
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 760–773

July 28-29, 2025 ©2025 Association for Computational Linguistics

Chart Question Answering from Real-World Analytical Narratives

Maeve Hutchinson1, Radu Jianu1, Aidan Slingsby1, Jo Wood1, Pranava Madhyastha1,2

1City St George’s, University of London, 2The Alan Turing Institute
Correspondence:{maeve.hutchinson, pranava.madhyastha}@citystgeorges.ac.uk

Abstract
We present a new dataset for chart question
answering (CQA) constructed from visualiza-
tion notebooks. The dataset features real-world,
multi-view charts paired with natural language
questions grounded in analytical narratives. Un-
like prior benchmarks, our data reflects ecolog-
ically valid reasoning workflows. Benchmark-
ing state-of-the-art multimodal large language
models reveals a significant performance gap,
with GPT-4.1 achieving an accuracy of 69.3%,
underscoring the challenges posed by this more
authentic CQA setting.

1 Introduction

Data visualizations are an essential modality for
communicating complex information about data.
Alongside natural language, they serve as a key
medium for communication across domains. As
such, the ability to interpret and reason about visu-
alizations is a crucial skill.

As multimodal large language models (MLLMs)
evolve beyond simple perception tasks towards be-
coming visual assistants, there is growing interest
in their ability to perform visual reasoning over
structured data, including charts and other forms
of data visualization. Tasks such as Chart Question
Answering (CQA) have emerged for benchmarking
a model’s visualization reasoning capabilities.

In this work, we introduce a new dataset for CQA
that aims to reflect the complexity of real-world
data analysis. 1 The dataset is constructed from
student authored visualization notebooks, which
combine explanatory analytical narrative with cus-
tom visualizations. Unlike existing CQA datasets,
our dataset is grounded in ecologically valid ana-
lytical workflows. To situate this contribution, we
first review prior work on visualization literacy and
CQA. We then detail our data collection and ques-
tion generation process, describing the structure

1Dataset available at: https://huggingface.co/
datasets/maevehutch/realworld-chartqa

and composition of the dataset. Finally, we report
some initial benchmarking results using state-of-
the-art MLLMs.

2 Related Work

Visualization Literacy datasets such as the visual-
ization literacy assessment test (VLAT) (Lee et al.,
2017) were initially created to assess human un-
derstanding of data visualizations. Recently, they
have also been applied to probe the visualization
literacy of MLLMs (Bendeck and Stasko, 2024).
These manually curated datasets present small sets
of charts paired with multiple-choice questions that
probe the ability to perform specific analytic tasks
such as retrieving values, identifying trends, or
making comparisons. Whilst these tasks seem to
mimic real-world analytical workflows (Amar et al.,
2005), the hand-crafted design of these datasets lim-
its their ability to accurately reflect the complexity
of real-world visualization reasoning.

Chart Question Answering (CQA) is the task
of answering a natural language question about a
visualization image. CQA datasets are designed
to benchmark the chart understanding capabilities
of models. Early CQA benchmarks such as Fig-
ureQA (Kahou et al., 2018), DVQA (Kafle et al.,
2018), and LEAF-QA (Chaudhry et al., 2020) used
template-based questions and synthetically gener-
ated tasks. Again, these controlled settings are
limited.

More recently, CQA datasets have moved toward
real-world visualization images. Kim et al. (2020)
and ChartQA (Masry et al., 2022) introduced chart
images scraped from real-world reports and online
sources. However, these datasets still only have
questions that refer to a single chart, and do not in-
clude visualizations with multiple views or interac-
tive elements. These datasets begin to reflect more
realistic evaluation settings, but still do not com-
pletely capture visualization as done in-practice,
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where users often engage with visualizations that
have multiple views, such as dashboards or linked
visualizations.

Some newer datasets begin to address this.
CharXiv (Wang et al., 2024) includes charts com-
posed of multiple sub views, although its questions
still focus on one image. MultiChartQA (Zhu et al.,
2025) allows questions to target multiple related
visualizations, moving closer to the kinds of cross-
chart reasoning analysts perform in practice. How-
ever, these datasets are still composed solely of
static visualizations.

Another important distinction lies in how ques-
tions are generated. Some datasets, such as VLAT
(Lee et al., 2017) and MultiChartQA (Zhu et al.,
2025), rely exclusively on human-authored ques-
tions. While this approach ensures high-quality
queries aligned with human reasoning, the scal-
ability of dataset construction is limited. Con-
versely, other datasets like ChartQA (Masry et al.,
2022) and CharXiv (Wang et al., 2024) adopt semi-
automatic approaches, using models to produce
questions alongside human validation, enabling
larger datasets across more images.

