Learning and Enforcing Context-Sensitive Control for LLMs

Mohammad Albinhassan', Pranava Madhyastha®4, Mark Law?, Alessandra Russo'*

'Imperial College London, 2City University of London, *ILASP Limited, UK
“The Alan Turing Institute
{m.albinhassan23, a.russo}@imperial.ac.uk,
pranava.madhyastha@city.ac.uk, mark@ilasp.com

Correspondence: m.albinhassan23 @imperial.ac.uk

Abstract

Controlling the output of Large Language
Models (LLMs) through context-sensitive con-
straints has emerged as a promising approach
to overcome the limitations of Context-Free
Grammars (CFGs) in guaranteeing generation
validity. However, such constraints typically
require manual specification—a significant bar-
rier demanding specialized expertise. We in-
troduce a framework that automatically learns
context-sensitive constraints from LLM inter-
actions through a two-phase process: syntac-
tic exploration to gather diverse outputs for
constraint learning, followed by constraint ex-
ploitation to enforce these learned rules during
generation. Experiments demonstrate that our
method enables even small LLMs (1B param-
eters) to learn and generate with perfect con-
straint adherence, outperforming larger coun-
terparts and state-of-the-art reasoning models.
This work represents the first integration of
context-sensitive grammar learning with LLM
generation, eliminating manual specification
while maintaining generation validity.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing, demonstrating
unprecedented capabilities across diverse domains
(Brown et al., 2020; Dubey et al., 2024). However,
ensuring correctness in LLM outputs remains a
critical challenge, particularly when outputs must
adhere to specific formal constraints. While recent
advances in controlled decoding have enabled en-
forcement of syntactic correctness through Context-
Free Grammars (CFGs) (Geng et al., 2023; Beurer-
Kellner et al., 2024; Park et al., 2024, interalia), en-
suring semantic validity requires additional mecha-
nisms.

The fundamental limitation lies in the expressiv-
ity gap between CFGs and real-world requirements.
Many domains demand not only local structural
correctness but also relationships between distant

elements in a sequence, nested structures, and so on
(Scholak et al., 2021). Such constraints can only
be expressed by more powerful formalisms like
Context-Sensitive Grammars (CSGs). For instance,
a CFG may capture the language a’b/ c*, where any
number of a’s must be followed by any number of
b’s and then c’s, but only a CSG can capture depen-
dencies such as equal counts, i.e., a”b"c™. Conse-
quently, domain-specific solutions were proposed
for tasks like semantic parsing (Lei et al., 2025;
Poesia et al., 2022; Roy et al., 2023), and later, gen-
eral domain-independent frameworks have been
developed (Albinhassan et al., 2025) to broaden
applicability. However, a barrier to adoption exists,
as formal specifications for context-sensitive con-
straints demand expertise that may not be readily
available. This contrasts with CFGs, which are
more widely accessible for many structured gener-
ation tasks (Wang et al., 2023).

We introduce a framework that automatically
learns context-sensitive constraints from LLM out-
puts. Our approach operates in two phases (Fig-
ure 1): (1) syntactic exploration, where we leverage
a CFG-constrained temperature-sampling mech-
anism to collect diverse syntactically valid out-
puts, which are then labeled by an oracle and
used to learn context-sensitive constraints through
a logic-based learner; and (2) constraint exploita-
tion, where these learned constraints control LLM
generation to guarantee context-sensitive correct-
ness. This represents the first integration of context-
sensitive grammar learning with LLM generation.

Our empirical results on synthetic grammar syn-
thesis tasks demonstrate our framework can suc-
cessfully learn the ground-truth context-sensitive
constraints via LLM interactions. As such, our ap-
proach induces control in LLM generations and
guarantees constraint adherence for even small
models (i.e., 1B parameters) — a capability even
state-of-the-art reasoning models (i.e., DeepSeek-
R1 (Guo et al., 2025)) fail to achieve consistently.

