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Abstract

We propose a simple and light-weight, yet ef-
fective hallucination detection method for con-
ditional text generation. Hallucinated outputs
include information that is either absent from
and/or difficult to infer from the input context.
Leveraging this feature, we add contrastive
learning to the hallucination detection classifier
to pull faithful outputs and input contexts to-
gether while pushing hallucinated outputs apart.
Experimental results confirm that our method
on top of RoBERTa improves binary halluci-
nation detection performance, outperforming
much larger GPT-4o prompting. Remarkably,
our method shows higher performance for out-
puts where hallucinated spans are sparse.

1 Introduction

Large Language Models (LLMs) are currently used
in a wide range of text generation tasks. However,
their outputs often include information that devi-
ates from the facts described in the input or infor-
mation that cannot be easily verified based on the
input (Kaddour et al., 2023), which we define as
hallucination in this study. Users unintentionally
accept hallucinated content as factual, leading to
the potential spread of misinformation. To enable
safer use of LLMs, it is essential to develop accu-
rate hallucination detection methods. In addition,
such detection methods are desired to be compu-
tationally efficient given the sheer volume of texts
being generated by LLMs.

Various methods have been proposed for halluci-
nation detection. A popular approach employs the
hidden states of LLMs to identify irregular inter-
nal states due to hallucinated content (Jiang et al.,
2024). While promising, this approach only ap-
plies to the scenario where we can access the LLMs
which have generated the outputs.

Another series of studies targets the scenario
where we cannot access nor know the LLM that

has generated the outputs. SelfCheckGPT (Man-
akul et al., 2023) compares multiple outputs from
the same LLM to identify inconsistencies among
the outputs as clues of hallucination. Due to the de-
sign, SelfCheckGPT requires multiple outputs for
the same input to detect hallucination. Mishra et al.
(2024) uses the Retrieval-Augmented Generation
(RAG) to retrieve relevant documents and provide
them to the model for verification. FActScore (Min
et al., 2023) decomposes generated outputs into a
sequence of atomic facts and calculates the percent-
age of these facts that are supported by an external
knowledge base. However, such an external knowl-
edge base is not always available, particularly for
individual or less common topics. Furthermore,
these methods can be costly because of the use of
LLMs as base models. The decoder-based architec-
ture also makes the detection process slower.

There have also been methods specialized for
conditional text generation. For example, in the
summarization task, QAFactEval (Fabbri et al.,
2022) evaluates factual consistency by first gen-
erating questions from the summary, then compar-
ing the answers obtained from the summary with
those obtained from the original input document.
If their answers are different, the output is judged
as hallucinated. DAE (Goyal and Durrett, 2020)
conducts dependency parsing and then uses natu-
ral language inference to determine whether each
of these relations is entailed by the input. These
approaches can capture more fine-grained inconsis-
tencies by reasoning over intermediate representa-
tions like questions or dependency arcs. However,
they require additional preprocessing steps such as
question generation and dependency parsing.

To address these challenges, we propose a light-
weight hallucination detection method for condi-
tional text generation. Hallucinated outputs often
contain information that either clearly contradicts
the input, lacks support from the input, or consists
of unverifiable or subjective statements. Based on
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Figure 1: Overview of the proposed method

this feature, we employ contrastive learning (Gao
et al., 2021) to a binary classification model using
an encoder-based pre-trained model. We train the
detector using a triplet loss that pulls faithful gen-
eration and the input together while pushes halluci-
nated generation and the input apart. This should
make faithful and hallucinated outputs more dis-
tinctive, which may ease the classification.

Experimental results demonstrate that our
method outperforms GPT-4o prompting on hal-
lucination detection, achieving 67 times faster
computation. Remarkably, our method performs
well even when the number and/or proportion
of hallucinations in the generation are small.
Our code is available at https://github.com/
miyu-y/LightHalluDetecter.

