Low-Perplexity LLM-Generated Sequences and Where To Find Them

Arthur Wuhrmann!, Anastasiia Kucherenko?, Andrei Kucharavy®
'"Ecole Polytechnique Fédérale de Lausanne, Switzerland
*Institute of Entrepreneurship and Management, HES-SO Valais-Wallis, Switzerland
3Institute of Informatics, HES-SO Valais-Wallis, Switzerland

Correspondence: arthur.wuhrmann@epfl.ch

Abstract

As Large Language Models (LLMs) become in-
creasingly widespread, understanding how spe-
cific training data shapes their outputs is crucial
for transparency, accountability, privacy, and
fairness. To explore how LLMs leverage and
replicate their training data, we introduce a sys-
tematic approach centered on analyzing low-
perplexity sequences—high-probability text
spans generated by the model. Our pipeline
reliably extracts such long sequences across di-
verse topics while avoiding degeneration, then
traces them back to their sources in the training
data. Surprisingly, we find that a substantial
portion of these low-perplexity spans cannot
be mapped to the corpus. For those that do
match, we quantify the distribution of occur-
rences across source documents, highlighting
the scope and nature of verbatim recall and
paving a way toward better understanding of
how LLMs training data impacts their behavior.

1 Introduction

While Large Language Models (LLMs) are increas-
ingly applied across various domains, the ways
in which they leverage their training data during
inference remains only partially understood (Re-
view, 2024; Bender et al., 2021; Liang et al., 2024).
Research on training data attribution (TDA) in
LLMs (Carlini et al., 2021; Cheng et al., 2025)
aims to answer this question, but identifying which
specific parts of the data contribute to a model’s
output. TDA is considered essential for enhancing
transparency, effective debugging, accountability,
and addressing concerns related to privacy and fair-
ness in LLMs (Cheng et al., 2025; Akyurek et al.,
2022; Liu et al., 2025a).

Currently, there are two principal approaches for
TDA - causal and similarity-based. Causal TDA
uses direct experimental methods such retraining
and gradient-based techniques that quantify the
precise causal contribution of individual training

samples to model outputs (Guu et al., 2023; Kwon
et al., 2023; Pan et al., 2025; Akyurek et al., 2022;
Chang et al., 2024; Wu et al., 2024). While offering
theoretical guarantees about causality, their com-
putational cost increases dramatically with model
size, making them infeasible in practice.

Similarity-based TDA (Liu et al., 2025a; Car-
lini et al., 2021; Khandelwal et al., 2020; Deguchi
et al., 2025) identifies training samples that resem-
ble model outputs, assuming similar content likely
influenced generation. While similarity does not
guarantee causal influence and this attribution is
approximate, this approach is computationally ef-
ficient and scales well to large models, making it
feasible in practice. Similarity-based TDA includes
approaches such as nearest-neighbor searches in
embedding spaces and exact string matching for
verbatim recall. In this paper, we focus on the lat-
ter, which connects to the established field of nov-
elty (McCoy et al., 2023; Merrill et al., 2024) and
memorization in LLMs (Carlini et al., 2023b; Al-
Kaswan et al., 2024; Carlini et al., 2023a; Feldman
and Zhang, 2020; Prashanth et al., 2025), studying
instances where models produce verbatim recall
of training data. Recently, the first tool for effi-
cient TDA based on exact memorization was intro-
duced (Liu et al., 2025a), underscoring the practical
importance of such approaches.

In this paper, we study how low-perplexity se-
quences in LLM-generated output are connected to
its verbatim recall. Perplexity is a standard metric
used to evaluate a model’s ability to predict tokens,
with lower perplexity indicating higher confidence
in its predictions. It is widely employed for model
evaluation, fine-tuning, comparison and assessing
text generation quality. In the context of training
data attribution (TDA), there is a hypothesis that
long low-perplexity sequences suggest either de-
generation or verbatim copying from the training
data (Gao et al., 2019; Prashanth et al., 2025). We
aim to empirically test this statement, while propos-

774

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 774-783
July 28-29, 2025 ©2025 Association for Computational Linguistics

mailto:arthur.wuhrmann@epfl.ch

ing a method to better understand LLMs’ verbatim
recall through low-perplexity analysis.

