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Abstract

Tables are extensively utilized to represent and
store data, however, they often lack explicit se-
mantics necessary for machine interpretation
of their contents. Semantic table interpreta-
tion is essential for integrating structured data
with knowledge graphs, yet existing methods
face challenges with Russian-language tables
due to limited labeled data and linguistic pe-
culiarities. This paper introduces a contrastive
learning approach to minimize reliance on man-
ual labeling and enhance the accuracy of col-
umn annotation for rare semantic types. The
proposed method adapts contrastive learning
for tabular data through augmentations and
employs a distilled multilingual BERT model
trained on the unlabeled RWT corpus (com-
prising 7.4 million columns). The resulting
table representations are incorporated into the
RuTaBERT pipeline, reducing computational
overhead. Experimental results demonstrate a
micro-F1 score of 97% and a macro-F1 score
of 92%, surpassing several baseline approaches.
These findings emphasize the efficiency of the
proposed method in addressing data sparsity
and handling unique features of the Russian
language. The results further confirm that con-
trastive learning effectively captures semantic
similarities among columns without explicit su-
pervision, which is particularly vital for rare
data types.

1 Introduction

Tabular data are one of the key formats for pre-
senting structured information in various domains,
ranging from scientific research to business analyt-
ics. It is widely used in relational databases, spread-
sheets, web resources, and documents, making its
processing critically important for automating data
analysis. However, tables typically lack explicit
semantics necessary for machine interpretation of
their content. Therefore, the semantic interpreta-
tion of tables, especially in non-English languages,

remains a challenging task (Badaro et al., 2023; Liu
et al., 2023). The primary challenges are associated
with mapping individual table elements (columns,
rows, cells) to concepts from knowledge graphs
such as DBpedia or Wikidata, as well as handling
the structural and linguistic diversity of data.

Russian-language tables pose a particular chal-
lenge due to the limited availability of special-
ized tools and annotated datasets. Most modern
methods, particularly those based on pretrained
language models like BERT (Deng et al., 2020;
Herzig et al., 2020; Yin et al., 2020; Iida et al.,
2021; Wang et al., 2021b; Suhara et al., 2022),
require vast amounts of labeled data, which are
often unavailable or imbalanced for the Russian
language. Moreover, existing solutions developed
for English do not adapt well to other languages
due to differences in tokenization and contextual
semantics.

In this paper, we propose a novel approach,
called CoLeM, for column type annotation in
Russian-language tables based on contrastive learn-
ing. This approach effectively leverages unlabeled
tabular data to train robust vector representations,
reducing the reliance on manual annotation. Our
contributions include:

1. Adaptation of contrastive learning for Russian-
language tabular data using augmentations
such as cell deletion and rearrangement.

2. Utilization of the distilled multilingual model
DistilBERT, which balances performance and
computational costs.

3. Integration of pre-trained tabular represen-
tations into an existing annotation pipeline
based on the RuTaBERT (Tobola and Dorod-
nykh, 2024) framework, demonstrating the
flexibility of the approach.

4. Experiments on the large Russian-language
dataset, RWT-RuTaBERT, showed that the
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proposed approach outperforms certain base-
line solutions, confirming its effectiveness un-
der conditions of data sparsity and linguistic
specificity.

The paper is organized as follows: Section 2
reviews the current state of research on seman-
tic table interpretation. Section 3 describes the
proposed approach for column type annotation in
Russian-language tables, including data prepara-
tion, model architecture, and training algorithm.
Section 4 presents experimental evaluations of the
proposed approach’s performance. Finally, Section
5 discusses the obtained results and outlines plans
for future work.