2 Proposed Method

We formulate hallucination detection for condi-
tional text generation as a binary classification:
determining whether a given text contains halluci-
nations referring to the input context. The proposed
method incorporates contrastive learning (the up-
per part of Figure 1) using the triplet loss computed
with an anchor a as input context, a positive sample
gp as faithful generation, and a negative sample gn
as hallucinated generation.

triplet(ea, egp , egn)

= max
(
0, α+ d(ea, egp)− d(ea, egn)

)
, (1)

where ea, egp , egn are embeddings of a, gp, and
gn, respectively, and the hyperparameter α is the
margin. The distance function d(x,y) we used is

the cosine distance:

d(x,y) = 1− cossim(x,y), (2)

where cossim(x,y) computes cosine similarity.
We combine the triplet loss with a classification

objective (the bottom part of Figure 1). While the
triplet loss guides the model to learn embedding
that make hallucinated and faithful outputs distinc-
tive, a classification head is simultaneously trained
to predict whether a given output contains halluci-
nation. The total loss is defined as:

Lθ = triplet(ea, egp , egn) + CE(ea ⊕ eg). (3)

The function CE(ea⊕eg) is the cross-entropy loss
for the binary classification, where the embedding
of input context ea is concatenated with that of gen-
erated output, i.e., either egp or egn . For the triplet
loss, both positive and negative outputs are used.
In contrast, for the classification loss, only one of
them is passed to the classifier,1 concatenated with
the input context a.

At inference time, only the binary classifica-
tion is conducted. The input text and the LLM-
generated output are concatenated and passed to
the classifier to determine whether the output con-
tains hallucination.

3 Experiment Settings

We evaluate whether contrastive learning could im-
prove hallucination detection performance.

3.1 Dataset
We used the RAGTruth dataset (Niu et al., 2024)
for our experiments. This dataset provides outputs
generated by six different LLMs: GPT-3.5-turbo-
0613, GPT-4-0613 (Achiam et al., 2023), Mistral-
7b-Instruct (Jiang et al., 2023), Llama-2-7B-chat,
Llama-2-13B-chat, Llama-2-70B-chat (Touvron
et al., 2023). I.e., for each input, RAGTruth pro-
vides six outputs by these LLMs, with different
levels of hallucinations. Each output is annotated
with the hallucinated spans and their hallucination
types. In accordance with the RAGTruth annota-
tion protocol, hallucination is defined as content
that is clearly different from the input, content not
be supported by the input, or unverifiable or sub-
jective statements.

1This setting was chosen to make our method directly
comparable with other baselines. We can train the model
by conducting classification with positive and negative sam-
ples simultaneously, which slightly improves the detection
performance.
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Train Valid Test
QA 4, 614 (3, 756) 420 (330) 900 (564)
D2T 4, 878 (4, 506) 420 (390) 900 (864)
SUM 4, 338 (4, 074) 420 (396) 900 (780)
Total 13, 830 (12, 336) 1, 260 (1, 116) 2, 700 (2, 208)

Table 1: Dataset statistics (Parentheses indicate the num-
ber of triples.)

The original datasets of RAGTruth come from
question answering (QA), data-to-text generation
(D2T), and news summarization (SUM), with each
task having varying hallucination rates across the
LLM outputs. For the QA task, the input consists
of a passage and a question from MS MARCO
(Nguyen et al., 2016), and the output is the corre-
sponding answer. For the D2T task, the input is
JSON-formatted structured data (restaurant meta-
data and user reviews) from the Yelp Open Dataset
(Yelp, 2017), and the output is a natural language
description of that data. For the News Summariza-
tion task, the input is a news article (primarily from
the CNN/Daily Mail dataset (See et al., 2017)), and
the output is a summary.

We constructed triplets of (input text, faithful
output, hallucinated output) using the outputs of
the six LLMs. The original dataset contained
17, 790 generated outputs, from which we extracted
15, 660 triplets after discarding cases where all out-
puts are faithful or hallucinated. For evaluation, we
used the 2, 208 triplets in the test split across all
settings. Since the RAGTruth does not provide a
validation set, we randomly sampled a subset from
the training data for validation. The number of
samples for each split is summarized in Table 1.

3.2 Implementation
We used the light-weight, encoder-based model of
RoBERTa-base (Liu et al., 2019) with 125M param-
eters as the base model for the classifier. As the text
embedding, we employ the hidden outputs of the
final layer corresponding to the start-of-sequence
token, i.e., “<s>”, attached to the input text.

We also experimented with a light-weight
decoder-based LLM of Phi-3.5-mini-instruct (Ab-
din et al., 2024), that has 3.8B parameters. As the
text embedding encoded by this model, we used
the hidden output of the final layer corresponding
to the last token of the input.