834

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 834-842
July 28-29, 2025 ©2025 Association for Computational Linguistics

mailto:m.albinhassan23@imperial.ac.uk

Phase 1: Syntactic Exploration

Phase 2: Constraint Exploitation

- —

LLM

Deo: a | cc| bc| aab| cb

4)

LLM

Do a | cc| bc | aab| cb

A\ A\ A\ Y Y

dCcre | @ | cc| bc | aab| cb QCg,qe" | @ | cc| bc |aab| cb
. S J
AV AN V2 RN
V: abe aabbcc bec X aabc X aabbcc aaabbcccc abc aaaabbbbcccc
E

>G >

100%
ASG Learner ASG Learner

Figure 1: Two-phase methodology for learning context-sensitive constraints. Phase 1: An LLM pg samples
diverse sequences using generator g from a CFG-masked distribution (gc,;). Tokens such as bc are CFG-valid
but context-sensitively invalid, leading to oracle rejection (V) and red masking in Casc. Valid tokens appear green,
invalid tokens red. Labeled examples form dataset E for the ASG learner to construct G. Phase 2: The LLM uses
the learned ASG-constrained distribution (qéGASG), disallowing tokens that may lead to violations (red), while valid

tokens remain accessible (green), ensuring all outputs satisfy the target grammar (v'). The gear in Phase 2 illustrates
all constraints have been learned (100%), so nothing new is learned (note: this is for visualization purposes only).

2 Related Work

Significant work in controlled decoding has fo-
cused on CFG-based approaches (Beurer-Kellner
et al., 2023; Willard and Louf, 2023, interalia),
where LLM generations must conform to the gram-
mar’s specification (Welleck et al., 2024). These
methods address syntactic validity but are un-
able to enforce context-sensitive constraints critical
for many real-world tasks. Semantic parsing via
LLMs aim to capture such constraints; however,
they employ domain-specific rules (Scholak et al.,
2021; Roy et al., 2023; Poesia et al., 2022). Re-
cent work develops a unifying domain-independent
framework for controlling LLM outputs accord-
ing to CSGs and semantic constraints via Answer
Set Grammars (ASGs) (Albinhassan et al., 2025),
though these constraints remain handcrafted.

Wang et al. (2023) propose grammar prompt-
ing, where an LLM predicts CFGs for specific
tasks to control generation. However, the approxi-
mated grammar remains context-free and may be
incorrect. In contrast, we extend Albinhassan et al.
(2025) by automatically learning context-sensitive
constraints expressed as formal annotations over
CFGs. These constraints are learned via a state-of-

the-art logic-based learner using LLLM-generated
examples labeled by an oracle. Thus, adapting to
new tasks without handcrafting constraints with
guaranteed correctness on the learned grammar.

3 Background

Formal Languages A formal language L C X*
is a set of strings composed of a vocabulary ..
L is generated by a grammar G = (N, T, P, S)
where N are non-terminals, 7' = X are termi-
nals, P are production rules, and S € N is the
start symbol. CFGs compose of rules of the form
A — awhere A € N,a € (N UT)*, allow-
ing them to capture syntax. While CSGs encode
rules of the form c«Af — a8 where A € N,
a,8 € (NUT)*, v € (NUT)*t. Hence, CSGs
can capture context-dependent patterns (Linz and
Rodger, 2022). As such, while a CFG captures
Ly = {a'V/cF : i,j, k > 0}, only a CSG can ex-
press Lo = {a"b"c" : n > 0}.

Answer Set Grammars ASGs (Law et al., 2019)
extend production rules of CFGs with context-
sensitive constraints expressed in a logic-based lan-
guage called ASP (Lifschitz, 2019). A string w
belongs to the language represented by an ASG

835

Gase, i.e., w € L(Gasg), if there exists a parse
tree derivation whose logic representation (in ASP)
is satisfiable — meaning a set of logical statements,
rules, or constraints must all be true simultaneously.
For instance, the CFG component of an ASG cap-
tures L1, and the context-sensitive annotations cap-
ture Lo by imposing constraints on the number
of occurrences of terminal symbols. These annota-
tions have been shown to be learnable from positive
and negative examples of a CSG using the logic-
based learner ILASP (Law et al., 2014). For ex-
ample, given L1, a positive example (i.e., aabbcc)
and a negative example (i.e., aabc), ILASP learns
constraints for equal counts of a’s, b’s, and c’s.

4 Methodology

Our approach learns context-sensitive constraints
for language model generation through a two-phase
process: syntactic exploration and constraint ex-
ploitation. Syntactic exploration works as follows:
(1) Starting with a CFG, we generate diverse sam-
ples from a syntactically constrained LLM via
temperature-sampling (we alter temperature to ob-
tain diverse sequences (Renze, 2024)); (2) We
use an oracle to label the samples into positive
(w € L(Gcsg)) and negative (w ¢ L(Gcsg))
sets; (3) We feed the labeled examples to the ASG
learner to learn the context-sensitive annotations
over the given CFG that covers all samples. For
constraint exploitation, we follow Albinhassan et al.
(2025) to constrain the LLM’s generation to con-
form to the learned context-sensitive constraints.

