First (SJF) scheduling (Hamayun and Khurshid,
2015; Fu et al., 2024), which minimizes latency by
prioritizing shorter tasks. In the LLM setting, this
allows systems like Orca (Mukherjee et al., 2023)
or vLLM (Kwon et al., 2023) to reorder token gen-
eration queues dynamically to improve throughput
and responsiveness.

Our contributions are:

• An Aggregation-based Predictor that com-
bines hidden states from multiple transformer
layers using element-wise operations (e.g.,
mean, sum) and predicts token-wise output
length via a shallow feedforward network.

• A Layerwise Graph Regressor that treats
each layer’s hidden state as a node in a token-
specific graph, using a GNN to model inter-
layer dependencies for remaining token count
prediction.

We further connect our results to existing inter-
pretability work and discuss what they reveal about
internal transformer representations.

2 Method

To predict the number of remaining tokens at each
generation step, we consider the task as a regression
problem. Let ht

ℓ ∈ Rd denote the hidden state
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(embedding vector) from the ℓ-th layer of the LLM
at generation step t, where ℓ denotes a hidden state
index. The prediction target is defined as yt =
T − t, where T is the total number of tokens in the
generated sequence and t is the current position.
The objective is to learn a function f such that:

ŷt = f
(
{ht

ℓ}ℓ∈L
)

We explore two model architectures for this task:

• Aggregation. This baseline follows the
TRAIL methodology by leveraging internal
hidden states from a large language model
(LLM) to predict output lengths. Specifically,
we extract token-level hidden states ht

ℓ from
a selected set of layers and aggregate them
using a configurable element-wise operation
such as mean, sum, or concatenation:

zt = Aggregate(ht
ℓ1 , . . . ,h

t
ℓk
) ∈ Rd

The aggregated vector zt is passed through a
lightweight feedforward network ϕ to produce
a categorical prediction over discretized bins
representing the number of remaining output
tokens:

ŷt = ϕ(zt)

The model is trained using a cross-entropy
loss over these bins "as in original work. Dur-
ing evaluation, we compute the expected value
of the predicted length by weighting bin mid-
points with softmax probabilities. This ap-
proach mirrors the core idea of TRAIL (Sha-
hout et al., 2024) by reusing internal repre-
sentations of the LLM without requiring end-
to-end fine-tuning. The implementation sup-
ports aggregation modes including mean and
sum. It operates purely on precomputed em-
beddings, ensuring low inference overhead.

• Layerwise Graph Regressor. We propose a
graph-based regression model for predicting
the number of remaining output tokens for
each generated token. The model leverages
the layerwise structure of transformer hidden
states by constructing a token-specific graph
where each node corresponds to the hidden
embedding.

These embeddings form the node features
x ∈ RL×d, where L is the number of lay-
ers. Nodes are connected using a fully con-

nected topology, resulting in an adjacency ma-
trix A that captures all pairwise relationships
between layers.

A two-layer Graph Convolutional Network
(GCN) is applied to this token-specific graph:

x(1) = ReLU(GCN1(x,A))

x(2) = ReLU(GCN2(x
(1),A))

The final node representations x(2) are aggre-
gated using global mean pooling to obtain a
compact vector vt ∈ Rd′ :

vt = MeanPool(x(2))

A fully connected regressor ψ then produces
the predicted remaining length:

ŷt = ψ(vt)

This architecture captures inter-layer struc-
tural relationships, offering a compact and
expressive summary of a token’s transformer-
depth context. The model is trained using the
Mean Absolute Error (MAE) loss between
predictions ŷt and ground truth yt.

