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Abstract

Existing approaches to fine-grained emotion
classification (FEC) often operate in Euclidean
space, where the flat geometry limits the abil-
ity to distinguish semantically similar emotion
labels (e.g., annoyed vs. angry). While prior
research has explored hyperbolic geometry to
capture fine-grained label distinctions, it typ-
ically relies on predefined hierarchies and ig-
nores semantically similar negative labels that
can mislead the model into making incorrect
predictions. In this work, we propose HyCoEM
(Hyperbolic Contrastive Learning for Emotion
Classification), a semantic alignment frame-
work that leverages the Lorentz model of hy-
perbolic space. Our approach embeds text and
label representations into hyperbolic space via
the exponential map, and employs a contrastive
loss to bring text embeddings closer to their
true labels while pushing them away from adap-
tively selected, semantically similar negatives.
This enables the model to learn label embed-
dings without relying on a predefined hierar-
chy and better captures subtle distinctions by
incorporating information from both positive
and challenging negative labels. Experimental
results on two benchmark FEC datasets demon-
strate the effectiveness of our approach over
baseline methods.1

1 Introduction

Fine-grained emotion classification (FEC) is a
single-label task that assigns each text to a specific
emotion from a set of closely related categories.
Unlike coarse emotion recognition, which uses a
small set of basic emotions (Ekman et al., 1999),
FEC involves a larger and more nuanced label
space. For instance, the two largest FEC datasets
include up to 27 (Demszky et al., 2020) and 32
(Rashkin et al., 2019) emotion categories. Many
of these labels exhibit subtle semantic differences,

1Code is available at:https://github.com/
havelhakimi/HyCoEM

such as between guilty and ashamed, making FEC
particularly challenging. Despite this complexity,
recognizing fine-grained emotions is essential for
capturing subtle human expressions and enabling
more empathetic AI interactions.

Existing FEC approaches typically operate in
Euclidean space, where the flat geometry makes it
difficult to distinguish emotion labels with overlap-
ping semantics (e.g., fear and remorse) (Yin and
Shang, 2022; Suresh and Ong, 2021). In contrast,
hyperbolic space, with its negative curvature and
exponential growth of distances, is better suited to
embed fine-grained emotions with subtle distinc-
tions. The HypEmo (Chen et al., 2023) method
utilizes hyperbolic space to learn label representa-
tions from a predefined emotion hierarchy (Parrott,
2001). However, this reliance on a fixed struc-
ture can be limiting, as emotion labels may not
always conform to a strict parent–child organiza-
tion. Moreover, its cross-entropy loss is weighted
solely by the distance to the positive label, over-
looking semantically similar negatives that may
still mislead the model during prediction.

We propose HyCoEM (Hyperbolic Contrastive
Learning for Emotion Classification), a semantic
alignment framework that leverages the Lorentz
model (Nickel and Kiela, 2018) of hyperbolic
space. The model uses RoBERTa (Liu et al., 2019)
as the text encoder and treats label embeddings as
learnable parameters. During training, both text
and label embeddings are projected into hyperbolic
space via the exponential map. To guide alignment,
we apply a contrastive loss (Khosla et al., 2020)
that pulls each text embedding closer to its cor-
rect label while pushing it away from semantically
similar negative labels. These negatives are adap-
tively selected for each sample based on geodesic
distance in hyperbolic space. The contrastive loss
is then used to weight the cross-entropy loss, en-
abling the model to focus more on samples with
weak text–label alignment. We adopt the Lorentz
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model for its numerical stability and reduced ge-
ometric distortion compared to other hyperbolic
formulations (Nickel and Kiela, 2018; Chen et al.,
2022). Our training setup follows a hybrid design
similar to HypEmo: contrastive supervision is ap-
plied in hyperbolic space, while the cross-entropy
loss is computed in Euclidean space. However,
unlike HypEmo, our method does not rely on a pre-
defined label hierarchy. Instead, it learns label em-
beddings directly from data, guided by contrastive
alignment. Moreover, since the contrastive loss
reflects how well a text aligns with its correct label
relative to semantically similar negatives, it pro-
vides a more informative weighting signal than the
isolated text–label distance used in HypEmo.