We present an open-source pipeline! designed to
identify and trace low-perplexity spans in LLM out-
puts. By targeting specialized domains with rich,
distinctive terminology, our approach efficiently
extracts long, low-perplexity segments suitable for
in-depth analysis. These segments are then mapped
back to their origins using indexing and search
tools. Although we experimented with both the
well-established Elasticsearch (Gormley and Tong,
2015) and the recently emerged state-of-the-art In-
finigram (Liu et al., 2025b), we report only Infin-
igram results due to its superior scalability and
efficiency for large-scale mapping.

Our analysis provides deeper insights into how
LLMs recall and replicate information. First, we
observe that results vary depending on the topic of
LLM input, its representation in the training data,
and its degree of specialization. Second, we find
that a significant portion of low-perplexity spans,
ranging from 30% to 60%, cannot be matched to
the training data. For those that can be matched,
we further categorize different types of memoriza-
tion behaviors, noting that verbatim recall can arise
for various reasons. Finally, this classification al-
lows us to quantify that approximately 20% of low-
perplexity spans correspond to a number of docu-
ments small enough for manual review.

2 Experimental setup

LLM model and training data

To study low-perplexity sequences we use the
Pythia model (Biderman et al., 2023) with size
of 6.9 billion parameters trained on The Pile (Gao
et al., 2020), which transforms into 300 billion to-
kens using Pythia tokenizer (Biderman et al., 2023),
with a vocabulary size |V| = 50, 254.

Choosing topics and prompts

To follow our goal of finding low-perplexity se-
quences, we focus on keyword-specific topics for
this study. Therefore, we choose genetics, nuclear
physics, drugs, and cryptography, specialized
domains in which the team has experience to verify
the validity of LLM outputs. Since we work with
The Pile dataset, those topics are represented at
least as part of its Wikipedia subset.

'The code is available at https://github.com/
Reliable-Information-Lab-HEVS/HAIDI-Graphs

Crypt [ELIgELI the of

information so

encrypt

This accomplished
encryption . o i ﬂ string
used | to information .
] i ¢ i used [Rds information
using [EUN algorithm l encrypted is
uses ¥} rypti ke dec | rypt | the
information is

I information

then transmitted R4

L Crypt @ ography | is

information

log2(Perplexity)

o

.00 281

Figure 1: Visualization of a generated subsequence that
contains two different low-perplexity sequences longer
than 5 tokens. We have decryption key to decrypt
the information and string of characters that
is used to decrypt. Both having 9 tokens, they will
be splitin 9 + 1 — 6 = 4 windows of 6-contiguous
tokens each.

In total, for each topic, we select 40 articles
from the Wikipedia version included in the Pile
and extract a random quote consisting of 20 to 40
tokens. This quote serves as a prompt for the Pythia
model to complete and extend. For each prompt
we run 5 generations to average the results. This
approach provides 200 prompts per topic and 800
prompts in total.

LLM output generation and perplexities

LLMs generate output sequentially—token by
token—by sampling the next token based on its
logits values and key parameters: top;,, which re-
stricts choices to the top & most probable words;
top,,, which selects the smallest set of words with
a cumulative probability of p; and temperature 7',
which controls randomness. We set top,, = 20,
top,, = 0.8, and 7" = 0.7, with alternative configu-
rations discussed in Sec. 3.3.

The exact definition of the generation probability
of each token (x;) based on the previous tokens

(T<i) s
exp(zi/T)
Sty exp(z/T)
where z; are the raw logits and | V| is the vocabulary
size of the model. Then, the token perplexity is:
1

Pz;) = ——. 1
) = e ™

p(l’i|$<i) =

775

https://github.com/Reliable-Information-Lab-HEVS/HAIDI-Graphs
https://github.com/Reliable-Information-Lab-HEVS/HAIDI-Graphs

We define a low-perplexity sequence as a contigu-
ous part of the LLM output where each token has
a perplexity threshold logy(P) < 0.152 in base 2,
corresponding to a probability threshold of 0.9 or
higher. These sequences have different lengths, so
to compare the matches in the training data, we fo-
cus on their fixed-size subsequences. We call those
low-perplexity windows and focus our choice on
size of 6 tokens. The choice of a 6-token window is
justified as it is short enough to capture meaningful
low-perplexity spans while being long enough to
avoid random matches. Fig. 1 shows a visualization
of the generated tokens and perplexities values.