2 Related works

Semantic table interpretation (STI) refers to the
process of recognizing and linking tabular data to
concepts from a target knowledge graph, ontology,
or external vocabulary (e.g., DBpedia, Wikidata,
Yago, Freebase, WordNet) (Liu et al., 2023; Zhang
and Balog, 2020). One of the core tasks of STI
is column type annotation, which involves map-
ping table columns to semantic types (classes and
properties) from the target knowledge graph.
Over the past few years, existing methods and
models have leveraged advances in deep machine
learning, formulating the column type annotation
task as a multi-class classification problem. For
instance, (Hulsebos et al., 2019) employed neu-
ral networks and various extracted feature groups,
such as word and character embeddings, as well
as global column statistics. The study by (Zhang
et al., 2020) incorporated analysis of local (intra-
table) context (adjacent columns relative to the tar-
get column), while (Wang et al., 2021a) further
added inter-table context to improve predictions.
However, particular interest lies in works utilizing
pre-trained language models based on the Trans-
former architecture. Transformer blocks employ an
attention mechanism, enabling the model to gener-
ate useful contextualized embeddings for structural
components of tabular data, such as cells, columns,
or rows. Additionally, language models pre-trained
on large-scale text corpora can encode semantics
from the training text into model parameters, mak-
ing fine-tuning on specific downstream tasks highly
efficient. Examples of such works include models
like TURL (Deng et al., 2020), TaPas (Herzig et al.,
2020), TaBERT (Yin et al., 2020), TABBIE (lida
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Figure 1: An example of data sparsity issue in the Viznet
dataset.

etal., 2021), TUTA (Wang et al., 2021b), and Do-
duo (Suhara et al., 2022).

Existing solutions in this area achieve high per-
formance due to the availability of large labeled
training datasets. Specifically, English-language
datasets may include hundreds of thousands of la-
beled columns (e.g., VizNet-Sato (Zhang et al.,
2020) ~ 100,000, WikiTables-TURL (Deng et al.,
2020) ~ 600,000), while the Russian-language tab-
ular dataset RWT-RuTaBERT contains over 1.4
million columns. Creating such datasets is a labor-
intensive process requiring significant time and re-
sources. Moreover, existing table datasets often
suffer from data sparsity, manifested in a highly
imbalanced distribution of semantic types (known
as a "long-tail distribution"). For instance, some se-
mantic types correspond to hundreds of thousands
of columns, while others are associated with only a
few dozen. As a result, models struggle to capture
sufficient signals for minority (rare) semantic types
(e.g., "athlete", "mountain range" or "insurance
company"), even in supervised settings. Figure 1
illustrates this issue with a distribution chart of
the 20 most frequent semantic types in the VizNet-
Sato dataset. Figure 2 shows the same issue for the
RWT-RuTaBERT dataset.

It should also be noted that current methods
based on pre-trained language models are not uni-
versally applicable. There is a gap between the
effectiveness of existing solutions on test cases and
their practical applicability, particularly for tables
in non-English languages and with varying struc-
tural layouts.

To enhance general table understanding and ad-
dress various tabular tasks, recent works have em-
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Figure 2: An example of data sparsity issue in the RWT-
RuTaBERT dataset.

ployed large language models, which often outper-
form pre-trained models like BERT. These models
are also more robust to unseen examples due to
specific effects arising from their scale and train-
ing on vast text corpora. Examples include models
such as Table-GPT (Li et al., 2024), TableLlama
(Zhang et al., 2024), and approaches in (Korini
and Bizer, 2024). However, a major drawback of
such solutions is their requirement for substantial
computational resources, hindering practical use.

To address the aforementioned challenges, we
propose the use of self-supervised learning meth-
ods, specifically contrastive learning, to derive tabu-
lar representations from a large corpus of unlabeled
tabular data. These representations can be used for
determining relatedness between two tables (via
cosine embedding similarity) and for fine-tuning
with limited labeled data for specific downstream
tasks.

3 Proposed approach

3.1 Problem statement

A table is a two-dimensional data structure com-
posed of rows and columns. Table cells may con-
tain textual data, numerical values, dates, times, etc.
Tables can be categorized into three types based on
the structure of information:

1. Highly structured (relational database tables);

2. Semi-structured (spreadsheets created in spe-
cialized software, e.g., MS Excel);

3. Unstructured (table images in PDF docu-
ments).

Tables can also be classified into three main
groups based on orientation:

1. Vertical — tables where data is arranged in
vertical columns (i.e., top to bottom);

2. Horizontal — tables where data is arranged in
horizontal lines (i.e., left to right);

3. Matrix — tables where each entry is indexed
by row and column key(s).

This work focuses solely on vertical, highly
structured, and semi-structured tables. The formal
description of an input table can be represented as:

T ={c1,.,cn},ci =4{vi,.,om},i € 1,n (1)

where T is a vertical table; c; is an i-column; v;
is an j-cell of an i-column with j € 1, m.