Notably, previous datasets, whether template, hu-
man or machine-authored, are generated from the
visualization image, caption, or from post hoc chart
summaries. This often as a result of data collec-
tion processes that extract chart images in isolation,
often scraped from online sources, removed from
the surrounding analytical narrative. Due to the
nature of source materials, this analytical context
often does not exist at all and is left entirely im-
plicit, available only from the visual context. The
nature of these online sources may also raise copy-
right concerns due to the use of third-party images
without explicit permission.

3 Methods

3.1 Data Collection

Our dataset is derived from literate visualization
(litvis) notebooks, structured markdown documents
that combine narrative analysis, code, embedded
datasets, and inline visualizations (Wood et al.,
2019). The notebooks were authored by under-
graduate and postgraduate students as part of their
final coursework for a 10-week data visualization
module. These notebooks offer an ecologically
valid window into real-world analytical practice:
students independently selected datasets to analyze,
posed research questions, and designed custom vi-

sualizations to explore those questions. These note-
books surface articulations of analytical reasoning
that are typically left implicit in other sources of
visualizations, providing a rich basis for question
generation. See appendix D for an example note-
book.

We applied several filtering steps to ensure data
quality. Submissions were excluded if they lacked
visualizations, included personally identifiable in-
formation, lacked sufficient narrative, or otherwise
failed to meet basic quality thresholds. After filter-
ing, we retained 22 notebooks for further process-
ing.

From each retained notebook, we extracted two
primary sources of data: the analytical narrative
written by the student, and the corresponding vi-
sualizations. Visualizations were captured by ren-
dering each notebook in HTML and using a head-
less browser to take screenshots of the embedded
figures. Interactive visualizations were present in
many of the notebooks, a feature missing from
many sources of visualizations in CQA. To par-
tially capture these interactive dynamics, we devel-
oped a method for capturing some interactive views
statically. For visualizations with discrete interac-
tive controls, such as radio buttons or drop-down
menus, we systematically enumerated all categor-
ical options and recorded screenshots of each in-
teractive view. This allowed us to collect multiple
views of the same visualization, reflecting user-
driven analytical actions that are absent in existing
datasets. To prepare the narrative for question gen-
eration, we segmented the extracted content into
chunks of at most 200 words.

3.2 Question Generation
We structured our dataset according to established
analytical task taxonomies from visualization re-
search to ensure that the questions in our dataset
reflect realistic analytical goals. Specifically, we
adopt the eight task categories defined in the VLAT
(Lee et al., 2017), which were curated from prior
task taxonomies by Amar et al. (2005) and Chen
et al. (2009). These tasks are: Retrieve Value, Find
Extremum, Find Correlations, Make Comparisons,
Characterize Distribution, Determine Range, Find
Anomalies, and Find Clusters.

Our question generation pipeline centers on the
analytical narrative authored by students. This ap-
proach is inspired by Changpinyo et al.’s (2022)
work in visual question answering (VQA), who
demonstrate the viability of generating high-quality
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Dataset Visualizations Questions

Real-World # Chart Types Multi/Interactive Unanswerable Narrative Context

LeafQA (2020) ✗ 6 ✗/✗ ✗ ✗

Kim et al. (2020) ∼ 2 ✗/✗ ✗ ✗

ChartQA (2022) ✓ 3 ✗/✗ ✗ ✗

CharXiv (2024) ✓ unbounded ✓/✗ ✓ ✗

MultiChartQA (2025) ✓ unbounded ✓/✗ ✓ ✗

Ours ✓ unbounded ✓/✓ ✓ ✓

Table 1: Comparison between our dataset and existing chart question-answering datasets, grouped by visualization
and question characteristics.

question-answer pairs from language context rather
than visual context. This approach allows us to
generate meaningful, grounded questions using an
LLM without parsing the chart images.

For each segment, we prompted an LLM to gen-
erate a question-answer pair grounded in the con-
text. The prompt provided a short description of
each task category with representative examples.
The model was asked to extract a relevant quote
from the narrative, use it to generate a question-
answer pair, and classify the pair according to the
task taxonomy. The quote extraction allows us to
verify the fidelity of the pair later in our validation
process.

We then prompted the LLM to generate mul-
tiple choice distractors. The model received the
narrative context, question-answer pair, and task
classification, and was instructed to generate three
plausible but incorrect alternative answers. The
distractors were designed to match the structure
and domain of the correct answer. Additionally, we
appended a fifth answer option: "Cannot be deter-
mined from the visualization(s)". This serves both
as a realistic distractor and also as a correct answer
choice for some questions, which will be deter-
mined during the validation process. Full prompt
templates are provided in appendix B.