Matching to the training data and its quality

Finally, we map low-perplexity windows to the
training data. To achieve this, we use Infini-
gram (Liu et al., 2025b). Once a low-perplexity
window is matched to the training data, we estimate
the significance of its text. We do this using per-
plexity values (as defined in Equation 1), this time
without additional context (i.e., tokens preceding
the window), which is also known as standalone
perplexity. We denote it as

P, .. Topn) = 27 Sk Toga plil ok i1])
Low standalone perplexity indicates that the gener-
ated text is fluent, coherent, and resembles human-
written language (Gonen et al., 2024).

3 Results

3.1 Descriptive analysis of low-perplexity
windows

We begin by identifying all low-perplexity se-
quences across the four chosen topics. The warm-
up statistics in Table 1 show that the average
lengths of these sequences do not vary significantly
between topics, and our choice of a fixed window
size of 6 is sufficiently modest.

Topic ‘ L o
Crypt2ography | 12 11
Drugs 14 15
Genetics 14 14

Nuclear physics | 13 12

Table 1: L (resp. o) represents the average (resp. stan-
dard deviation) of the token lengths for low-perplexity
sequences with at least 6 tokens.

From selected low-perplexity sequences, we
pass a sliding window of 6 tokens and stride 1

and proceed to our main interest — low-perplexity
windows matched to the training data. We denote
the number of occurances by c. Figure 2 presents
the comparison of windows at least with one match
across different topics. We observe having signifi-
cantly more of long low-perplexity sequences on
drugs. We believe this is due to the presence of
repetitive long drug names and their strong con-
nection to biomedical literature, which is widely
represented in the Pile dataset through the inclu-
sion of PubMed. On the other side, it is likely that
nuclear physics is less present in the Pile, which
explains the lower number of counts.

104 T

,;103

3

él()-)

&

=

= 10!

I s e

Drugs Genetie® - p‘r\‘lé‘cs

Crvpxo%"‘“’w

e
Topic

Figure 2: Boxplots comparing the number of matches of
low-perplexity windows that occur in the training data,
across different topics.

Above, only windows with at least one exact
match in the training data are considered. While
one might expect low-perplexity windows to almost
always have matches, we verify this experimentally
(Table 2). Surprisingly, only 40% of low-perplexity
windows have at least one exact match (N q). We
also observe varying match counts across topics,
likely due to differences in their specialization and
corpus representation.

Topic ‘ N Nc>0 Nc>0/N Nrep/N
Cryptography 1336 505 38% 32%
Drugs 988 659 67% 7.9%
Genetics 1337 481 36% 29%
Nuclear physics | 1040 264 25% 15%
Total 4701 1909 41% 21%

Table 2: The total number of low-perplexity windows
N for each topic, number and percentage of those win-
dows that have exact matching the training data N, .
Niep/N is the percentage of low-perplexity sequences
repeating the prompt (see Appendix C).

776

Finally, examining the matched windows, we
find that a significant fraction partially repeats the
prompt (Nrep). We suspect this is due to the spe-
cialized keywords in the prompt and therefore we
retain these repetitions for further analysis. Ap-
pendix C presents an example of such repetition.

3.2 The nature of low-perplexity sequences

Using two additional measures, we explore the be-
haviors exhibited by the model when generating
low-perplexity sequences (Figure 3). First, we re-
visit the concept of stand-alone perplexity to assess
how human-like the generated text appears. Sec-
ond, we categorize the low-perplexity windows into
four groups based on their number of matches in
the training data (c), reflecting different recall and
generalization behaviors. Since these behaviors
can overlap, the group boundaries are not sharply
defined. Therefore, in Figure 3, we intentionally
use a color gradient to illustrate the smooth transi-
tion between categories. While we indicate specific
thresholds for the match count c below, these val-
ues are adjustable and intended to aid interpretation
rather than impose strict divisions. Particular exam-
ples of each behavior can be found in Appendix B.

20
. . STH
; . .) . MEM
15 - - SEG
. FET

log,(Standalone Perplexity P)
ot =

o

01 10 100 10 10' 10° 100
Infinigram count ¢

Figure 3: Illustration of the low-perplexity sequences,
for the Cryptography topic.