Fine-tuning was conducted for 10 epochs with
a learning rate of 5.0e− 6 for RoBERTa-base and
1.0e − 6 for Phi-3.5-mini-instruct. The margin
value α in our method was set to 1.0 for RoBERTa-

base and 0.5 for Phi-3.5-mini-instruct based on the
performance on the validation set. Yet the prelim-
inary experiments showed that the detection per-
formance is not sensitive to the α setting. All the
experiments were conducted on a NVIDIA H100
GPU with 94GB memory.

3.3 Baselines
We compared our method against the following
three baselines.

LLM-Prompting This method prompts LLMs
to detect hallucinations. Given an input text and
its corresponding output, an LLM was prompted to
judge whether the output contained hallucination.
We used both Phi-3.5-mini-instruct and GPT-4o as
LLMs. The prompts can be found in the Appendix.

FActScore As a strong hallucination detection
method applicable to the scenario where LLMs
that generated outputs are unknown, we compare
to FActScore. FActScore requires a knowledge
base to identify hallucinations. To make it com-
patible with RAGTruth dataset, we used the input
texts as the knowledge source, i.e., regarding out-
puts that are not supported by the input contexts
as hallucinations. Following the original setting
of Min et al. (2023), GPT-3.5-turbo was used as
the base model to decompose output texts into a
sequence of atomic facts and to calculate the per-
centage of the facts supported by the input text. If
the computed score was exactly 1.0, a generated
output was labeled as faithful; otherwise, it was
considered hallucinated.

Classifier As an ablation study, we compared our
method to its variation that trains the binary classi-
fier using only the cross-entropy loss, without the
triplet loss. Our method and this Classifier baseline
were trained using all samples in the training split
across tasks.

4 Results and Discussion

4.1 Overall Performance
Table 2 shows the precision, recall, and F1
scores for hallucination detection on different
tasks. The “ALL” column shows these scores mea-
sured on all samples across tasks. The proposed
method achieved the best F1 scores on QA, D2T,
and ALL tasks when combined with RoBERTa,
largely outperforming a much larger-scale model
of GPT-4o and FActScore. The proposed method
with RoBERTa showed higher recall. GPT-4o
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Model Method QA D2T SUM ALL Time (s)
P R F1 P R F1 P R F1 P R F1

GPT-4o Prompt 60.7 46.3 52.5 94.0 63.4 75.7 89.1 49.5 63.6 86.3 57.3 68.8 2.01
GPT-3.5 FactScore 35.3 88.1 50.4 66.9 94.3 78.3 33.2 66.7 44.3 50.3 87.1 63.7 2.29

RoBERTa Classifier 45.8 60.0 57.0 80.9 90.2 85.3 34.2 27.3 30.3 78.3 58.2 66.8 0.01
Proposed 62.7 88.7 60.4 79.9 91.9 85.5 33.5 54.0 41.4 59.8 83.1 69.5 0.03

Phi-3.5
Prompt 27.3 1.9 3.5 50.0 4.6 8.4 30.8 20.2 24.3 35.6 7.5 12.5 0.45
Classifier 59.5 56.9 58.1 82.4 86.0 84.1 35.2 32.3 33.7 74.0 63.8 68.5 0.29
Proposed 71.0 44.1 54.4 83.4 83.8 83.6 38.7 35.8 37.2 67.1 70.1 68.6 0.34

Table 2: Precision (P), Recall (R), and F1 scores (%) for hallucination detection across tasks. “Time” indicates
average time per case.

demonstrated higher precision, whereas FActScore
showed higher recall. GPT-4o and FActScore per-
formed strongly on the summarization task, but the
performance was limited on other settings.

Hallucination detection on summarization task
requires detailed comparisons of a long input doc-
ument and a shorter output summary. We con-
jecture GPT-4o and GPT-3.5 are capable of such
comparison, but it may be difficult for much
smaller RoBERTa-base. Our method on Phi-3.5-
mini-instruct was consistently inferior to that on
RoBERTa. This may be due to the differences in
embeddings from the encoder or decoder; a de-
tailed investigation is our future work.

The far right column shows the computational
time: the average second to process a sample. Our
method on RoBERTa is much faster than other
decoder-based LLMs, thanks to the efficient en-
coder model and its small number of parameters.
Prompting GPT-4o and FActScore took 67.0 to
76.3 times longer than our method.