This pipeline yielded an initial set of 429
multiple-choice QA pairs, each grounded in the
analytical context and aligned to an analytical task.
These pairs then underwent a rigorous manual vali-
dation process.

3.3 Human Validation

All 429 LLM-generated QA pairs underwent strin-
gent human validation by a data visualization ex-
pert to ensure the quality and reliability of the
dataset. Each pair was reviewed against a set of
rejection criteria, targeting two primary sources of
invalid questions: (1) misalignment with the avail-

able visualizations, and (2) quality issues arising
from the narrative context or generation process.

The first criterion focused on visualization align-
ment. Some visualizations were unable to render
due to the unavailability of the underlying datasets,
and because our QA generation process operated
on the narrative context alone, some generated pairs
referred to visualizations that could not be recov-
ered during our data collection pipeline. Any QA
pair that could not be reliably related to at least one
available visualization was excluded.

The second rejection criterion addressed the
scope of the narrative context and generation qual-
ity. Some students describe aspects unrelated to
analytical insights, such as dataset collection chal-
lenges, findings they found surprising, or general
reflections. While these are interesting and valu-
able parts of the students’ process, they are out of
scope for this dataset and so QA pairs generated
from this context were excluded.

During validation, we also explicitly associated
each accepted QA pair with the specific views it ref-
erenced, as each notebook often included multiple
charts. In some cases, questions required infor-
mation that was only visible interactive views not
captured, often tooltip values. When a question
did relate to an available chart but remained unan-
swerable due to missing context, we retained it and
assigned it "cannot be determined".

4 Dataset Analysis

Following validation, we retained 205 high-quality
QA pairs, corresponding to 103 visualization im-
ages. 75 questions, 36.6%, have multiple visualiza-
tion images or multiple views. 33 questions, 16.1%
of questions are unanswerable. Table 1 provides a
comparison of our dataset to previous work across
key visualization and question characteristics.

Table 2 provides a breakdown of question types
in the dataset by visualization task. The observed
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Task Count GPT-4.1 Qwen2.5-VL-32B Qwen2.5-VL-7B

All 205 69.27% 56.59% 31.71%

Retrieve Value 68 76.47% 55.88% 25.00%
Find Extremum 55 69.09% 60.00% 36.36%

Find Correlations 22 72.73% 54.55% 27.27%
Make Comparisons 22 50.00% 59.09% 50.00%

Characterize Distribution 15 66.67% 46.67% 20.00%
Determine Range 12 75.00% 58.33% 41.67%

Find Anomalies 9 44.44% 55.56% 33.33%
Find Clusters 2 100.00% 50.00% 0.00%

Table 2: Accuracy by task type for GPT-4.1 and Qwen2.5-VL models. The top row reports overall accuracy across
all tasks, followed a task breakdown, ordered by task frequency.

imbalance reflects the natural distribution of an-
alytical strategies employed by students in their
projects. Tasks such as Retrieve Value and Find
Extremum are most common, suggesting a strong
emphasis on identifying specific data points or ex-
treme values. Conversely, higher-order tasks like
Find Clusters or Find Anomalies are relatively rare.

5 Model Evaluation

We evaluated the performance of two state-of-the-
art vision-language models on our dataset: Ope-
nAI’s proprietary GPT-4.1 (OpenAI, 2025) and Al-
ibaba’s open-weight Qwen2.5-VL models at two
parameter scales (7B and 32B) (Bai et al., 2025).
Each model was presented with the question and
corresponding visualization(s) and tasked with se-
lecting the correct answer from the five multiple-
choice options.

As shown in Table 2, GPT-4.1 achieved the high-
est accuracy at 69.27%, outperforming both ver-
sions of Qwen2.5-VL. The 32B variant of Qwen2.5-
VL attained a moderate accuracy of 56.59%, while
the 7B variant lagged significantly at 31.71%. This
performance disparity underscores the impact of
model scale on complex visual question answering
tasks. Appendix C provides some examples from
our dataset alongside GPT4.1’s responses.