3 Experimental Setup

Dataset To evaluate the ability of transformer
hidden states to predict the number of tokens re-
maining during text generation, three datasets were
constructed using different instruction-tuned large
language models. Each dataset is based on the
same subset of 1,000 examples from the Stanford
Alpaca dataset (Taori et al., 2023), which contains
synthetic prompt-response pairs generated by Ope-
nAI’s text-davinci-003. These prompts were de-
signed to elicit coherent and informative responses
from instruction-following models. Responses
were generated using three separate models:

• mistralai/Mistral-7B-Instruct-v0.2

• google/gemma-7b-it

• meta-llama/Meta-Llama-3-8B-Instruct

During generation, hidden states from trans-
former layers 8 through 15 were extracted at each
generation step, following findings of (Shahout
et al., 2024). These hidden representations served
as the primary input features for all predictive mod-
els trained in this study. Each model yielded a
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distinct dataset, enabling a comparative evaluation
of output-length prediction performance across dif-
ferent LLM architectures. As shown in Figure 1,
the majority of generated responses were no longer
than 150 tokens.

Figure 1: Distribution of generated outputs lengths for
Llama

Models We employed two distinct model archi-
tectures to predict the number of tokens remaining
during generation: an aggregation-based predictor
and a layerwise graph regressor.

3.1 Aggregation-Based Predictor

The model operates on the hidden states extracted
from a specific token (e.g., the last generated token)
across transformer layers. These hidden states are
aggregated using simple element-wise operations
such as mean, sum, or concatenation. The resulting
vector, which encodes contextual and hierarchical
information from the selected layers, is then passed
through a lightweight feedforward neural network
to produce the predicted output length.

3.2 Layerwise Graph Regressor

The graph-based architecture treats each trans-
former layer as a node in a graph, where node fea-
tures correspond to the hidden states from that layer
at a given generation step. A fully connected graph
structure is applied across layers. We use a two-
layer Graph Convolutional Network (GCN) to learn
inter-layer dependencies, followed by global mean
pooling and a final regression head that outputs the
predicted number of remaining tokens. This struc-
ture captures hierarchical and distributed informa-
tion present in the model’s depth-wise architecture.

We choose to use hidden states from layers 8
to 15 based on empirical findings from TRAIL
(Shahout et al., 2024), which showed that these in-
termediate layers achieve the lowest mean absolute
error in output length prediction tasks.

Training Details We train all models for up
to 30 epochs using early stopping and adaptive
learning rate scheduling. The optimizer used is
AdamW with a learning rate of 1e-3 and a batch
size of 16. All training is performed with mixed
precision (AMP) to improve computational effi-
ciency. We evaluate models using standard re-
gression metrics, including Mean Absolute Er-
ror (MAE) and Normalized MAE (NMAE). For
classification-based approaches, we additionally
compute the expected value of the predicted output
length from the softmax-weighted bin midpoints.

Evaluation Metrics We report the Mean Ab-
solute Error (MAE) as our primary evaluation
metric. MAE measures the average absolute differ-
ence between predicted and true values, providing
an interpretable and scale-consistent indication of
prediction accuracy:

MAE =
1

N

N∑

i=1

|ŷi − yi|

where ŷi and yi represent the predicted and ground-
truth number of remaining tokens at generation step
i, respectively.This approach has also been adopted
in previous studies, and we regard it as a valuable
point of reference (Shahout et al., 2024), (Qiu et al.,
2024). To complement MAE, we also report the
Normalized Mean Absolute Error (NMAE):

NMAE =
1

N

N∑

i=1

|ŷi − yi|
yi

This metric captures relative error, which is par-
ticularly informative when the target values (i.e.,
the number of remaining tokens) vary widely. To
avoid division by zero, we exclude instances where
yi = 0.