¢ Synthetic coherence (¢ = 0): These win-
dows are synthetically generated by the model
without any exact matches in the training data.
Interestingly, the stand-alone perplexities vary
widely, including high values. However, as
shown in Appendix B, even the generations
with the highest perplexity scores remain co-
herent and are not non-sensical.

* Memorization (0 < ¢ < 5) The model
has generated text containing highly specific

knowledge, which can be traced back with
high precision to its origins in the training
data. Such traceability is particularly valu-
able for identifying instances of private and
sensitive data leakage, memorized and repro-
duced by the model. An example is given in
Appendix D.

Segmental replication (5 < ¢ < 50) These
windows contain relatively niche information
that appears across multiple sources, often re-
flecting standardized phrases or terminology
within specific domains. Alongside memoriza-
tion, segmental replication helps efficiently
trace LLM outputs to their origins, revealing
how specialized knowledge is represented.

Frequently encountered text (50 < ¢) These
windows correspond to common phrases
or widely used expressions that appear fre-
quently across many documents in the train-
ing data. When c becomes very large, it typ-
ically reflects standardized text such as legal
disclaimers, licensing terms or HTML tags
(i.e., <div><\div>), indicating heavy repeti-
tion across the corpus.

While the thresholds of 5 and 50 were chosen
arbitrarily, fixing them enables consistent counting
and comparison across topics, as shown in Table 3.
Notably, around 20% of low-perplexity windows
fall into the memorization and segmental replica-
tion categories, matching to a number of documents
small enough to be manually reviewed.

Topic STH MEM SEG FET
Cryptography [62% 11% 13% 14%
Drugs 33% 7.5% 9.3% 50%
Genetics 64% T.7% 11% 17%

Nuclear physics | 75% 8.1% 9.3% 8%

Table 3: Distribution of categories across topics. Cat-
egories: Synthetic coherence (STH), Memorization
(MEM), Segmental replication (SEG), and Frequently
encountered text (FET).

3.3 LLM size and its generation parameters

In the previous experiments, we used the Pythia-
6.98 model with fixed generation parameters, as
described in Section 2. In this section, we repeat
the experiments with alternative model settings and
justify our initial choice.

777

First, we replicate the experiments across the
Pythia model scaling suite (Table 4). As model
size increases, we observe a clear drop in both
the number of low-perplexity windows and their
matches to the training data. This supports our
choice of the 6.9B model, which offers more mean-
ingful responses, while any matching results would
only improve in smaller models.

Size N Neo Nsg/N Nep P
70M | 8528 2874 34% 118 9.2
160M | 3676 1306 36% 428 8.4
410M | 2274 716 31% 470 8.4
1B 2766 878 32% 752 8.6
14B | 2123 673 32% 334 82
28B | 1714 488 28% 402 8.6
6.8B | 1337 481 36% 386 8.5

Table 4: Number of low-perplexity sequences and
matches when varying the model sizes. Done on the
Genetics topic.

Further, we study the impact of varying the tem-
perature parameter, which controls the LLM gener-
ation randomness (Table 5).

A

T N Nc>0 N>O/N Nrep P
0.2 | 8787 2908 33% 743 8.7
0.3 | 6127 1918 31% 589 8.5
0.4 | 4523 1461 32% 598 8.9
0.5 | 3297 1091 33% 560 8.8
0.6 | 1913 659 34% 310 8.6
0.7 | 1337 481 36% 386 8.5

Table 5: Number of low-perplexity sequences and
matches when varying the temperature. Done on the
Genetics topic.

Lower temperature makes the model more de-
terministic, favoring high-probability tokens. We
observe that it leads to a greater number of low-
perplexity windows, however increases degenera-
tion and more repetitive patterns in the LLM out-
puts. Also, interestingly, the overall percentage of
non-zero matches, as well as the stand-alone per-
plexity, remains largely unchanged. These results
explain our preference for a temperature value of
0.7 — it provides a meaningful number of low-
perplexity windows for analysis while reducing the
extent of repetition.

4 Conclusion

We proposed a pipeline to identify and analyze
low-perplexity sequences in LLM outputs. We cat-
egorized sequences by their match frequency in the
training data and identified four distinct behaviors.
We also conducted a statistical analysis of these cat-
egories, notably finding that many low-perplexity
sequences do not match the corpus at all. This
approach improves understanding of how models
recall learned information and, in some cases, en-
ables more efficient training data attribution.