4.1 Syntactic Exploration

(1) CFG-Constrained Diverse Sampling. To
learn the context-sensitive constraints of a target
grammar Gasg, we require samples that both sat-
isfy and violate these constraints while maintaining
syntactic validity (Figure 1, left). Let pg denote a
language model with parameters 6 that defines a
distribution over tokens pg(y:|x, y<¢) given input
x and context y.¢. We seek to learn the gram-
mar Gasg by collecting a dataset D containing
both positive (y € L(Gasg)) and negative exam-
ples (y € L(Gcrg) \ L(Gasc)) of the underlying
context-sensitive constraints.

Following Albinhassan et al. (2025), we define
a constraint function C : V* — 2Y that maps any
prefix y< = (y1,...,9%—1) € V* to the set of
valid next tokens according to a grammar G

Cly<t) ={y €V | 3w € L(G) : (y<toyt))

is a prefix of w}

where o denotes token concatenation and V is
the vocabulary of the language model’s tokenizer.

We define a temperature-based syntactically con-
strained sampling generator to construct D with suf-
ficient diversity to capture various context-sensitive
violations. The sampling generator g with parame-
ters ¢ = {T,N,Ccrg} is:

9(ylzipe, 0) ={y'"™" ~ dees (- | T3P0, 1),

ne [Nk e [T} @

where each y(”vk) is a generated sequence, Ccrg

the constraint function for grammar Gcgg, N is
the number of sequences per temperature value,
and 7 = {7, ..., 7r} is the temperature schedule.

Each sequence is sampled as y ~ qc.;, Where:

4Ccrg (yt | z, y<t;p97T) (S8
exp <Se(yt | &, y<¢) I[ye € CCFG(y<t)]> 3

T

where sg is the model logit function, 7 is the tem-
perature parameter, and I(-) is the indicator func-
tion. This guarantees that any sampled sequence
belongs to L(Gcrg)-

For a given task with M problem instances
{x;}M,, applying this generator to all z; € M
yields a dataset D = {y;;, : ¢ € [M],j €
[N],k € [T}, where |D| =M - N - |T]|.

(2) Oracle Labeling. We employ a task-specific
oracle V' : ¥* — {0, 1} to annotate each generated
sequence. The oracle is treated as a deterministic
ground truth labeler for the constraints, returning
V(y) = 1 if y satisfies all constraints and O other-
wise. This transforms our dataset into:

E = {(ijk V(Wijr) : ¥ijr €D} 4

The diversity in temperature sampling ensures
positive and negative examples are sufficiently pop-
ulated, providing the ASG learner with comprehen-
sive coverage of the constraint space.

(3) Constraint Learning via ASG Learner. We
segment E into £+ and E~, containing samples
conforming to and violating the constraints, respec-
tively, as given by the oracle. We feed as input

836

to the ASG learner Gcrg, ET, and E~. Conse-
quently, G asg is constructed by learning the ASP
annotations over G¢cgg such that G AsG covers all
samples in E (see Appendix A for formal details).

4.2 Constraint Exploitation

With the learned ASG G ASG, We transition from
syntactic exploration to constraint exploitation (Fig-
ure 1, right). Following Albinhassan et al. (2025),
we sample sequences y ~ U, encoding the

constraint function C asG for the learned grammar
G asG- This is similar to Equation (3) without tem-
perature variations. At this point, the model has
no further access to the oracle, relying entirely on
the learned constraints to ensure context-sensitive
validity.

S Experiments

5.1 Task Definition

We evaluate our approach on two synthetic gram-
mar synthesis tasks, where the LLM must gen-
erate strings from a target context-sensitive lan-
guage. Following Albinhassan et al. (2025), we
adopt L; = {a"b"c" | n > 1} and craft Ly =
{a™b™c™ | n,m > 1}. Each problem instance
x; € M prompts the LLM to generate strings with
various values of n and m, producing diverse ex-
amples that capture both valid and invalid patterns
with respect to the context-sensitive constraints for
the ASG learner.