Table 2 presents model accuracy broken down by
question type. GPT-4.1 demonstrates consistently
strong performance across most tasks, exceeding
66% accuracy in five of the eight categories. It
performs particularly well on Retrieve Value and
Determine Range, tasks that rely on precise visual
extraction, suggesting strong literal comprehension
of chart elements. However, its performance drops
on more interpretive tasks such as Make Compar-
isons (50.00%), perhaps indicating challenges with

contextual or higher-order reasoning. Interestingly,
Qwen2.5-VL-32B outperforms GPT-4.1 on these
two tasks, despite trailing on most others, suggest-
ing possible strengths in certain visual discrimi-
nation tasks. The 7B variant of Qwen2.5-VL per-
forms substantially worse across nearly all cate-
gories, aside from Make Comparisons, where it
matches GPT-4.1’s performance.

Caution is however warranted when interpreting
results for less frequent task types such as Find
Anomalies and Find Clusters, which contain rel-
atively few questions. Despite this, the overall
trends suggest that performance differences across
task types are meaningful, and that structured tax-
onomies offer useful insight into the capabilities
and limitations of current MLLMs in chart under-
standing.

6 Conclusion

Our dataset introduces a more realistic and ecolog-
ically grounded benchmark for chart question an-
swering, reflecting how visualizations are created
and interpreted in practice. By capturing analyt-
ical narratives, multiple and interactive views, it
challenges current models in ways prior datasets
do not. Initial evaluations highlight substantial per-
formance gaps, pointing to the need for models
with deeper reasoning and contextual understand-
ing of visual data. We observe significant variance
in model performance across task types, suggesting
that certain forms of visual reasoning remain es-
pecially challenging. We hope this dataset fosters
future research toward more capable and context-
aware multimodal systems.
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Ethics Statement

This study and its data collection procedures were
formally approved by our university’s Research
Ethics Committee. Upon receiving approval, we
contacted graduates of the program to inform them
about the study’s aims and potential contributions.
We obtained explicit informed consent from those
who agreed to participate, specifically for the use
of their coursework in our research. The dataset
exclusively comprises submissions from students
who voluntarily provided permission for their ma-
terials to be processed and released as part of this
research.

Limitations

While our dataset offers a more ecologically
grounded benchmark for CQA, it has several limi-
tations. Firstly, the task distribution is imbalanced,
with lower-level tasks like Retrieve Value more
common and higher-order tasks like Find Clusters
underrepresented. Future work could curate a more
balanced set to cover a wider range of reasoning
types. Secondly, the dataset includes only 205 val-
idated question–answer pairs. This limited size
reflects our emphasis on rigorous human validation
to ensure alignment between questions, narratives,
and visualizations. Our methodology could be ex-
tended to larger corpora of visualization notebooks
to create a more expansive dataset. Finally, all ques-
tions are in English. While the tasks are conceptu-
ally broad, some formulations may not generalize
well across languages. Future efforts could explore
multilingual extensions by incorporating narratives
from other languages.
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A Task Information

Task Name & Description Pro Forma Abstract Examples (Q → A)

Retrieve Value
Given a set of specific cases,
find attributes of those cases.

What are the values of
attributes {X, Y, Z, ...} in the data
cases {A, B, C, ...}?

What was the price of a barrel of oil in February
2015? → $50

What is the average internet speed in Japan? → 15.3
Mbps

What is the weight of the person who is 165.1 cm
tall? → 60 kg

Find Extremum
Find data cases possessing an
extreme value of an attribute.

What are the top/bottom N data
cases with respect to
attribute A?

In which month was the price of a barrel of oil the
lowest in 2015? → August

Which country has the fastest average internet speed
in Asia? → South Korea

What is the height of the tallest person among the
85 males? → 198 cm

Determine Range
Find the span of values of an at-
tribute within a set.

What is the range of values of at-
tribute A in a set S of data cases?

What was the price range of a barrel of oil in 2015?
→ $38 to $60

What is the range of average internet speeds in Asia?
→ 4.3 Mbps to 15.3 Mbps

What is the weight range among the 85 males? →
52 kg to 90 kg

Characterize Distribution
Characterize the distribution of
a quantitative attribute.

What is the distribution of values of
attribute A in a set S of data cases?

How is the distribution of taxi passenger ratings
characterized? → Skewed to the left

What is the distribution pattern of student grades in
the dataset? → Approximately normal distribution
centered around 75%

Find Anomalies
Identify anomalies within a set
of data cases.

Which data cases in a set S of data
cases have unexpected/exceptional
values?

Which individual’s height deviates most from the
others? → 210 cm

Which city’s metro system deviates most from the
trend? → Beijing

Find Clusters
Find clusters of similar attribute
values.

Which data cases are similar in
value for attributes {X, Y, Z, . . . }?

Describe any groups of individuals who share sim-
ilar height and weight characteristics. → A group
is clustered around 176 cm in height and 70 kg in
weight.