NMAE is especially well-suited for length pre-
diction tasks because it accounts for the scale of the
target values. While MAE treats all errors equally,
regardless of the true value’s magnitude, NMAE
penalizes errors relative to the ground truth. For
example, an error of 5 tokens is more severe when
the true value is 10 than when it is 100. By normal-
izing the errors, NMAE offers a more nuanced and
scale-sensitive evaluation of model performance.
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Method MAE NMAE Model Parameters
Model Gemma-7B
Layerwise Graph Regressor Large 9.49 0.0048 1,704,961
Layerwise Graph Regressor Small 11.69 0.0092 819,713
TRAIL (14 Layer) 15.25 0.4177 2,102,794
Aggregated States Regressor (Mean) 15.71 0.43 2,102,794
Aggregated States Regressor (Sum) 15.40 0.42 2,102,794
Aggregated States Regressor (Concat) 14.08 0.40 16,782,850
Model Mistral-7B
Layerwise Graph Regressor Large 13.56 0.0114 1,704,961
Layerwise Graph Regressor Small 14.17 0.0046 819,713
TRAIL (15 Layer) 18.44 1.0112 2,102,794
Aggregated States Regressor (Mean) 19.17 1.00 2,102,794
Aggregated States Regressor (Sum) 18.01 0.96 2,102,794
Aggregated States Regressor (Concat) 16.98 0.93 16,782,850
Model Llama-8B
Layerwise Graph Regressor Large 25.36 0.3541 1,704,961
Layerwise Graph Regressor Small 26.26 0.6237 819,713
TRAIL (14 Layer) 27.79 1.0377 2,102,794
Aggregated States Regressor (Mean) 28.98 1.01 2,102,794
Aggregated States Regressor (Sum) 29.11 0.98 2,102,794
Aggregated States Regressor (Concat) 24.91 0.85 16,782,850

Table 1: Combined regression results for Gemma-7B, Mistral-7B and Llama-8B using TRAIL, layerwise graph-
based and aggregated-state regressors

This is particularly important in settings where
the target lengths span a wide range—from very
short to very long continuations. In such cases,
MAE tends to be dominated by absolute errors on
longer sequences, potentially masking poor perfor-
mance on shorter ones. In contrast, NMAE high-
lights proportional mistakes, which are often more
meaningful in practical applications. For instance,
overestimating by 5 tokens when only 10 remain
may indicate a critical failure in generation con-
trol, while the same absolute error on a 100-token
continuation is less problematic. We therefore hy-
pothesize that NMAE provides a more balanced
and interpretable signal for evaluating length pre-
diction, especially when precise control over short
outputs is important.

4 Results

We observe that the Layerwise Graph Regressor
consistently outperforms the TRAIL baseline (see
Table 1) in terms of both MAE and NMAE across
all three tested models:

• On Gemma-7B, the graph-based model re-
duces NMAE from 0.4177 (TRAIL) to 0.0048,

achieving an improvement of over 98.8%.
The MAE drops from 15.25 to 9.49.

• On Mistral-7B, the graph model lowers
NMAE from 1.0112 (TRAIL) to 0.0046 —
a relative decrease of more than 99.5%. Simi-
larly, MAE improves from 18.44 to 13.56.

• On Llama-8B, the reduction is also substan-
tial: NMAE decreases from 1.0377 (TRAIL)
to 0.3541, a relative gain of 65.9%. MAE
drops from 27.79 to 25.36.

Even when using a reduced-size version (819k
parameters), the Layerwise Graph Regressor
achieves lower MAE and NMAE than TRAIL in
every setting, highlighting the efficiency and scala-
bility of the graph-based representation of hidden
states.

5 Discussion

Our results reinforce that hidden states in trans-
former models encode information not only about
the next token but also about the overall progress
of the generation process. The consistent advan-
tage of the Graph model indicates that combining
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information across layers captures this signal more
effectively than single-layer or pooled representa-
tions.

These findings empirically validate the hypothe-
sis posed by Shahout et al. (2024), who suggested
that integrating multiple layers could enhance pre-
dictions. Our model, by leveraging mid-layer em-
beddings, demonstrates that length-related informa-
tion is distributed across depth and benefits from
structured modeling.

This aligns with broader themes in interpretabil-
ity. Each layer may represent different levels of
abstraction—from planning and discourse structure
to local coherence. Our results suggest that LLMs
implicitly maintain a sense of “how much is left”,
even though they are trained only to predict the
next token. Similar to the "Future Lens" findings
by Pal et al. (2023), this foresight can be abstracted
as a scalar—the number of tokens remaining.