Our goal is to predict the column type, i.e., clas-
sify each column by its semantic type, such as
"Book", "Writer", "Genre" or "Publication Date"
rather than standard data types like string, integer,
or datetime. The proposed approach involves using
170 distinct semantic types derived from selected
classes and properties (value properties and object
properties) from the general-purpose knowledge
graph DBpedia'. Only Russian labels for these
types (via language tags) were used, as the ap-
proach targets the annotation of Russian-language
tables. Formally, this task can be described as:

P(CZ) € KGg, KGg = {Stl, ...,St170}, )

where P(c;) is a predicted semantic type for a
i-column; K G is a set of all semantic types with
a cardinality of 170 in this case.

An example of solving the column type annota-
tion task for an input table is shown in Figure 3.

The core idea of the approach is to develop an
encoder for robust tabular representations based on
contrastive learning, which can then be applied to
downstream tasks, specifically semantic annotation
of columns in Russian-language tables. The gen-
eral schema of the proposed approach is presented
in Figure 4.

"https://www.dbpedia.org/

786


https://www.dbpedia.org/

o&&’ | owl:Class )\ rdf:Property |
iy o / .y i ' A '
DBpedIa rdfitype rdf:type rdfitype rdfitype
) - ! - . |
Book [ Writer | | Genre ' " publication Date |
Semantictypes \ __ __ __ _\_ _ _ _ 1 _ _ _ | _ _
Source table
& Name \ Author Genres Year
Dune Frank Herbert ||science fiction||1965
. John Ronald high fantasy,
The Lord of the Rings Reuel Tolkien adventure 1954
Harry Potter and the "
Philosopher's Stone Joanne Rowling ||fantasy 1997
The Little Prince Antoinede ||children’s |5
Saint-Exupéry ||novella

Figure 3: An example of the CTA task.

3.2 Dataset Description

The pre-trained table encoder is trained on a vast
amount of tabular data that does not require manual
annotation. The large-scale Russian Web Tables
(RWT) corpus (Fedorov et al., 2023) is used as the
source dataset. This dataset represents a snapshot
of tables from the Russian Wikipedia as of Septem-
ber 13, 2021. Key statistics for the RWT corpus
are provided in Table 1.

Statistics Value
Number of tables 1266 731
Number of columns 7419771
Number of cells 99 638 194
Average number of cells per table 81.78
Set size 17 GB
Percentage of almost empty columns 6%
Average number of cells per column 13.42
Percentage of numeric columns 17%

Table 1: Statistics of the RWT table corpus.

During the initial data preprocessing stage, ver-
tical tables were selected from the original RWT
corpus. Each column from such a table is repre-
sented as a data string using the cell delimiter "«".

Subsequent data cleaning was performed using

the following operations:
* Selecting vertical tables.
* Removing empty/sparse columns (<3 cells).

* Filtering extraneous content (parser metadata,
Wikipedia links, special characters, such as
’l@”, ll&ll’ etC.).

As a result of these cleaning operations, an unla-
beled dataset of Russian-language tabular data con-
sisting of 4,656,668 columns was obtained. This
preprocessing was automated using a specialized
tool, LoReTA.

3.3 Training Algorithm

Contrastive learning is a self-supervised learning
technique designed to obtain informative embed-
dings. It involves maximizing a consistency metric,
in our case cosine similarity, between positive pairs
(data instances) while minimizing this metric be-
tween negative pairs. Contrastive learning enables
effective training on unlabeled data corpora.

In this work, we adapt the contrastive learning
concept proposed in (Chen et al., 2020) for tabular
data. The contrastive learning algorithm for tabular
data is illustrated in Figure 5.

The main idea is to construct two augmentations
for each column in a batch during training. Col-
umn embeddings are generated for the resulting
augmentations using an encoder model. Represen-
tations of augmentations derived from the same
column are considered a positive pair, and our goal
is to maximize the cosine similarity metric for this
pair. Conversely, representations of augmentations
derived from different columns are considered neg-
ative pairs, for which the task is to minimize the
cosine similarity metric.