4.2 Analysis

This section investigates features of hallucinations
that can affect the detection performance by com-
paring our method on RoBERTa and GPT-4o.

Effect of Hallucinating Models Table 3 presents
F1 score for hallucination detection, grouped by
the LLM that generated the outputs. Overall, the
detection rate tends to be higher for generations
containing more hallucinations. Although we hy-
pothesized that GPT-4o may have a higher suc-
cess rate on GPT-3.5 and GPT-4, this did not hold.
Rather, the task differences are more dominant than
the model differences.

Number of Hallucinations Figures 2 and 3 show
the success rate of hallucination detection as a func-
tion of the proportions of the number of halluci-
nated tokens and the number of hallucinated spans,
respectively. The bar charts in the background indi-

Figure 2: Detection success ratio and the num-
ber of cases by hallucinating token ratio in an
output

Figure 3: Detection success ratio and the num-
ber of cases by the number of hallucinations
in an output

cate the numbers of samples within each bin. Hal-
lucinations with smaller proportions are more chal-
lenging to detect, yet such cases are more prevalent
in the dataset. Nevertheless, our method achieved
significantly higher detection rates than GPT-4o in
these cases.

Embedding Space Figures 4 and 5 visualizes
the distributions of cosine distances between the
input and faithful/hallucinated outputs before and
after contrastive learning. In the original embed-
dings, the distributions for faithful and hallucinated
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GPT3.5 GPT4 Llama2-7B Llama2-13B Llama2-70B Mistral
QA GPT4o 14.3 0.0 68.7 43.6 40.0 55.7

Proposed 21.4 0.0 74.6 65.4 57.7 65.2
Num 5 1 52 36 35 31

D2T GPT4o 21.1 6.5 74.2 93.0 67.5 82.0
Proposed 31.3 21.3 89.7 95.7 84.8 94.1

Num 31 29 117 132 106 128

SUM GPT4o 0.0 50.0 65.8 46.8 54.5 72.5
Triplet 0.0 16.7 49.1 34.3 35.7 63.4
Num 3 5 50 32 23 85

ALL GPT4o 18.2 14.3 71.0 79.4 60.2 75.1
Proposed 17.1 16.3 77.0 79.1 69.1 79.7

Num 39 35 219 200 164 244

Table 3: F1 for hallucination detection per model (“Num” rows show the number of samples with hallucination.)

Figure 4: Distribution of cosine distances be-
tween original embeddings (before contrastive
learning)

Figure 5: Distribution of cosine distances after
contrastive learning

outputs are highly similar, with both distributions
tightly concentrated in a narrow range. This indi-
cates that inputs, faithful and hallucinated outputs
are entangled in the embeddings space. After con-
trastive learning using triplet loss, these are well
disentangled. The cosine distance distributions
of faithful and hallucinated outputs differ signif-
icantly, with their respective peaks clearly shifted
from each other in opposite directions.

5 Conclusion

We proposed a method for training a hallucina-
tion detector using contrastive learning. Exper-
imental results demonstrated that our method is
particularly effective for detecting cases where pro-
portions and/or numbers of hallucinated spans are
smaller, which are typically more challenging to
identify. In future, we will explore methods for
locating and identifying hallucinated spans in gen-
eration, which remains an open problem despite its
practical importance.
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Limitations

Our method requires an input context to identify
hallucination in generated output; hence, it does not
apply to scenarios where only generated outputs
are available, such as fake news detection.

Our method requires triples of (input context,
hallucinated output, faithful output), which re-
quires extra efforts in construction rather than sim-
pler pairs of (input context, hallucinated or faithful
output). Nonetheless, such triples can be collected
using sampling in generation or using multiple
LLMs.
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Classifier,
Triplet

[input text] Please judge the following statement whether it includes hallucination or
not based on the references above: [output text]

Prompt (Phi) Input_Document: [input text] Please judge the following Text whether it includes
hallucination or not based on the Input_Document above and output 1 if it includes
hallucination and 0 if not. Output should be only an number (1 or 0). You mustn’t
output any description other than a number. Text: [output text] Output:

Prompt
(GPT4o)

[input text] Please judge the following statement whether it includes hallucination or
not based on the references above and output 1 if it includes hallucination and 0 if not.
Output should be only an number (1 or 0): [output text] Output:

Table 4: Used prompt in the experiments
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