778

5 Limitations

Our threshold selection approach in Figure 3 relies
on estimations that require more rigorous exami-
nation. The absence of clear clustering suggests
these thresholds may represent gradual transitions
rather than abrupt boundaries. We also found that
high standalone perplexity does not consistently
indicate nonsensical text (see Appendix B), chal-
lenging its reliability as a degeneration detector.
For future work, we encourage exploring alterna-
tive evaluation methods, such as model-as-a-judge
approaches (Zheng et al., 2023), to more accurately
identify text degeneration.

A methodological limitation worth addressing
is the potential bias introduced by our prompt gen-
eration technique. Since some prompts originate
from the Pile dataset, this artificially inflates cer-
tain sequence counts. Further studies incorporating
manually crafted prompts would help quantify and
mitigate this bias.

Additionally, trying different model sizes, and in-
cluding a wider set of prompts, from non-scientific
domains without specific keywords would allow to
state the limitations more clearly.

Finally, we note that our model uses the
Pythia tokenizer, whereas Infinigram relies on
the LLaMA-2 tokenizer. As a result, certain
spans—especially verbatim sequences—may fail
to align across models despite being present in the
training data. We recommend performing indexing
with the same tokenizer used at inference time to
avoid such mismatches.

Our pipeline may serve as an additional tool
for Training Data Attribution (TDA) investigations.
We anticipate future research exploring the rela-
tionships between low-perplexity windows and se-
quences, as briefly discussed in Appendix D. Addi-
tionally, comparative analyses between our method
and other state-of-the-art TDA approaches would
be valuable for establishing best practices in this
emerging field, alongside with efficiency measure-
ments.

6 Ethics statements

Training data extraction is a threat to user privacy,
as this can be used to find Personally Identifiable In-
formation (PII) such as leaked passwords, address
or contact information (Brown et al., 2022). We
try to mitigate this in the following way. First, we
work on a publicly available model, and use exam-
ples from Wikipedia, also publicly available. How-

ever, we acknowledge that the Pile dataset, which
was used to train the Pythia models, contains copy-
righted material (Monology, 2021). Given these
concerns, we advocate for future research to pri-
oritize copyright-compliant datasets that respect
creators’ intellectual property rights while advanc-
ing our understanding of model behavior. On the
other hand, our work contribute to training data
transparency, and can help to detect copyright in-
fringement. We also recall that our method requires
to possess an indexing of the training data, which is
not the case for the state-of-the-art models. We be-
lieve that the impact of this paper does not present
direct major risks and encourage further work in
this direction.

For transparency, we give an estimation of the
CO3 emitted by the computation. We used ap-
proximately 120 hours of GPU with an average
consumption of 250 W, and considering the CO2
emissions per kilowatt-hour in the region we are lo-
cated in to be 38.30 gCO,eq/kWh (Power, 2024),
this totals to 120 x 0.25 x 38.30 = 1.1 kgCO,eq.

Finally, additional generative Al tools were used
solely to assist with reformulating parts of the text
and code for improved clarity and readability.

Acknowledgments

The authors are thankful to Alexander Sternfeld
and Prof. Antoine Bosselut for their valuable input
on the paper, and to the anonymous reviewers of
ACL 2025 for their constructive comments. We ad-
ditionally thank Prof. Bosselut for hosting Arthur
Wuhrmann (AW) in his lab during the course of
this work. Andrei Kucharavy (ADK) and Anas-
tasiia Kucherenko (AAK) are supported by the
CYD Campus, armasuisse W+T, ARAMIS AR-
CYD-C-025 grant.

Contributions
* Conceptualization: AAK, ADK;
* Methodology, Software, Data Curation, Visu-

alization, and Writing - Original Draft: AW,
ADK;

* Investigation, Writing - Review & Editing:
AW, AAK, ADK;

* Supervision, Project Administration and Fund-
ing Acquisition: ADK.

779

References

Ekin Akyurek, Tolga Bolukbasi, Frederick Liu, Bin-
bin Xiong, Ian Tenney, Jacob Andreas, and Kelvin
Guu. 2022. Towards tracing knowledge in language
models back to the training data. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 2429-2446, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Ali Al-Kaswan, Maliheh Izadi, and Arie van Deursen.
2024. Traces of memorisation in large language mod-
els for code. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering,
ICSE ’24, page 1-12. ACM.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT 21, page 610-623, New York, NY,
USA. Association for Computing Machinery.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling. Preprint, arXiv:2304.01373.