2 Related Work

Prior studies on FEC have largely focused on
modeling within Euclidean space. Khanpour and
Caragea (2018) use lexicon-derived features for
emotion detection in health-related posts. Yin et al.
(2020) apply syntactic self-attention to better cap-
ture sentiment composition. Mekala et al. (2021)
use generative models with coarse emotion la-
bels, while Sosea and Caragea (2021) use emotion-
specific masking during pretraining. Suresh and
Ong (2021) propose a label-aware contrastive loss
that modulates sample influence based on model
confidence. Yin and Shang (2022) enhance se-
mantic separation via whitening transformation
and nearest-neighbor retrieval. Yang et al. (2023)
introduce a cluster-level contrastive loss using
emotion prototypes derived from Valence-Arousal-
Dominance mappings to improve utterance-level
emotion recognition. Chen et al. (2023) adopts
a hybrid approach by modeling label representa-
tions in hyperbolic space while encoding text in-
puts in Euclidean space. Yu et al. (2024) design
an emotion-anchored contrastive learning frame-
work to improve emotion classification in conver-
sations. Zhang et al. (2024) propose a GNN-based
method that captures semantic and temporal pat-
terns through anchor graphs built over token repre-
sentations.

3 Hyperbolic geometry for Lorentz Model

Let u = (us, ut) ∈ Rn+1, where us ∈ Rn is
the space-like component and ut ∈ R is the time-
like component. The Lorentzian inner product
is defined as: ⟨u,v⟩L = ⟨us,vs⟩ − utvt, where
⟨·, ·⟩ denotes the Euclidean inner product. The

Lorentzian norm is ∥u∥L =
√
⟨u,u⟩L. The n-

dimensional Lorentz model Hn with curvature −k
is represented as a submanifold of Rn+1, defined as:
Hn =

{
u ∈ Rn+1 : ⟨u,u⟩L = −1/k, ut > 0

}
,

where all vectors in Hn satisfy the constraint
ut =

√
1/k + ∥us∥2. The geodesic distance de-

notes the shortest path between two points on Hn

and is given by:

d(u,v) =
√

1/k cosh−1(−k⟨u,v⟩L) (1)

At any point p ∈ Hn, the tangent space TpHn

is a Euclidean vector space consisting of all vec-
tors in Rn+1 that are orthogonal to p as: TpHn ={
q ∈ Rn+1 : ⟨p,q⟩L = 0

}
. For q ∈ TpHn, the

exponential map projects the vector onto the hy-
perboloid Hn as:

expp(q) = cosh(
√
k∥q∥L)p+

sinh(
√
k∥q∥L)√

k∥q∥L
q (2)

In this study, we fix p at the origin O =
[0,

√
1/k], where the space components are zero

and the time-like component is
√
1/k.

4 Methodology

This section describes the components of our pro-
posed framework. Fig. 1 illustrates the overall ar-
chitecture.

4.1 Forward pass to generate label-aware
features

We use RoBERTa to encode the input text. For a
document D, the encoded token representations are
given by: X = fenc(D), where X ∈ Rs×h, with s
representing the token sequence length and h de-
noting the feature size. To compute the label-aware
feature, we apply a label-text attention mechanism
using a learnable parameter matrix WL ∈ Rh×c,
where c is the number of labels:

A = XWL; F = softmax(A⊤)X (3)

The resulting matrix F ∈ Rc×h is then vectorized
to obtain F ′ ∈ Rch×1 and fed into a classifier. The
logit vector z ∈ Rc×1 is computed as:

F ′ = vectorize(F ); z = W⊤
c F ′ + b (4)

where Wc ∈ Rch×c and b ∈ Rc×1 represent the
weights and bias of the classifier respectively.
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Figure 1: Architecture of HyCoEM. The forward pass generates label-aware features. During training, a contrastive
loss is computed in hyperbolic space, which is used to weight the cross-entropy loss.