5.2 Experimental Setup

Models. We evaluate closed- and open-source mod-
els across various sizes: GPT-4.1, o1, 03-mini, 04-
mini, and DeepSeek-R1 through their respective
APIs, and Llama models (3.2 1B, 3.2 3B, 3.1 8B,
and 3.1 70B) which we run locally (see Appendix C
for GPU cluster details). All models are prompted
identically using few-shot examples.

ASG Learning Configuration. We sample
10 generations at each temperature value 7 €
{0,0.1, ..., 1.0} for the syntactic exploration phase
to construct a diverse dataset D. The oracle V' (y)
is implemented as a Python program to check con-
straint validity, i.e., checks the counts of a’s, b’s,
and c’s and their respective ordering. The ASG
learner constructs Gasg by learning the ASP anno-
tations over G¢cpg from these examples segmented
into E* and E~.

Unconstrained and Constraint Exploitation
Sampling Mechanisms. For API-based models,

Accuracy

Model G AR g
GPT 4.1 - 633% 76.7%
ol - 867% 96.7%
03 mini - 63.3% 86.7%
o4 mini - 90.0% 93.3%
DeepSeek-R1 - 80.0% 86.7%
Llama 1B - 20.0% 6.7%
Llama 1B Gasg 100.0% 100.0%
Llama 1B Gase 100.0% 100.0%
Llama 70B - 767% 53.3%
Llama70B Gase 100.0% 100.0%
Llama70B Gase 100.0% 100.0%

Table 1: Accuracy results for a™b™¢” and a"b"c™ with
different LLMs (Model) and grammar constraints (G).

we use their standard generation settings. For
Llama models, we employ three sampling ap-
proaches: (1) unconstrained rejection sampling,
where we generate 50 samples and select a gen-
eration based on the oracle’s feedback; and con-
strained generation, where we apply (2) the learned
ASG and (3) a handcrafted ASG for comparison
with Albinhassan et al. (2025).

Evaluation Metrics. We evaluate methods us-
ing context-sensitive validity accuracy, defined as
the percentage of generated sequences that belong
to the ground-truth grammar G asg.

5.3 Results and Analysis

Table 1 summarizes our findings across models and
constraints (see Appendix B for results on 3B and
8B). We analyze two key aspects: the effectiveness
of our ASG learning approach, and the impact of
learned constraints on accuracy.

Ground-Truth ASGs are Learned. Table 1
showcases that constraining LLM pg with the
ground-truth grammar (Gasg) and the learned
grammar (G’ Asg) both provide 100% accuracy and
conform to all constraints. Whilst it could be
the case that our sampling mechanism with the
ASG learner only learned a subset of constraints
sufficient for the LLM not to make any errors,
i.e., the LLM already captures some of these via
the prompt, manual inspection confirmed GasG
is identical to G asg. The reasons behind this are
twofold: (1) our syntax-constrained temperature-
based sampling approach effectively covers the
space of context-sensitive constraints sufficiently,
i.e., the necessary positive and negative examples;

837

(2) the ASG learner based on ILASP guarantees
that all examples will be covered, and if a solution
exists, it will be found (see Law et al. (2015) for
soundness and completeness proofs).

Guaranteed Correctness via Constraints.
When applying the learned ASG constraints dur-
ing generation, all models—even the smallest 1B-
parameter model—achieve 100% accuracy on both
context-sensitive tasks. In contrast, unconstrained
generation with larger and closed-source models
fails to provide such guarantees, with Llama 70B
achieving only 76.7% and 53.3% accuracy, and
GPT-4.1 obtaining 63.3% and 76.7% on L; and
Lo, respectively. Although increasing the scale
of model parameters improves performance (e.g.,
Llama 1B’s 20.0% and 6.7% vs. Llama 70B), un-
constrained models still lack reliability and robust-
ness in generation.

Despite employing significantly more computa-
tional resources through extended reasoning steps
(Valmeekam et al., 2025; Guo et al., 2025; Al-
binhassan et al., 2025), state-of-the-art reasoning
models (i.e., ol, DeepSeek-R1, etc.) still pro-
duce invalid sequences. Consider o4-mini, the
best performing unconstrained model, still only
achieves 90.0% and 93.3% on L; and Lo, respec-
tively. These results demonstrate that our neuro-
symbolic constraint learning approach provides
correctness guarantees that cannot currently be
achieved through scale or inference time multi-step
reasoning alone. Most notably, a 1B-parameter
model eliminates the need for handcrafted con-
straints by learning and enforcing the ground-truth
constraints, consistently outperforming all uncon-
strained models. This emphasizes the complemen-
tary strengths of neural language generation and
symbolic constraint enforcement.