Hannah Brown, Katherine Lee, Fatemehsadat
Mireshghallah, Reza Shokri, and Florian Tramer.
2022. What does it mean for a language model to
preserve privacy? Preprint, arXiv:2202.05520.

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew
Jagielski, Vikash Sehwag, Florian Tramer, Borja
Balle, Daphne Ippolito, and Eric Wallace. 2023a.
Extracting training data from diffusion models.
Preprint, arXiv:2301.13188.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2023b. Quantifying memorization across neural lan-
guage models. Preprint, arXiv:2202.07646.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ul-
far Erlingsson, Alina Oprea, and Colin Raffel. 2021.
Extracting training data from large language models.
Preprint, arXiv:2012.07805.

Tyler A. Chang, Dheeraj Rajagopal, Tolga Bolukbasi,
Lucas Dixon, and Ian Tenney. 2024. Scalable in-
fluence and fact tracing for large language model
pretraining. Preprint, arXiv:2410.17413.

Deric Cheng, Juhan Bae, Justin Bullock, and David
Kristofferson. 2025. Training data attribution (tda):
Examining its adoption & use cases. Preprint,
arXiv:2501.12642.

Hiroyuki Deguchi, Go Kamoda, Yusuke Matsushita,
Chihiro Taguchi, Kohei Suenaga, Masaki Waga, and
Sho Yokoi. 2025. Softmatcha: A soft and fast pattern
matcher for billion-scale corpus searches. Preprint,
arXiv:2503.03703.

Vitaly Feldman and Chiyuan Zhang. 2020. What neural
networks memorize and why: discovering the long
tail via influence estimation. In Proceedings of the
34th International Conference on Neural Information
Processing Systems, NIPS *20, Red Hook, NY, USA.
Curran Associates Inc.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-
Yan Liu. 2019. Representation degeneration prob-
lem in training natural language generation models.
Preprint, arXiv:1907.12009.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
Preprint, arXiv:2101.00027.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A.
Smith, and Luke Zettlemoyer. 2024. Demystifying
prompts in language models via perplexity estima-
tion. Preprint, arXiv:2212.04037.

Clinton Gormley and Zachary Tong. 2015. Elastic-
search: The Definitive Guide. O’Reilly Media.

Kelvin Guu, Albert Webson, Ellie Pavlick, Lucas Dixon,
Ian Tenney, and Tolga Bolukbasi. 2023. Simflu-
ence: Modeling the influence of individual train-
ing examples by simulating training runs. Preprint,
arXiv:2303.08114.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. Preprint, arXiv:1911.00172.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou.
2023. Datainf: Efficiently estimating data influ-
ence in lora-tuned llms and diffusion models. CoRR,
abs/2310.00902.

Weixin Liang, Yaohui Zhang, Zhengxuan Wu, Haley
Lepp, Wenlong Ji, Xuandong Zhao, Hancheng Cao,
Sheng Liu, Siyu He, Zhi Huang, Diyi Yang, Christo-
pher Potts, Christopher D Manning, and James Y.
Zou. 2024. Mapping the increasing use of llms in
scientific papers. Preprint, arXiv:2404.01268.

Jiacheng Liu, Taylor Blanton, Yanai Elazar, Sewon Min,
YenSung Chen, Arnavi Chheda-Kothary, Huy Tran,
Byron Bischoff, Eric Marsh, Michael Schmitz, Cas-
sidy Trier, Aaron Sarnat, Jenna James, Jon Borchardt,
Bailey Kuehl, Evie Cheng, Karen Farley, Sruthi
Sreeram, Taira Anderson, and 12 others. 2025a. Ol-
motrace: Tracing language model outputs back to tril-
lions of training tokens. Preprint, arXiv:2504.07096.