4.2 Projection onto the Lorentz Hyperboloid
Let eenc ∈ Rh be the encoded text/label vector.
To project it onto the Lorentz hyperboloid Hh em-
bedded in Rh+1, we extend it as e = [es, et] =
[eenc, 0], where the space component is eenc and
the time component is zero. The vector e is or-
thogonal to the hyperboloid origin O = [0,

√
1/k]

under the Lorentzian inner product, and thus lies
in the tangent space at O. As et = 0, the expo-
nential map can be used to parameterize only the
space component es, and the time-like component
can be recomputed later to satisfy the constraint
et =

√
1/k + ∥es∥2. Thus, the exponential map

derived from Eqn. 2 becomes:

exp0(es) = cosh(
√
k∥e∥L)0+

sinh(
√
k∥e∥L)√

k∥e∥L
es (5)

where the first term is zero. Furthermore, the
Lorentzian norm simplifies to the Euclidean norm:
∥e∥2L = ⟨e, e⟩L = ⟨es, es⟩ − 0 = ∥es∥2. The
resulting expression after all substitutions is:

ϕ(es) = exp0(es) =
sinh(

√
k∥es∥)√

k∥es∥
es (6)

4.3 Loss functions
4.3.1 Contrastive loss
We apply contrastive loss in hyperbolic space
to align the text embedding with its correct la-

bel and separate it from negatives. For a sam-
ple Xi ∈ Rs×h, we use the first token ([CLS]),
xi ∈ Rh, as the text feature. Label features
are defined as the transpose W⊤

L ∈ Rc×h. Both
are projected to hyperbolic space via the expo-
nential map (Eqn. 6) as: xHi = ϕ(αtxi) and
LH = ϕ(αlW

⊤
L ), where αt and αl are learnable

scaling factors applied to ensure unit norm before
projection. The set of hyperbolic label embeddings
is: LH = {ℓH1 , ℓH2 , . . . , ℓHc}. For each sample-
label pair (xi, yi), where yi ∈ M (the set of emo-
tion labels), we select the r labels closest to the text
(excluding yi) as negatives:

N (i) = argmin-r
j∈M\{yi}

d(xHi , ℓHj ) (7)

where d(., .) represents the geodesic distance as de-
fined in Eqn. 1 and r ≥ 1 is a hyperparameter. This
adaptive selection provides semantically similar,
challenging negative labels, enabling contrastive
loss to push the text away from these confusable
negatives. Finally, the contrastive loss for sample i
is formulated as:

CLi = − log




e
(−d(xHi

,ℓHyi
)/τ)

e
(−d(xHi

,ℓHyi
)/τ)

+
∑

j∈N(i)

e
(−d(xHi

,ℓHj
))/τ)




(8)

where τ ∈ R+ is the temperature hyperparame-
ter.

808



4.3.2 Overall Loss
The overall loss is a weighted cross-entropy (WCE),
where each sample is weighted by its contrastive
loss CLi. For a batch of m samples:

LossWCE = − 1

m

m∑

i=1

CLi · log e(z
yi
i )

c∑
j=1

e(z
j
i )

(9)

where zji is the logit score for class j. The con-
trastive weight CLi is high when the text is either
distant from its true label or close to confusable
negatives, guiding the model to penalize such cases
more strongly.

5 Experiments

5.1 Experiment Setup
5.1.1 Datasets and Evaluation metrics
We use two benchmark fine-grained emotion
datasets: GoEmotions (GE) (Demszky et al., 2020)
with 27 emotion labels, and Empathetic Dialogues
(ED) (Rashkin et al., 2019) with 32 emotion labels.
We follow the same preprocessing and evaluation
setup as prior work (Suresh and Ong, 2021; Chen
et al., 2023), including accuracy and weighted F1
as evaluation metrics. Further details on dataset
statistics are provided in Appendix A.

5.1.2 Implementation Details
We use the pretrained RoBERTa-base 2 as the text
encoder. Text and label features have dimension h,
set to 768. The curvature k is a scalar initialized as
1, and the scalars αt and αl are initialized as 1/

√
h.

All scalars are learned in the logarithmic space as:
log(k), log(αt), and log(αl). The negative label
set size r is set to 6 for GoEmotions and 8 for
Empathetic Dialogues, determined via grid search
on the validation set with r ∈ {2, 3, . . . , 10}. τ
is fixed at 0.07 for both datasets. During training,
the batch size is set to 64, and the Adam optimizer
is used with a learning rate of 1e-5. We train the
model end-to-end using PyTorch. Training stops if
neither accuracy nor weighted F1 improves on the
validation set over ten consecutive epochs.