What patterns of similarity can you find among
metro systems based on number of stations and sys-
tem length? → Several metro systems are clustered
around 300 stations and 200 km length.

Find Correlations
Determine relationships be-
tween two attributes.

What is the correlation between at-
tributes X and Y in a set S?

What is the relationship between height and weight?
→ Negative linear

How does ridership relate to stations? → Positive
correlation

Trend in coffee prices over 2013? → Increasing

Make Comparisons
Compare sets of cases with re-
spect to an attribute.

How do data cases compare with re-
spect to attribute A?

Apple vs Huawei market share? → Apple’s is larger

Ratings between 4.6–4.8 and 4.2–4.4? → 4.6–4.8
has more

Shanghai vs Beijing ridership? → Shanghai’s is
higher
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B Prompts

Prompt: QA Generation
You are a data visualization expert and question-generation assistant.

Given the following TEXT:

{ANALYTICAL CONTEXT}

Your task is to generate between 3 and 10 QUESTION-ANSWER pairs based on the TEXT,
and assign each one to the most appropriate TASK listed below.

Only generate questions if the information in the TEXT is clearly related to a task.

{TASK INFORMATION}

### Output Instructions:
- For each QA pair, include:

- The direct **quote** from the TEXT
- The **question**
- The **answer**, which should be concise and suitable for a multiple choice test
- The **most appropriate TASK** name from the list

- Only generate a question if it fits into one of the tasks.
- Do not repeat questions
- Prefer fewer, high-quality questions
- Avoid yes/no or true/false answers.
- Output must be a JSON list of dictionaries, like this:

```json
[

{"quote": "Example quote", "q": "Example question?", "a": "Answer.", "task": "Retrieve Value"},
...

]
```

Prompt: Answer Choices Generation
You are creating a multiple choice question about data visualization.

Given the following context:
Context: {ANALYTICAl CONTEXT}

We have a question and answer pair:
Question: {QUESTION}
Correct Answer: {ANSWER}

Generate 3 **plausible but incorrect** answer choices. These should:
- Be related to the same context
- Be in the same format as the correct answer
(e.g. numerical with the same units, textual with similar length)
- Be different from the correct answer
- Be wrong
- DO NOT make answers that are along the lines of cannot be determined/don't know/can't tell

Output as only a Python list: ["a1", "a2", a3"]

Prompt: Model Evaluation
Question: {QUESTION}

Answer choices: {ANSWER CHOICES}

Please respond with ONLY the letter (A, B, C, D or E) corresponding to your answer.
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C Examples from the Dataset

Faceted Views

Retrieve Value: What is the range of ages in the France rugby team?
Answers: 14 years, 10 years, 8 years, 15 years, Cannot be determined from the visualization(s)
GPT 4.1: 8 years

Find Extremum: Which team has the narrowest age range?
Answers: France, Ireland, Scotland, Wales, Cannot be determined from the visualization(s)]
GPT 4.1: France

Make Comparisons: How does the age range of the France rugby team compare to that of Wales?
Answers: France’s range is wider than Wales’, France’s range is the same as Wales’, France’s range
is narrower than Wales’, France’s range is 7 years less than Wales’, Cannot be determined from the
visualization(s)
GPT 4.1: France’s range is narrower than Wales’
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Multiple Images

Find Correlations: What is the relationship between healthcare expenditure and patient satisfaction
between 2019 and 2022?
Answers: Patient satisfaction remained relatively stable despite increased expenditure., Healthcare
expenditure declined, leading to decreased patient satisfaction., Patient satisfaction increased with
increased expenditure., Despite increased expenditure, patient satisfaction declined., Cannot be
determined from the visualization(s)
GPT 4.1: Patient satisfaction remained relatively stable despite increased expenditure.

Multiple Images

Retrieve Value: What is the life expectancy and GDHI of Northern Ireland?
Answers: 65 years and £20,916, 65 years and £17,916, 60 years and £27,916, 75 years and £15,916,
Cannot be determined from the visualization(s)
GPT 4.1: 65 years and £20,916
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Interactive View, Cannot be determined

Find Anomalies: Which French forwards have unusually high offload numbers compared to other
forwards?
Answers: Gael Fickou and Damian Penaud, Gregory Alldritt and Antoine Dupont, Cyril Baille and
Francois Cros, Cyril Baille and Gregory Alldritt, Cannot be determined from the visualization(s)
GPT 4.1: Cyril Baille and Gregory Alldritt

D Example Literate Visualization
Notebook
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