Figure 2: Mean Absolute Error (MAE) as a function of
distance from the end of the sequence.

Figure 2 illustrates how prediction accuracy im-
proves as generation progresses. The Mean Abso-
lute Error (MAE) decreases toward the end of the
sequence, indicating that the model’s internal rep-
resentations become increasingly informative for
estimating the remaining length. We also observe
that prediction quality varies with token position:
the longer the remaining sequence, the stronger the
signal. This suggests a potential transition in inter-
nal representations throughout generation, which
could be further explored in future work.

Limitations

While our results are encouraging, our study has
several limitations that suggest caution and point
to directions for future work.

First, our method predicts the number of tokens
remaining, but not the content of those tokens. It
is a coarse abstraction. There may be cases where

the model’s internal state captures rich information
about upcoming content (as evidenced by Future
Lens (Pal et al., 2023)), but predicting an exact
length remains difficult—for instance, when the
model is planning a response of “about two sen-
tences”. In such scenarios, our model may output
only an approximate or average length. Addition-
ally, we formulate length prediction as a regression
problem; an alternative is to treat it as classification
into length bins, as done by Shahout et al. (Sha-
hout et al., 2024). While regression allows finer
granularity, classification might yield more stable
or interpretable outputs, especially in the presence
of outliers.

Second, the reliability of the predictor degrades
at extreme sequence lengths. We observed less
accurate predictions for particularly long or short
outputs. A practical system may need to estimate
and report its own uncertainty in such cases. We did
not explore confidence calibration or uncertainty
estimation, which could be useful in downstream
applications such as LLM scheduling—e.g., defer-
ring a prediction if uncertainty is high.

In summary, while we demonstrated the feasibil-
ity of predicting token-level output length from
hidden states in one setting, further research is
needed to test the generality of the approach, im-
prove robustness, and integrate such predictors into
practical LLM systems. We also acknowledge that
the dataset used in our study is relatively small,
which may limit the generalizability of our find-
ings. We hope our findings and methodology serve
as a starting point for more work on latent structural
knowledge in large language models.

Ethical Considerations

This research primarily involves analyzing a pre-
existing language model and does not directly raise
severe ethical concerns. We worked with the Al-
paca dataset (Taori et al., 2023), which consists
of synthetic instruction-response pairs. Although
the data was generated by a language model (Ope-
nAI’s text-davinci-003) and may contain biases
or inaccuracies, our use of it is limited to probing
model behavior rather than making deployable pre-
dictions that affect users. No personal or private
information is included in the prompts or outputs.

We note that predicting remaining output length
could be used in applications to allocate comput-
ing resources or moderate content (e.g., cutting off
excessively long answers). If misused, such mecha-
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nisms might unfairly truncate or deprioritize certain
user inputs. However, in our controlled study, we
do not deploy any system—we only analyze perfor-
mance offline. All experiments were conducted on
a private compute environment; we did not involve
human subjects or gather new personal data.

In terms of broader impact, improving LLM effi-
ciency via length prediction could benefit users by
reducing latency and resource use. However, one
should ensure that scheduling based on length pre-
dictions does not inadvertently disadvantage com-
plex or long but important queries. There is a minor
environmental impact in training the predictors and
running the LLM for experiments, but we limited
our runs to a relatively small scale (1,000 prompts
on an 8B model). We encourage future work to
consider energy-efficient methods and to use re-
newable energy where possible.

Finally, we adhere to the ACL Ethics Policy:
we cite the sources of our model and dataset, re-
spect terms of use (LLaMA and Alpaca have appro-
priate licenses for research use), and open-source
our code for transparency. We do not foresee di-
rect harm from this specific research, but as al-
ways, further deployment of predictive systems
should be tested for fairness and bias (e.g., does
the model systematically underpredict lengths for
certain types of content, and could that cause harm
in a downstream application?).
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