3.3.1 Data Augmentation

Data augmentation refers to a technique for artifi-
cially increasing the size of a training dataset by
applying transformations to the original data. This
technique is widely used in scenarios with limited
or no labeled data to enhance the model’s gener-
alization ability. In contrastive learning, augmen-
tations play a critical role in forming semantically
consistent positive pairs.

Common augmentations for tabular data include:

e Random cell deletion.

* Deletion/rearrangement/replacement of to-
kens in a cell.

* Row sampling (e.g., 50% of rows).

* Cell rearrangement within a table row.
* Column deletion.

* Column rearrangement within a table.

Currently, there is no research identifying the
most effective augmentations for forming semanti-
cally consistent pairs in the context of tabular data
processing. Therefore, in this work, we selected
two augmentations deemed most promising: ran-
dom cell deletion and cell rearrangement within a
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Figure 4: The general scheme of the proposed method integrating self-supervised contrastive pre-training with fine-
tuning for downstream tasks (CTA). Key innovations include: (1) Table augmentations (row shuffling, 10% random
cell dropping) applied to columns; (2) A distilled multilingual BERT encoder optimized for computational efficiency;
(3) A non-linear projection head (128-dim. MLP) generating transformation-invariant latent representations; (4)
Seamless integration with the RuTaBERT annotation framework via fine-tuned encoder outputs; This design
minimizes GPU memory demands (<10 GB) while enabling 3x larger batch sizes than SOTA equivalents, crucial

for scaling to real-world table corpora.

column. For random cell deletion, 10% of all cells
in a column are removed.

3.3.2 Contrastive Loss

Contrastive loss functions are widely used in rep-
resentation learning tasks, as they enable models
to better distinguish internal data structures and,
consequently, extract more useful representations.
A contrastive loss function aims to maximize agree-
ment between positive pairs and minimize agree-
ment between negative pairs in the vector space.

There are several variations of contrastive loss
functions. In this work, we adopt the NT-Xent
loss (Normalized Temperature Cross-Entropy Loss)
used in (Chen et al., 2020), defined as:

N
L= x STk - 1,26) + 12k, 2k — 1),

2N
k=1
o exp(si;/T
l(l,j):—lOg oN ( Zj/ ) )
> ket Liti X exp(sik/T)
6 — Zi X Zj
< Dl

3)

where 1(,;) is 1if k # 4, otherwise 0; 7 is the
temperature parameter; and s is cosine similarity.

3.4 Model Architecture

Currently, Transformer-based models are central to
natural language processing tasks. These models
are versatile tools for text processing due to their
ability to capture contextual dependencies between

words in sequences and to train on unlabeled or
partially labeled data. They achieve this efficiently
through high parallelism, making them preferable
for training on large datasets.

According to (Chen et al., 2020), two critical
hyperparameters in contrastive learning are batch
size and the number of epochs. Larger batch sizes
and more epochs result in more representative em-
beddings, leading to better performance on down-
stream tasks during fine-tuning.

Based on this, the distilled multilingual BERT
model? was chosen as the base encoder. This model
was trained on Wikipedia articles in 104 different
languages. Unlike the base version®, it consists
of only 6 layers (half the number of the base ver-
sion) and 12 attention heads. It has 134 million
parameters (compared to 177 million in the base
version).

Model distillation is a technique in machine
learning where knowledge is transferred from a
more complex model (teacher) to a more compact
one (student) while maintaining prediction quality.

This technique, combined with reducing the tok-
enizer’s maximum sequence length to 256 tokens,
enabled training with a batch size of 800, which is
25 times larger than that of a comparable state-of-
the-art English-language solution (Miao and Wang,
2023).