6 Conclusion and Future Work

We presented a novel framework for automating
the learning of context-sensitive constraints for con-
trolled LLM generation. The synergistic combi-
nation of syntactic exploration and constraint ex-
ploitation eliminates the need for manual constraint
specification while maintaining correctness guar-
antees. Our empirical results demonstrate that this
method enables small LLMs to learn and generate
with perfect constraint adherence, outperforming
larger and specialized reasoning models.

We plan to extend our work to real-world settings
where constraints represent semantic relationships

with intrinsic meaning (i.e., semantic parsing, agent
planning). We further aim to explore active learn-
ing settings using ASG’s sample-efficient one-shot
learning ability. Thus, enabling continuous con-
straint refinement in lifelong learning tasks where
a complete ASG may not be initially captured.

Limitations

Our approach demonstrates promising results, yet
several limitations warrant consideration. First, the
syntactic exploration phase lacks formal conver-
gence guarantees. While temperature-based sam-
pling empirically captured sufficient constraint vio-
lations in our synthetic domains, we cannot guar-
antee comprehensive coverage of larger constraint
spaces. Establishing theoretical connections be-
tween sampling strategies, sample efficiency, and
constraint space coverage remains an open chal-
lenge.

Second, our framework currently addresses only
hard constraints where outputs are strictly valid or
invalid. Many real-world NLP tasks, such as ma-
chine translation or question answering, involve
soft constraints where outputs exist on a spec-
trum of acceptability. This binary classification
approach limits applicability to domains requiring
nuanced evaluation of correctness.

Third, our method assumes the underlying lan-
guage model has been trained on data containing
the relevant terminals and has developed statistical
priors aligned with the target formal languages. For
domains with limited representation in the training
corpus, the generated samples may be insufficient
to capture the full spectrum of context-sensitive
constraints. We acknowledge these limitations and
aim to address them in our future work (Section 6).

7 Acknowledgements

We thank Microsoft Research - Accelerating Foun-
dation Models Research program for the provision
of Azure resources to run some of the LLMs used
in the experiments in this paper. This research
was partially sponsored by DEVCOM Army Re-
search Lab under W911NF2220243, EPRC project
EP/Y037421/1, and The Alan Turing Institute’s
project on Robust Inference with PASP scaffolds
for LLMs.

838

References

Mohammad Albinhassan, Pranava Madhyastha, and
Alessandra Russo. 2025. Sem-ctrl: Semantically con-
trolled decoding. arXiv preprint arXiv:2503.01804.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.
2023. Prompting is programming: A query language
for large language models. Proceedings of the ACM
on Programming Languages, 7(PLDI):1946-1969.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.
2024. Guiding LLMs the right way: Fast, non-
invasive constrained generation. In Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 3658-3673. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877-1901.
Curran Associates, Inc.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and
Robert West. 2023. Grammar-constrained decoding
for structured NLP tasks without finetuning. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10932—
10952, Singapore. Association for Computational
Linguistics.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Mark Law, Alessandra Russo, Elisa Bertino, Krysia
Broda, and Jorge Lobo. 2019. Representing and
learning grammars in answer set programming. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 2919-2928.

Mark Law, Alessandra Russo, and Krysia Broda. 2014.
Inductive learning of answer set programs. In Log-
ics in Artificial Intelligence, pages 311-325, Cham.
Springer International Publishing.

Mark Law, Alessandra Russo, and Krysia Broda. 2015.
Proof of the soundness and completeness of ilasp2.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao,
Dongchan Shin, Hongjin SU, ZHAOQING SUO,

Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor
Zhong, Caiming Xiong, Ruoxi Sun, Qian Liu, Sida
Wang, and Tao Yu. 2025. Spider 2.0: Evaluating lan-
guage models on real-world enterprise text-to-SQL
workflows. In The Thirteenth International Confer-
ence on Learning Representations.

Vladimir Lifschitz. 2019. Answer set programming,
volume 3. Springer Heidelberg.

Peter Linz and Susan H Rodger. 2022. An introduction
to formal languages and automata. Jones & Bartlett
Learning.

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick,
Nadia Polikarpova, and Loris D’Antoni. 2024.
Grammar-aligned decoding. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari,
Gustavo Soares, Christopher Meek, and Sumit Gul-
wani. 2022. Synchromesh: Reliable code generation
from pre-trained language models. In International
Conference on Learning Representations.