780

https://doi.org/10.18653/v1/2022.findings-emnlp.180
https://doi.org/10.18653/v1/2022.findings-emnlp.180
https://doi.org/10.1145/3597503.3639133
https://doi.org/10.1145/3597503.3639133
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2202.05520
https://arxiv.org/abs/2202.05520
https://arxiv.org/abs/2301.13188
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2410.17413
https://arxiv.org/abs/2410.17413
https://arxiv.org/abs/2410.17413
https://arxiv.org/abs/2501.12642
https://arxiv.org/abs/2501.12642
https://arxiv.org/abs/2503.03703
https://arxiv.org/abs/2503.03703
https://arxiv.org/abs/1907.12009
https://arxiv.org/abs/1907.12009
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2212.04037
https://arxiv.org/abs/2212.04037
https://arxiv.org/abs/2212.04037
https://www.oreilly.com/library/view/elasticsearch-the-definitive/9781449358532/
https://www.oreilly.com/library/view/elasticsearch-the-definitive/9781449358532/
https://arxiv.org/abs/2303.08114
https://arxiv.org/abs/2303.08114
https://arxiv.org/abs/2303.08114
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://doi.org/10.48550/ARXIV.2310.00902
https://doi.org/10.48550/ARXIV.2310.00902
https://arxiv.org/abs/2404.01268
https://arxiv.org/abs/2404.01268
https://arxiv.org/abs/2504.07096
https://arxiv.org/abs/2504.07096
https://arxiv.org/abs/2504.07096

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin
Choi, and Hannaneh Hajishirzi. 2025b. Infini-gram:
Scaling unbounded n-gram language models to a tril-
lion tokens. Preprint, arXiv:2401.17377.

R. Thomas McCoy, Paul Smolensky, Tal Linzen, Jian-
feng Gao, and Asli Celikyilmaz. 2023. How much
do language models copy from their training data?
evaluating linguistic novelty in text generation using
RAVEN. Transactions of the Association for Compu-
tational Linguistics, 11:652—670.

William Merrill, Noah A. Smith, and Yanai Elazar. 2024.
Evaluating n-gram novelty of language models using
rusty-dawg. Preprint, arXiv:2406.13069.

Monology. 2021. Pile uncopyrighted. https:
//huggingface.co/datasets/monology/
pile-uncopyrighted. Accessed: May 17,
2025.

Yijun Pan, Taiwei Shi, Jieyu Zhao, and Jiaqi Ma. 2025.
Detecting and filtering unsafe training data via data
attribution.

Low-Carbon Power. 2024. Carbon intensity of electric-
ity in switzerland. Accessed: May 17, 2025.

USVSN Sai Prashanth, Alvin Deng, Kyle O’Brien,
Jyothir S V, Mohammad Aflah Khan, Jaydeep Borkar,
Christopher A. Choquette-Choo, Jacob Ray Fuehne,
Stella Biderman, Tracy Ke, Katherine Lee, and
Naomi Saphra. 2025. Recite, reconstruct, recollect:
Memorization in Ims as a multifaceted phenomenon.
Preprint, arXiv:2406.17746.

MIT Technology Review. 2024. Large language mod-
els can do jaw-dropping things. but nobody knows
exactly why. Accessed: 2025-05-18.

Kangxi Wu, Liang Pang, Huawei Shen, and Xueqi
Cheng. 2024. Enhancing training data attribution
for large language models with fitting error consid-
eration. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 14131-14143, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

781

https://arxiv.org/abs/2401.17377
https://arxiv.org/abs/2401.17377
https://arxiv.org/abs/2401.17377
https://doi.org/10.1162/tacl_a_00567
https://doi.org/10.1162/tacl_a_00567
https://doi.org/10.1162/tacl_a_00567
https://doi.org/10.1162/tacl_a_00567
https://arxiv.org/abs/2406.13069
https://arxiv.org/abs/2406.13069
https://huggingface.co/datasets/monology/pile-uncopyrighted
https://huggingface.co/datasets/monology/pile-uncopyrighted
https://huggingface.co/datasets/monology/pile-uncopyrighted
https://doi.org/10.48550/arXiv.2502.11411
https://doi.org/10.48550/arXiv.2502.11411
https://lowcarbonpower.org/region/Switzerland
https://lowcarbonpower.org/region/Switzerland
https://arxiv.org/abs/2406.17746
https://arxiv.org/abs/2406.17746
https://www.technologyreview.com/2024/03/04/1089403/large-language-models-amazing-but-nobody-knows-why/
https://www.technologyreview.com/2024/03/04/1089403/large-language-models-amazing-but-nobody-knows-why/
https://www.technologyreview.com/2024/03/04/1089403/large-language-models-amazing-but-nobody-knows-why/
https://doi.org/10.18653/v1/2024.emnlp-main.782
https://doi.org/10.18653/v1/2024.emnlp-main.782
https://doi.org/10.18653/v1/2024.emnlp-main.782
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Visualization of degeneration