Research in (Chen et al., 2020) explored the use
of projecting the encoder’s output layer into a la-

https://huggingface.co/distilbert/
distilbert-base-multilingual-cased

*https://huggingface.co/google-bert/
bert-base-multilingual-cased
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(7 =0.1) forces discriminative feature extraction without manual labels. Crucially, this algorithm captures linguistic
and structural patterns specific to Russian tables validated by 15.1% average Macro F1 gain over RuTaBERT on

rare types (see Table 4) without labeling dependence.

tent space for calculating the contrastive loss. Re-
sults indicate that applying a non-linear projection
during training positively impacts representation
quality. Thus, in this work, a two-layer perceptron
(MLP) is used after the encoder’s output layer to
project into a 128-dimensional latent space where
the contrastive loss is computed using the afore-
mentioned formula.

4 Experimental Evaluation and
Discussion

All experiments were conducted on the compute
cluster "Akademik V.M. Matrosov"* on the basis
of the Matrosov Institute for System Dynamics
and Control Theory of the Siberian Branch of the
Russian Academy of Sciences (ISDCT SB RAS).
The cluster configuration includes two 16-core Intel
Xeon Gold 6326 "Ice Lake" 2.9 GHz processors,
four NVIDIA A100 80 GB PCIe GPUs, and 2 TB
of DDR4-3200 RAM.

4.1 Contrastive Learning Setup

The approach was implemented in Python using the
PyTorch and Transformers libraries. The AdamW
optimizer (Ir = 5x107°, eps = 10~6) was chosen
for gradient descent. To accelerate convergence,

*nttps://hpc.icc.ru

cosine annealing was applied to dynamically re-
duce the learning rate. The temperature parameter,
a hyperparameter of the contrastive loss function,
was set to 0.1, as this value was found to be optimal
in (Chen et al., 2020). Under these settings, the pre-
trained encoder model was trained for 100 epochs
on 4 NVIDIA A100 GPUs using the Distributed-
Data-Parallel technology of the PyTorch frame-
work. Training lasted 9 days, 9 hours, and 53 min-
utes. GPU memory consumption amounted to 290
GB. The source code for CoLeM is published at
github’.

4.2 Column Type Annotation Setup

In this work, column type annotation task was se-
lected as the downstream task. Previously, the
RuTaBERT framework was proposed for this task,
based on fine-tuning a pre-trained multilingual
BERT model using the specially prepared RWT-
RuTaBERT dataset. This dataset contains approx-
imately 1.56 million labeled columns. The core
idea is to utilize the existing pipeline of this frame-
work, replacing the standard BERT model with a
specialized pre-trained table encoder. The RWT-
RuTaBERT dataset, with all standard settings, was
used for training. The RWT-RuTaBERT dataset

Shttps://github.com/YRL-AIDA/CoLeM
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has a fixed split into train and test subsets. The test
subset comprises over 115,000 columns (across
more than 55,000 tables, with an average of 2.09
columns per table). All performance measurements
were conducted on this fixed test subset. The vali-
dation set comprised 5% of the total training subset.
The technique of neighboring column serialization
was used to decompose column values into token
sequences.

According to (Chen et al., 2020), the projec-
tion layer is trained to be invariant to data trans-
formations, potentially losing information useful
for downstream tasks. Therefore, for further fine-
tuning of the table encoder, the output from the first
linear layer of the projection with a LeakyReLLU
activation function was used. Standard training set-
tings defined in the RuTaBERT framework were
applied. The model was fine-tuned for 30 epochs
with a batch size of 32 on the RWT-RuTaBERT
dataset using 2 NVIDIA A100 GPUs. Training
lasted 2 days, 20 hours, and 15 minutes, with GPU
memory consumption of 9.9 GB. Additionally, a
model with a batch size of 256 was trained with all
other hyperparameters unchanged. Under these set-
tings, training took 4 days, 3 hours, and 1 minute,
with GPU memory consumption of 52 GB. Pre-
trained versions of the RuTaBERT model, utilizing
CoLeM as the base encoder (with batch sizes of
326 and 2567), are available at huggingface.

4.3 Evaluation Metrics

The primary metrics for evaluating the performance
of the proposed method are averaged F1 scores, as
the task involves multi-class classification. Specif-
ically, Micro F1, Macro F1, and Weighted F1 are
used due to the imbalance in the RWT-RuTaBERT
dataset.

4.4 Results and Discussion

The results of the experimental evaluation are pre-
sented in Table 2. A comparison of the perfor-
mance of the proposed approach with several base-
line solutions is provided.