5.2 Main results
Table 1 presents the results of our proposed ap-
proach alongside baseline comparisons (see de-
tails of baseline methods in Appendix B). The
first part of the table shows a comparison with

2https://huggingface.co/FacebookAI/
roberta-base

Model GoEmotions (GE) Empathetic Dialogues (ED)
Acc Weighted

F1
Acc Weighted

F1

BERT∗
base 60.9 ± 0.4 62.9 ± 0.5 50.4 ± 0.3 51.8 ± 0.1

RoBERTa∗base 62.6 ± 0.6 64.0 ± 0.2 54.5 ± 0.7 56.0 ± 0.4
ELECTRA∗

base 59.5 ± 0.4 61.6 ± 0.6 47.7 ± 1.2 49.6 ± 1.0
BERT∗

large 64.5 ± 0.3 65.2 ± 0.4 53.8 ± 0.1 54.3 ± 0.1
RoBERTa∗large 64.6 ± 0.3 65.2 ± 0.2 57.4 ± 0.5 58.2 ± 0.3
ELECTRA∗

large 63.5 ± 0.3 64.1 ± 0.4 56.7 ± 0.6 57.6 ± 0.6

HyperIM* 50.2 ± 0.9 49.7 ± 0.7 44.1 ± 1.2 43.6 ± 1.0
HIDDEN* 47.2 ± 1.1 49.3 ± 0.9 42.9 ± 1.4 44.3 ± 1.1

KNNEC 63.8 ± 0.3 64.7 ± 0.8 57.8 ± 0.8 58.7 ± 1.1
LCL 64.1 ± 0.2 64.8 ± 0.3 59.2 ± 0.4 59.3 ± 0.6
HypEmo∗ 65.4 ± 0.2 66.3 ± 0.2 59.6 ± 0.3 61.0 ± 0.3
EucCoEM 64.2 ± 0.5 64.6 ± 0.6 58.9 ± 0.4 59.1 ± 0.3
HyCoEM 66.7 ± 0.4 67.3 ± 0.5 61.5 ± 0.3 62.7 ± 0.4

∆ +1.3% +1% +1.9% +1.7%

Table 1: Comparison of results. The results for methods
marked with (*) are sourced from the HypEmo (Chen
et al., 2023) study. ∆ denotes the improvement com-
pared to the underlined second-best method. ± denotes
standard deviation.

pretrained language models (BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), ELECTRA
(Clark et al., 2020)) fine-tuned for FEC, in both
base and large variants. The second part of the
table compares with HyperIM (Chen et al., 2020)
and HIDDEN (Chatterjee et al., 2021), which lever-
age hyperbolic space for classification and were
adapted for FEC by Chen et al. (2023). Our pro-
posed approach, HyCoEM, significantly outper-
forms all methods across both these sections of the
table.

In the third part of the table, we compare with
existing FEC methods, namely KNNEC (Yin and
Shang, 2022), LCL (Suresh and Ong, 2021), and
HypEmo (Chen et al., 2023). For a fair comparison,
KNNEC and LCL were trained using RoBERTa
as the encoder, ensuring all FEC methods use the
same text backbone. We also include a variant
of our approach, EucCoEM, which performs con-
trastive learning in Euclidean space and does not
use hyperbolic geometry.3

For our implemented methods (KNNEC, LCL,
EucCoEM, and HyCoEM), we report the average
performance across five runs with different seeds.
Our approach outperforms the second-best method,
HypEmo, with the same parameter count (125M),
achieving an improvement of 1.3–1.9% in accuracy
and 1–1.7% in weighted F1 across the two datasets.
In contrast, the Euclidean variant, EucCoEM, un-
derperforms, highlighting the importance of hy-

3We did not compare with SEAN-GNN (Zhang et al., 2024)
due to lack of runnable code and usage instructions.
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perbolic space for learning label embeddings and
improving text-label alignment.

5.3 Encoder-agnostic performance

We propose HyCoEM as an encoder-agnostic ap-
proach that can improve FEC performance regard-
less of the text encoder used. Table 2 compares
the weighted F1 scores with and without HyCoEM
across different pretrained language models used as
text encoders. The results demonstrate that incorpo-
rating HyCoEM improves performance across all
encoders, highlighting the encoder-agnostic nature
of our approach.