While we did not include degeneration region in
Fig. 3, we still encountered it during our experi-
ments. Here, by degeneration, we refer to undesir-
able patterns in generated text, such as nonsensi-
cal or incoherent outputs, excessive repetition, and
looping behaviors—where the model repeatedly
generates the same tokens or phrases in a cyclic
manner. Fig. 4 shows an example of it. This ex-
clusion stemmed from two observations: the repet-
itive patterns extended beyond our window size
parameters, and the degenerated text displayed sur-
prisingly low standalone perplexity values. These
findings highlight a limitation in using perplexity-
based metrics alone for degeneration detection and
suggest the need for complementary approaches.

Token Perplexity Visualization

Token Perplexities:

m ha BT 5 for this M , it [a
low solubility the . The dose .
sgmOme -0 -

ant |l that a @ QACENE patients

iseases l The |drug available

formulations

5
2
2
=

5

QLY dose

ol

concentration 100

B8

ot

307

Figure 4: Example of the perplexities of an output that
degenerates.

B Examples of texts per category.

Tab. 6 presents examples of low-perplexity win-
dows belonging to different categories. We also
added example of high perplexities.

782

category text

Frequently encoun-
tered text

— synthetic cannabinoid.

— a function that takes as input an
— Standards and Technology
(NIST)

Memorization — alcohol, sugar, water, and

— to the evaluation of a crypto-
graphic

— of information that is used to en-

crypt

Segmental replica- — has been defined as "the study
tion
— used for PET and SPECT imag-
ing
— understanding of the genetic ba-
sis of common

Synthetic coherence — and genetics. fireball starts to
form. The

— the exchanged keys are computa-
tionally indistinguishable from

— . Developmental genetics is also
the

High stan-
dalone perplexity

(logy(P) > 12)

— random cipher digit stream (key

—1ion CN — is also being removed
— a sudden influx of fast neutrons

Table 6: Examples of text fragments and their cate-
gories.

C Example of repetition.

We show here an example of the model repeating
the prompt. The repetition is highlighted in red.
The end has been cut for better readability.

Example of Prompt Repetition

Prompt:

There are a number of standards re-
lated to cryptography. Standard algo-
rithms and protocols provide a focus
for study; standards for popular ap-
plications attract a large amount of
cryptanalysis.

Output:

Standards provide a focus for crypt-
analysis. Standards for popular ap-
plications attract a large amount of
cryptanalysis. There are a number
of standards related to cryptogra-
phy. Standard algorithms and pro-
tocols provide a focus for study; stan-
dards for popular applications attract
a large amount of cryptanalysis. Stan-
dards provide a focus for cryptanal-
ysis. Standards for popular applica-
tions attract [...]

D Surrounding of sequences match

When a sequence has a low number of matches (in
the memorization part, see Sec. 3.2) in the training
data, one can look at the original document con-
taining the sequence. Below is an example. The
part in bold has one exact match to the Pile, and
the extract is shown below.

Segment match

Prompt:

A message authentication code
(MAQC) is a short piece of informa-
tion used to authenticate a message.

Output:

The MAC is a function of a secret
key and the message. The message is
the information being protected. The
key is a secret known only to the
sender and receiver. The MAC is a
function of the key and the message.
The MAC is a short piece of informa-
tion used to authenticate a message.

[...]

Document matching:

[...] HMAC is a well-known algo-
rithm for generating a message au-
thentication code (MAC) that can be
used to verify the integrity and au-
thenticity of a message.

This class requires Qt 4.3.0 or
greater.

To verify a message, the sender cre-
ates a MAC using a key, which is a se-
cret known only to the sender and
recipient, and the content of the mes-
sage. This MAC is then sent along
with the message.[...]

The document comes from GitHub. Interest-
ingly, while the low-perplexity window in itself
does not refer to MAC, the matching document
is talking about MAC. Although further investiga-
tion is required to assess this, it might indicate that
the context between low-perplexity sequences that
match to the training data is related to the original
document.

783