Firstly, a pre-trained language model, Ru-
BERT (Kuratov and Arkhipov, 2019), which spe-
cializes in processing the Russian language, was se-
lected. One of the transfer learning techniques was
applied, where the weights of the encoder layers

*https://huggingface.co/sti-team/
colem-rutabert-32bs

"https://huggingface.co/sti-team/
colem-rutabert-256bs

Model micro | macro | weighted
F1 F1 F1

Doduo 0.140 | 0.040 | N/A
RuBERT-ft 0.610 | 0.410 | 0.590
Doduo-ft 0.962 | 0.890 | 0.960
RuTaBERT 0.964 | 0.900 | 0.963
CoLeM-bs32 | 0.969 | 0.910 | 0.969
CoLeM-bs256 | 0.974 | 0.924 | 0.974

Table 2: Results of experimental evaluation on the
RWT-RuTaBERT dataset and comparison with base-
lines. "N/A" denotes not applicable in their original
framework.

remained unchanged during training. Thus, during
fine-tuning of RUBERT on the RWT-RuTaBERT
dataset, only the parameters of the classification
layer were adjusted.

Secondly, the Doduo (Suhara et al., 2022) frame-
work was chosen. Doduo is a state-of-the-art
(SOTA) model for column type annotation in En-
glish tables, trained on the Viznet-Sato dataset. It
uses a pre-trained BERT model as the base encoder
for tabular representations and proposes a table
serialization method that predicts semantic types
for all columns in a single forward pass. In this
case, transfer learning was also applied by freez-
ing the transformer layers and fine-tuning only the
final linear classifier layer. Additionally, a full
fine-tuning of the multilingual BERT model was
performed following the Doduo approach on the
RWT-RuTaBERT dataset (Doduo-ft). Unlike Do-
duo, CoLeM is a versatile encoder for tabular rep-
resentations, designed for integration into existing
solutions for semantic table interpretation. Trained
on a corpus of tables from Russian Wikipedia, it
is primarily oriented toward the Russian language.
However, CoLeM leverages a multilingual BERT
model as its base, suggesting potential applicability
to other languages, which will be explored in future
research.

Thirdly, the original RuTaBERT approach was
considered. RuTaBERT adapts Doduo’s concepts
for the Russian language, utilizing local table con-
text (neighboring columns) for column annotation.
It introduces a new table serialization approach,
predicting the semantic type of a single target col-
umn per forward pass, with other columns serving
as context. On Russian tables, RuTaBERT slightly
outperforms Doduo in micro-F1 (by less than 1%)
and shows a 1% improvement in macro-F1.

The obtained evaluation results demonstrated
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that the proposed approach outperformed all base-
line solutions in both training configurations (batch
sizes of 32 and 256). Specifically, the experiment
showed that while the RuBERT model is tailored
for processing the Russian language, it is not di-
rectly suited for tabular tasks, which proved chal-
lenging for this model. Consequently, existing
Russian-language models cannot be effectively ap-
plied to the column type annotation task.

The Doduo model, trained using transfer learn-
ing techniques, exhibited relatively low evaluation
results. This is attributed to the fact that the model
was trained on tabular data exclusively in English.
Notably, the tokenizer of this model lacks sufficient
Russian-language tokens. As a result, it can be con-
cluded that a model trained on English data cannot
be directly applied to another language, such as
Russian, without modifying the base encoder to
accommodate the target language.

Meanwhile, the fine-tuned multilingual encoder
of the Doduo framework and the RuTaBERT ap-
proach demonstrated nearly comparable results in
terms of evaluation metrics. However, it can be ob-
served that the use of a pre-trained tabular encoder
based on contrastive learning positively impacts
the performance. With a smaller model and iden-
tical settings, the proposed approach achieved re-
sults equivalent to those of the classical RuTaBERT
model or the fine-tuned Doduo. Additionally, the
model consumes approximately three times less
GPU memory during training, requiring less than
10 GB (with a batch size of 32, consistent across all
three models), which enables training on a standard
home computer. Furthermore, with a larger batch
size (e.g., 256), the proposed approach achieved
a performance gain of 1.5% compared to the clas-
sical RuTaBERT model and nearly 3% compared
to the fine-tuned Doduo. The experimental results
highlight the potential of our approach for semantic
annotation of Russian-language tables.