Dataset Encoder w/o HyCoEM with
HyCoEM

GE BERTbase 62.9±0.6 66.1±0.4
GE RoBERTabase 64.0±0.4 67.3±0.5
GE ELECTRAbase 61.6±0.5 64.5±0.4

ED BERTbase 51.8±0.4 58.6± 0.6
ED RoBERTabase 56.0±06 62.7±0.4
ED ELECTRAbase 49.6±0.6 58.9±0.5

Table 2: Weighted F1 score when HyCoEM is used with
different text encoders

5.4 Ablation study

We ablate the key components of our model, with
results summarized in Table 3. First, removing
contrastive loss supervision (w/o CL) and training
the model using only cross-entropy leads to a sub-
stantial performance drop, highlighting the role
of contrastive supervision in enhancing semantic
alignment. Next, we initialized label embeddings
using the average of RoBERTa token embeddings
for each label name (Label name init). The ob-
served decline suggests that random initialization
is more effective than name-based initialization
for this task. We also replaced the selection of
top r negatives based on geodesic distance with
random sampling ( Random negatives). The under-
performance of this variant underscores the value
of adaptive negative selection.

We further replaced the label-text attention mech-
anism with simple elementwise multiplication be-
tween the text feature xi ∈ Rh and the label fea-
tures W⊤

L ∈ Rc×h, resulting in Fi ∈ Rc×h (w/o
Label-text att.). The lower performance of this
variant confirms the importance of label-text atten-
tion, which computes label-specific features via
weighted token aggregation. Finally, we substi-
tuted the Lorentz model with the Poincaré ball for
hyperbolic projection (PoincaréCoEM). The result-

Model GoEmotions (GE) Empathetic Dialogues (ED)
Acc Weighted

F1
Acc Weighted

F1

w/o CL 63.2 ± 0.6 64.1 ± 0.2 54.9 ± 0.7 56.6 ± 0.4
Label name init 64.9 ± 0.5 65.1 ± 0.4 58.7 ± 0.6 59.3 ± 0.2
Random negatives 64.1 ± 0.3 64.9 ± 0.4 55.9 ± 0.6 57.8 ± 0.5
w/o Label-text att. 63.9 ± 0.3 64.4 ± 0.5 55.2 ± 0.7 57.5 ± 0.7
PoincaréCoEM 65.3 ± 0.5 65.8 ± 0.6 59.3 ± 0.5 59.7 ± 0.6
HyCoEM 66.7 ± 0.4 67.3 ± 0.5 61.5 ± 0.3 62.7 ± 0.4

Table 3: Ablation study results for HyCoEM

ing performance degradation empirically validates
our choice of the Lorentz model in our framework.

Appendix C details the challenging ED subsets
identified by (Suresh and Ong, 2021) and compares
HyCoEM’s performance against existing baselines
on these subsets. Appendix D presents a t-SNE
visualization of the learned text representations,
showing improved separation of confusable emo-
tion labels in HyCoEM compared to other methods.

6 Conclusion

Fine-grained emotion classification (FEC) assigns a
specific emotion label to a text from a set of closely
related emotions. We propose HyCoEM for FEC,
leveraging contrastive learning in hyperbolic space
to align a text with its emotion label while separat-
ing it from confusable negatives. The contrastive
loss helps learn label embeddings without a pre-
defined hierarchy and serves as a weighting signal
for cross-entropy loss, penalizing weak text-label
alignments. Comparisons with baselines show that
HyCoEM improves performance on benchmark
datasets.

7 Limitations

In HyCoEM, negative labels are adaptively selected
based on geodesic distance to the input text, but
the hyperparameter r (which determines the size of
the negative label set) still needs to be tuned manu-
ally. HyCoEM is thus sensitive to the choice of r.
The optimal value of r varies across datasets and
requires careful tuning, which can add overhead
and affect generalizability.
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A Details on Datasets

GoEmotions (GE) (Demszky et al., 2020) and Em-
pathetic Dialogues (Rashkin et al., 2019) (ED) are
two widely recognized benchmark datasets com-
monly used for fine-grained emotion classification.
These datasets are considered challenging, as they
contain a large number of labels with overlapping
semantics.

GoEmotions consists of 54,000 Reddit com-
ments, each annotated with one or more of 27 emo-
tion categories, along with a neutral class. Similar
to prior studies (Suresh and Ong, 2021; Chen et al.,
2023), we include only the single-labeled examples
and remove the instances with the neutral label.
After this selection, the dataset contains 23,485 /
2,956 / 2,984 examples for the train, validation, and
test splits, respectively.

