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Abstract

The cross-modal grounding of LLMs has re-
cently garnered significant attention, while
grounding them in textual interactions has been
less explored. As the first of its kind, the
GLAM framework utilises LLMs as agents
in interactive text-based games to investigate
their grounding capabilities. However, it faces
the challenge of low computational efficiency,
which hinders further experiments. This paper
proposes the use of Lookahead models for ac-
tion selection, demonstrating through empirical
results that the approach can substantially im-
prove training speed, achieving performance
gains relative to the size of the action space.

1 Introduction

A well-known limitation of Large Language Mod-
els (LLMs) is that their language is grounded
only in textual contexts and not in real-world phe-
nomena (Bender and Koller, 2020; Harnad, 2024).
Thus, researchers are trying to ground them into
perception, e.g. visual modalities (Reich and
Schultz, 2024; Li et al., 2024b) and 3D environ-
ments (Liu et al., 2024; Li et al., 2024a). However,
opposing viewpoints argue that learning meaning
from text alone is still valuable (Pavlick, 2023;
Lyre, 2024; Bommasani et al., 2022). An inter-
mediate approach hypothesises that grounding in
unimodal text is beneficial but not in raw sequen-
tial form, rather, in goal-oriented interactions (Chai
et al., 2019), or as is called, conversational ground-
ing (Shaikh et al., 2024).

A recent attempt in this regard is Grounded LAn-
guage Models (GLAM) (Carta et al., 2023) that
uses LLMs as agents to play an interactive text-
based game and examines their language ground-
ing capabilities. In a Reinforcement Learning (RL)
setup, a prompt is created including the goal, hints,
observations, and a final question about the next
step of the game. The agent is expected to select
the next action, not by generating an output but

by predicting the probability of action tokens. In
fact, the LLM ranks a set of potential responses
(actions). It then uses game rewards for parameter
optimisation. So, through textual interaction with
the environment, the agent learns what different
words mean in terms of functionality. However,
this approach suffers from computational ineffi-
ciencies, making further research in this direction
practically challenging.

The main reason behind this is that GLAM re-
quires a full LLM forward pass to determine the
rank of each action. This stems from the autoregres-
sive nature of LLM’s, in which billions of compu-
tations are performed in each run, just to predict a
single next token. Intuitively, this effort seems use-
ful for guessing which tokens might appear at sub-
sequent positions. Although these guesses are unre-
liable for generating responses (since they overlook
dependencies between tokens), they can still be use-
ful for ranking, because they help filter out many
tokens of vocabulary that are unlikely and assign
higher scores to the more probable tokens.

This paper examines the above idea by propos-
ing efficient variations of Lookahead LLMs (Xia
et al., 2024), where they predict not only the next
immediate token, but also the second, third, ... up
to K next tokens. Using future tokens, the likeli-
hood of all actions can be approximated with fewer
forward passes. Analytically, it reduces the training
time of GLAM by a factor of the number of actions.
The experiments presented here demonstrate that a
more than 2x improvement is achieved.

The contributions of this paper are as follows.

• Novel efficient variants of Lookahead LLMs
are proposed that can be used to predict multi-
ple future tokens in one forward pass.

• The use of Lookahead LLMs is proposed to
approximate the rank of a set of potential
responses and is demonstrated in text-based
games for interactive language grounding.

657



Figure 1: A) GLAM runs LLM once per action, looking
up action tokens in output. B) Using Lookahead LLM,
the model is called once, and tokens of all actions are
queried in the output. The dotted sections show previous
tokens which are removed for the sake of space.

2 Background

Using LLMs as agents in interactive games has be-
come a popular trend (Hu et al., 2024). However,
few studies address grounding (Ichter et al., 2023;
Lin et al., 2024), and even fewer focus on unimodal
text-based games like GLAM. Most of the works
mentioned above use LLM-generated responses to
extract valid actions. In contrast, GLAM directly
uses output probabilities to assess the likelihood
of actions and samples from them. In this respect,
it is the only and first of its kind. A similar study
is (Yao et al., 2020) however, it uses LLM to gen-
erate actions and then uses a Deep Reinforcement
Relevance Network (DRRN) for ranking.