Matthew Renze. 2024. The effect of sampling temper-
ature on problem solving in large language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 73467356, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Subhro Roy, Sam Thomson, Tongfei Chen, Richard
Shin, Adam Pauls, Jason Eisner, and Benjamin Van
Durme. 2023. BenchCLAMP: A benchmark for eval-
uating language models on syntactic and semantic
parsing. In Thirty-seventh Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Karthik Valmeekam, Kaya Stechly, Atharva Gundawar,
and Subbarao Kambhampati. 2025. A systematic
evaluation of the planning and scheduling abilities of
the reasoning model ol. Transactions on Machine
Learning Research.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A.
Saurous, and Yoon Kim. 2023. Grammar prompting
for domain-specific language generation with large
language models. In Thirty-seventh Conference on
Neural Information Processing Systems.

Sean Welleck, Amanda Bertsch, Matthew Finlayson,
Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia

839

https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300
https://proceedings.mlr.press/v235/beurer-kellner24a.html
https://proceedings.mlr.press/v235/beurer-kellner24a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://openreview.net/forum?id=XmProj9cPs
https://openreview.net/forum?id=XmProj9cPs
https://openreview.net/forum?id=XmProj9cPs
https://openreview.net/forum?id=5G7ve8E1Lu
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
https://doi.org/10.18653/v1/2024.findings-emnlp.432
https://doi.org/10.18653/v1/2024.findings-emnlp.432
https://openreview.net/forum?id=k4juAEW1tG
https://openreview.net/forum?id=k4juAEW1tG
https://openreview.net/forum?id=k4juAEW1tG
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://openreview.net/forum?id=FkKBxp0FhR
https://openreview.net/forum?id=FkKBxp0FhR
https://openreview.net/forum?id=FkKBxp0FhR
https://openreview.net/forum?id=B4tkwuzeiY
https://openreview.net/forum?id=B4tkwuzeiY
https://openreview.net/forum?id=B4tkwuzeiY

Kulikov, and Zaid Harchaoui. 2024. From de-
coding to meta-generation: Inference-time algo-
rithms for large language models. arXiv preprint
arXiv:2406.16838.

Brandon T. Willard and Rémi Louf. 2023. Effi-

cient guided generation for large language models.
Preprint, arXiv:2307.09702.

A ASG Example and Learning Details
A.1 ASG Example

start — as bs cs {
;- size(X)@1, not size(X)@2.
:- size(X)@1, not size(X)e@3.

}
as — "a" as {
size(X+1) :- size(X)@2.
YA
size(0).
}

bs — "b" bs {

size(X+1) :- size(X)@2.
Y| €

size(0).
}
cs —» "c"cs{

size(X+1) :- size(X)@2.
Y| {

size(0).
}

Figure 2: The learned ASG for a™b"c™ using our ap-
proach. This grammar utilizes ASP constraints (in bold
and surrounded by {}) to enforce the context-sensitive
condition that all three symbol sequences maintain equal
length.

Figure 2 illustrates the ASG learned via the
ASG learner based on ILASP for the language
L = {a™"c" : n > 1}. The ASG consists of
two key aspects:

1. A CFG expressed in Extended Backus—Naur
form, i.e., as — “a" as. Here, the non-
terminals are as, bs, and cs, the terminals are
a, b, and c, the start symbol is start, and

— denotes the production rules (i.e., the non-
terminal on the left-hand side of the arrow can
be replaced by the terminal on the right-hand
side of the arrow).

2. Context-sensitive constraints annotating the
production rules expressed in ASP code (for
further details on ASP, please see Lifschitz
(2019)). The constraints are encoded via curly
braces {...} in the ASG and illustrated in
bold text. The first rule’s constraints enforce
that all three non-terminals must generate se-
quences of equal length by requiring size(X)
to be consistent across all child positions.
Terminal productions implement a counting
mechanism where each recursive rule incre-
ments the size counter by one, while base
cases initialize size (@). The @ symbol refers
to specific child positions in productions and
parse trees, enabling position-dependent con-
straint checking. For example, size(X)@1
refers to the count accumulated in the first
child of the parse tree.

A.2 Constraint Learning via ASG Learner
and ILASP.