The Empathetic Dialogues dataset features multi-
turn conversations between a speaker and a listener,
with each conversation labeled with a single emo-
tion. These conversations can extend up to six
turns. Similar to prior studies (Suresh and Ong,
2021; Chen et al., 2023), we use only the first turn
of each conversation. The dataset contains 24,850
samples labeled with 32 emotions, split into 19,533
/ 2,770 / 2,547 examples for the training, validation,
and test sets, respectively.

B Details on baseline methods

We compare our approach with three different cate-
gories of baseline methods.

Pretrained language models (PLMs). This
comprises base and large variants of BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
ELECTRA (Clark et al., 2020), which are fine-
tuned for FEC.

Hyperbolic classification methods. These in-
clude approaches that leverage hyperbolic space

Model subseta subsetb subsetc subsetd

RoBERTabase 56.9 64.6 55.6 79.1
LCL 58.8 66.1 57.1 80.3
HypEmo 63.1 69.3 59.9 81.0
HyCoEm 64.0 70.4 61.3 82.2

∆ +0.9% +1.1% +1.4% +1.2%

Table 4: Weighted F1 scores on the most challeng-
ing subsets of the ED dataset, as proposed by (Suresh
and Ong, 2021). ∆ denotes the improvement over the
second-best method.

but were not originally trained for FEC. HyperIM
(Chen et al., 2020) jointly embeds text and labels
in hyperbolic space, whereas HIDDEN (Chatterjee
et al., 2021) learns label embeddings based on la-
bel co-occurrence information without assuming
a predefined label hierarchy. Both methods utilize
the Poincaré ball model of hyperbolic space.

FEC methods. KNNEC (Yin and Shang, 2022)
incorporates a whitening transformation along with
nearest-neighbor retrieval to improve sentence se-
mantics. LCL (Suresh and Ong, 2021) uses a label-
aware contrastive loss to modulate sample influ-
ence based on model confidence. HypEmo (Chen
et al., 2023) uses hyperbolic text-label distance to
weight the cross-entropy loss. We also include Eu-
cCoEM, a variant of our model that operates in
Euclidean space, with the rest of the components
identical to HyCoEM.

C Evaluation on Hard Subsets of ED

The hard subsets of Empathetic Dialogues (ED),
selected by (Suresh and Ong, 2021), represent the
most challenging and confusable emotion groups.
These were identified by evaluating all possible
four-label combinations to find sets with high se-
mantic overlap. The selected subsets are: (a) {Anx-
ious, Apprehensive, Afraid, Terrified}, (b) {Dev-
astated, Nostalgic, Sad, Sentimental}, (c) {Angry,
Ashamed, Furious, Guilty}, and (d) {Anticipating,
Excited, Hopeful, Guilty}.

Table 4 compares HyCoEM with FEC base-
lines on these hard ED subsets. Since each subset
contains four confusable labels, we use the other
three (excluding the positive) as negatives to help
the model better distinguish between similar emo-
tions. HyCoEM outperforms the second-best by
0.9–1.4% in weighted F1 across all subsets.

D Visualization of Representations

Figure 2 shows t-SNE visualizations of the learned
text representations on the ED test set. For fair
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(a) Standard cross entropy loss (b) HypEmo (c) HyCoEM

Figure 2: Qualitative comparison of learned representations on the ED dataset. For the confusable emotion label
pair afraid and terrified, HyCoEM shows increased separation compared to the other methods.

comparison, t-SNE is applied with default settings
across all methods. We compare with a standard
cross-entropy variant that shares the same architec-
ture as HyCoEM but is trained without contrastive
supervision(Fig. 2(a)), as well as with HypEmo
(Fig. 2(b)). The analysis focuses on the confus-
able label pair afraid and terrified. In the standard
cross-entropy setting, the representations of these
labels are heavily entangled. In HypEmo, there
is some improvement, but significant overlap still
remains. HyCoEM (Fig. 2(c)) shows clearer sep-
aration between afraid and terrified compared to
the other two, with reduced entanglement. Thus,
HyCoEM helps in learning representations that bet-
ter distinguish semantically similar and confusable
emotions.
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