As discussed in Sections 1, and 3, GLAM’s
long runtime limits experimentation with larger
LLMs and games with larger action spaces, which
may contribute to overfitting and hinder language
grounding improvements. To address these limi-
tations, this work proposes the use of Lookahead
LLMs, an active area of research also known as
Speculative Decoding (SD) (Xia et al., 2024) or
Parallel Decoding (Santilli et al., 2023). Most of
these approaches aim to improve efficiency of in-
ference and generation (Xia et al., 2024). Their
common paradigm, Guess-And-Verify, drafts fu-
ture tokens first and later verifies them, either by
the same drafter model (Self Drafting) or with a
more powerful LLM (Independent Drafting).

Nevertheless, not all works are considered in
the survey. For example, (Qi et al., 2020) adds
K self-attention blocks to predict K future tokens,
increasing the size of the model. To reduce GPU
load, Skippy Simultaneous Speculative Decoding
(S3D) (Zhong and Bharadwaj, 2024) appends K
masked tokens to the prompt and skips some mid-
layers for cost-effective drafting. However, it also
incorporates Tree Attention, adding complexity.

Although most SD proposals use an autoregres-

sive drafter, ParallelSpec (Xiao et al., 2024) uses
Lookahead models for drafting. Similarly to one
of the models proposed in this study, it extends
the input with K additional mask tokens so that
it outputs the same number of extra tokens. The
output is then compared with that of a target model
to compute loss in a knowledge distillation setup.

(Kim et al., 2024) studied Blockwise Parallel
Decoding (BPD) (Stern et al., 2018) improving its
quality with two refinements. However, of particu-
lar relevance to ours, it did not alter the Lookahead
drafter, consisting of K+1 extra layers on top of the
decoder. Similarly, LlamaMultiToken (Gloeckle
et al., 2024) splits the N attention blocks into two
sets of size K and N −K, the first being used for
future tokens and the latter for the original opera-
tion of the model. Then it uses multiple heads with
separate losses to optimise the parameters.

Overall, the above efforts deal with various lev-
els of complexity, mainly because their major con-
cern is generation. However, in this paper, the main
concern is obtaining multiple future predictions to
increase ranking speed via approximation via sim-
pler and more efficient models.

3 Methodology

In order to choose the next action in each step,
GLAM creates one prompt per action and runs the
LLM to compute the exact probability of each to-
ken in each action given the prompt (containing the
goal and observations); see Figure 1. The formal
definition of the problem is the same as provided in
Section 3.1 of (Carta et al., 2023), but simply put,
considering A as the set of actions, the probability
of each ai ∈ A is calculated by Equation 1.

LPLLM (ai|p) =
|ai|∑

j=0

logPLLM (wj |p, w<j) (1)

where |ai| is the length of the ith action, wj is the
jth token in ai, and p is the prompt. So, for each it-
eration over the sum, a separate token position must
be included in the input. This makes the number of
input tokens on the order of O(|A|×maxai∈A |ai|),
which in turn affects both the required number of
forward passes and memory.

Instead, using Lookahead LLMs, the probability
of each action is approximated with Equation 2:

PLLM (ai|p) ≈
|ai|∑

j=0

PLA,j(wj |p) (2)
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Figure 2: (A) a non-LA LLM. (B) The LA model for K = 2, the language modelling head is replicated twice. (C)
LAA and LAA2 are similar, but the former uses K replicates of last hidden state (C1), while the latter uses the
last K hidden states (C2). (D) LAE has no extra head but extends the input with K special tokens, thus outputs K
extra tokens. Note that in all these figures, labels yi = xi+1 so yS is the first token not present in the input.