Section 4.1 provides an intuitive description of
how the ASG learner, based on ILASP, learns the
context-sensitive constraints. Following (Law et al.,
2019), we now formally define an ASG learning
task as T' = (Gcrg, Sumr, (E1, E7)). Here, Gegg
serves as the base CFG grammar, S} is the search
space of possible ASP annotations on production
rules to construct Gasg, and ET, E~ are positive
and negative examples, respectively.

Given these inputs, ILASP learns a minimal hy-
pothesis H C S); containing ASP annotations
over Gcrg such that:

Vy € BT 1y € L(Gerg : H) 5)
Vye B~ 1y ¢ L(Gerg : H) (6)

where Gcpg H denotes the ASG (Gasg)
constructed by extending Gcrg with annotations
from H. The learned constraints in H encode
context-sensitive rules (e.g., enforcing count(a) =
count(b) = count(c) for a"b"c™ as in Figure 2).
Given ILASP searches for a solution covering all
examples, we remove duplicate samples when we
feed E* and E~ to the ASG learner.

840

https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2307.09702

Accuracy

Model G AR g
GPT 4.1 - 63.3% 76.7%
ol - 86.7% 96.7%
03 mini - 63.3% 86.7%
04 mini - 90.0% 93.3%
DeepSeek-R1 - 80.0% 86.7%
Llama 1B - 20.0% 6.7%

Llama 1B Gasg 100.0% 100.0%
Llama 1B Gasc 100.0% 100.0%
Llama 3B - 200% @ 23.3%
Llama 3B Gasg 100.0% 100.0%
Llama 3B Gasc 100.0% 100.0%
Llama 8B - 467% 10.0%
Llama 8B Gasg 100.0% 100.0%
Llama 8B Gasec 100.0% 100.0%
Llama 70B - 767% 53.3%
Llama70B Gasg 100.0% 100.0%
Llama70B Gagg 100.0% 100.0%

Table 2: Accuracy results for a™b"c™ and a™b"™c™ with
different LLMs (Model), including Llama 3.2 3B and
3.1 8B, and grammar constraints (G).

B Further Results

Section 5.3 showcased context-sensitive accuracy
results with respect to various LLMs and grammar
constraints. Here, Table 2 presents results with
Llama 3.2 3B and Llama 3.1 8B, which we omitted
from the main text due to space requirements. Sim-
ilar conclusions can be drawn as before. Hence, we
omit any further discussions.

C GPU Specification

Our experiments were conducted using a GPU clus-
ter with nodes containing 2x Intel Xeon Platinum
8358 CPUs (2.60GHz, 32 cores each) and NVIDIA
L40S GPUs (48GB GDDR6), where we utilized
up to 4 GPUs with 96GB RAM.

841

D Prompt Example

System Instruction:

You are an expert in formal languages, specifically, Context-Free and Context-Sensitive Grammars. You can
read and understand grammars, and given a grammar specification, you can generate words that consistently conform
to the grammar, its language, and rules without a single mistake. For each message, generate a word (a sequence of
characters belonging to the language) that conforms to the grammar specification a"b"c". This grammar represents the
language of strings consisting of n number of a’s, followed by n number of b’s, and finally followed by n number of ¢’s,
where all n’s are equal (i.e., the number of a’s, b’s, and c’s are all equal) and in the specified order. Each message will
specify a max n value, meaning, the individual number of a’s, b’s, and c’s cannot exceed that amount, and you must aim to
maximise n (length of words) up to the specified max, thereby, prefering longer words of the grammar’s language.

Only respond with a single word that conforms to the grammar, do not generate any additional text beyond
the correct word with respect to the grammar.

Example Interactions:

User: Generate a valid word/string of the grammar a"b"c”, where you should prefer larger numbers of n (i.e.,

longer sequences) and the max n value is 3.
Assistant: aaabbbccc

User: Generate a valid word/string of the grammar a"b"c", where you should prefer larger numbers of n (i.e., longer
sequences) and the max n value is 10.
Assistant: aaaaaaaaaabbbbbbbbbbccccecccce

Figure 3: Prompt template for the a"b"c" language generation task. The system instruction defines the formal
language requirements, followed by example interactions demonstrating expected inputs and outputs.

Figure 3 illustrates the prompt used for the a”b"c™ task, with a similar style for our a™b"c™ task.

Akin to Albinhassan et al. (2025), we adopt a standard few-shot prompting strategy, where we provide a
description of the task, syntax, and constraints in natural language and formal language notation.

842