To further evaluate CoLLeM’s performance, we
conducted a statistical analysis on three aspects:

1) Datatype groups: The original test set, com-
prising 115,448 columns, was divided into 6 groups
by mapping existing semantic types to a set of 6
general categories (data types). All columns from
the original test set were utilized. Numeric in-
cludes 4,592 columns with semantic types such as
distance, population, area, weight, depth, age, etc.
Date includes 29,473 columns with semantic types
such as year, date, day, period, duration. Person
includes 7,504 columns with semantic types such

as actor, screenwriter, judge, producer, footballer,
character, chess player, etc. Links includes 103
columns with semantic types such as link, website.
Long Text includes 5,850 columns with semantic
types such as address, document, annotation, loca-
tion, description, note, etc. Short Text includes
67,926 columns with semantic types such as car,
race, genre, animal, team, nationality, etc.
CoLeM, similar to other language models, may
encounter challenges with numeric values as it pro-
cesses all cells as strings. However, the overall
performance on numeric data suggests that trans-
formers possess a partial capability to analyze nu-
merical sequences. Table 3 summarizes the Micro
F1 score and distribution for each datatype group.

Data type | F1 (CoLeM) | F1 (RuTaBERT)
Datetime | 0.948 0.941
Long text | 0.858 0.885
Numeric | 0.760 0.749
Person 0.716 0.692
Short text | 0.932 0.926
Links 0.611 0.699

Table 3: Results of model evaluation (Micro F1) for 6
datatype groups. Columns were classified into basic
5 groups: Datetime (dates/times), Numeric (measure-
ments), Links (including URLs), Short Text (< 4 to-
kens), and Long Text (> 4 tokens). Persons data type
was added for role-based entries (e.g., "employer").

2) Rare semantic types: Performance evalu-
ations were also conducted for the 15 least fre-
quently occurring semantic types. For comparison,
checkpoints of the CoLeM-bs32 and RuTaBERT
models, which achieved the highest macro F1 score
on the training set, were used. The results are pre-
sented in Table 4.

The results demonstrate that, due to the robust
tabular representations obtained, the CoLeM model
significantly outperforms the existing state-of-the-
art (SOTA) Russian-language solution, RuTaBERT,
in terms of evaluation metrics for infrequently oc-
curring semantic types.

3) Model convergence: To evaluate the con-
vergence of the CoLeM model, experiments were
conducted for checkpoints of CoLLeM-bs32 and
RuTaBERT models trained for 10 and 30 epochs.
The performance results are summarized in Table 5.

It can be observed that the CoLeM model con-
verges faster than the RuTaBERT model and has
1-3% better performance. This allows us to use
a smaller number of epochs in training stage,
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while obtaining comparable or even superior per-
formance to the RuTaBERT model.

Broader applicability and generalizability

The proposed CoLeM framework presents a sig-
nificant advancement in semantic table interpreta-
tion for Russian-language tables by leveraging con-
trastive learning and distilled multilingual BERT
model. Its core innovation is to minimize depen-
dence on labeled data and efficiently handle rare
semantic types, which demonstrates remarkable
potential for adaptation to low-resource languages.
To deploy CoLeM beyond Russian, the following
minimal adjustments are needed:

1. Corpus Construction: Replace RWT with lo-
cally sourced unlabeled tables (e.g., from gov-
ernment portals, local-language Wikipedia).
The cleaning pipeline (cell value filtering,
metadata removal) remains unchanged. For
languages with non-Latin languages (e.g.,
Arabic, Thai), ensure Unicode normalization
during preprocessing.

2. Tokenizer Specialization: While multilingual
BERT’s tokenizer covers major languages, ex-
tremely low-resource languages (e.g., the va-
rieties of Finno-Ugric languages) may require
extending the vocabulary via subword sam-
pling on target-language corpora.

3. Knowledge Graph Alignment: Replace DB-
pedia with localized knowledge graphs (e.g.,
BabelNet for cross-lingual types, or domain-
specific ontologies). At the same time, the
170-type schema can be reused or expanded.

5 Conclusion

This study proposes an approach for semantic an-
notation of columns in Russian-language tables
based on contrastive learning. The experimental
results demonstrate that the approach mitigates the
dependency on large volumes of labeled data by
leveraging self-supervised learning on unlabeled
tables. Moreover, it outperforms existing baseline
solutions (Doduo and RuTaBERT) in terms of eval-
uation metrics, particularly for rare semantic types.
The approach also ensures computational efficiency
through the use of a distilled model and optimized
batch sizes, reducing memory requirements by 60%
compared to analogous methods.

The results of the experimental evaluation con-
firm the effectiveness of the proposed solution. In
the future, as part of a research project with the

Ivannikov Institute for System Programming of
the Russian Academy of Sciences (ISP RAS), it is
planned to integrate these results into a specialized
table processor within the Talisman platform®. Ad-
ditionally, we plan to investigate the potential appli-
cation of the proposed column encoding method to
other types of tables (horizontal and matrix-based).
We will also address specific challenges that arise
when working with these different table structures.
Further investigation will also focus on the use of
new data augmentations to enhance the robustness
of tabular representations.

Overall, the proposed approach opens up oppor-
tunities for the development of universal systems
for semantic interpretation of tables, which is rele-
vant for tasks involving the integration of structured
and semi-structured information, as well as busi-
ness analytics.

Limitations

CoLeM shows strong performance with Russian-
language tables and potential for broader language
application, yet it faces limitations. Firstly, its struc-
tural augmentations (cell deletion/rearrangement)
are suited to vertical layouts, leaving complex
matrix or horizontal tables (e.g., in financial re-
ports) unaddressed. Secondly, the multilingual
DistilBERT tokenizer, despite supporting 104 lan-
guages, struggles with agglutinative languages
(e.g., Finnish, Turkish) and scripts needing unique
segmentation (e.g., Khmer, Amharic), requiring tai-
lored tokenization. Thirdly, reliance on DBpedia
as a semantic schema overlooks culture-specific
concepts vital for low-resource languages, com-
plicating local ontology integration. These chal-
lenges underscore the need for hybrid augmenta-
tions, script-adaptive tokenization, and adaptable
knowledge graph integration in future research.
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Semantic type

Number of samples (test subset)

F1 (RuTaBERT)

F1 (CoLeM-bs32)

camera
employer
device
animal
magazine
continent
novel

law
wrestler
college
museum
firm
prefecture
road
quote

102 (4)
101 (10)
101 (8)
93 (7)
93 (9)
92 (8)
89 (11)
89 (9)
88 (5)
87 (5)
86 (4)
85 (6)
83 (10)
83 (6)
76 (7)

0.250
0.899
0.625
0.857
0.440
0.625
0.818
1.000
0.400
0.000
0.500
0.333
0.600
0.500
0.857

0.750
1.000
0.875
1.000
0.440
0.750
0.909
1.000
0.600
0.200
0.750
0.333
0.699
0.666
1.000

Table 4: Performance evaluations for the 15 rarest semantic types compared CoLeM-bs32 and RuTaBERT (best
training-set Macro F1 checkpoints). The results show CoLeM’s tabular representations outperform RuTaBERT
(Russian SOTA) on infrequent types and capture linguistic and structural patterns specific to Russian tables (15.1%
average Macro F1 gain over RuTaBERT).

B Appendix: Model evaluation after 10 and 30 training epochs

Table 5: Results of model evaluation after 10 and 30 training epochs. Experiments on CoLeM-bs32 and RuTaBERT
show CoLeM converges faster with 1-3% higher performance, enabling fewer training epochs while match-
ing/exceeding RuTaBERT results.

Model

RuTaBERT (10 epochs)
CoLeM-bs32 (10 epochs)
RuTaBERT (30 epochs)
CoLeM-bs32 (30 epochs)

Micro F1
0.952

0.966
0.964(+0.012)
0.969(+0.003)

Macro F1
0.856

0.888
0.904(+0.048)
0.910(+0.022)

Weighted F1
0.952

0.966
0.963(+0.011)
0.969(+0.003)
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