where PLA,j means the probability of jth next to-
ken given the prompt, e.g. PLA,0 is that of immedi-
ately next token, PLA,1 is that of the second next to-
ken, and so forth. Using this mechanism, the num-
ber of forward passes required to compute all PLA,j

is on the order of O(⌈maxai∈A |ai|
K ⌉) and for the spe-

cial case where K is greater than the maximum
length of actions, i.e. (K ≥ maxai∈A |ai|), a sin-
gle forward pass would suffice, O(1). Note that the
log-likelihood is also omitted compared to Equa-
tion 1, GLAM uses it to avoid multiple normaliza-
tions, but this may overweight lower-probability
actions. (see Appendix B for more details).

3.1 Lookahead LLMs
The main objective of the current research is to
design the Lookahead feature with minimal com-
plexity and overhead. To achieve this purpose, the
LLM architecture is altered in four different ways,
as illustrated in Figure 2.

1. In the simplest form, the language modelling
head (LM in Figure 2) is repeated K times for each
future position. The input to each head is the same
as the original (Figure 2.B). The dataset is fetched
in a way that the labels for each head are shifted
right, thus the last position of each head is trained
on, and will predict the ith next token. This model
is named LA (LookAhead). Its main downside is
that the LM head is typically large (depending on
the vocabulary size, e.g. 30K) and, when repli-
cated, the model size increases substantially. This
is undesirable particularly because only the very
last position of the output of each head is needed
and the rest are discarded.

2. To address the aforementioned issue and to re-
duce model size and computational cost, the LM
head is replicated only once and fed with a smaller
input (Figure 2.C1). Assuming that the hidden
states for the last token are informative enough
to predict the next K tokens, it is replicated K
times and used as input for the extra head. The
output will then be a sequence of length K, each of
which predicts one Lookahead token. This model
is named LAA (LA with Additional head).

3. As another variation of the above model, it is
possible to include the last K positions of hidden
states as input to the new head. This is based on the
assumption that the last K positions in the hidden
state are more informative to predict the next K
tokens. This model is named LAA2 (Figure 2.C2).

4. The last model does not introduce extra heads,
but extends the input with K additional positions,
manipulated by special tokens, so that it outputs
extra predictions. This is similar to (Xiao et al.,
2024) but they have trained the model using knowl-
edge distillation from a target model. In contrast,
this variation simply fetches K extra tokens from
the dataset as labels for the new positions and com-
putes the loss as in the original LLM. This model
is named LAE for Extended input (Figure 2.D).

4 Experimental Setup

To prototype the above architectures, nanoGPT1 is
chosen as the base model because it is easy to ex-
tend, with training data and algorithm ready to run.

1A LLM developed primarily for educational purposes, see
https://github.com/karpathy/nanoGPT

659

https://github.com/karpathy/nanoGPT


Figure 3: A) The speed of training models in GLAM, measured by FPS (frames per second) for a single run, the
higher FPS means faster training. B) The success rate of the same models.

The original nanoGPT, together with four Looka-
head models (explained in Section 3.1 and depicted
in Figure 2) are pre-trained from scratch using the
OpenWebText dataset (Peterson et al., 2019) on the
GPT2 scale to fit within a limited budget. Also,
as a state of the art, LlamaMultiToken (Gloeckle
et al., 2024) is implemented on top of nanoGPT,
hence the name nanoLlamaMultiToken and trained
with the same scale and data as above. For clarity
of presentation, K is set to 2 in Lookahead models.
The technical details and results of the pretraining
are reported in Appendix A.

The models were then deployed in the GLAM
main experiment, after integrating lookahead func-
tionality for ranking actions using a single forward
pass. To explain it in more detail, the main GLAM
experiment runs 32 instances of the BabyAI-Text
game environment in parallel. At each step, six
prompts are generated per game, one for each of
the six actions, resulting in 32 × 6 = 192 prompts.
For the LA models introduced earlier, this reduces
to 32 prompts total, since they can predict up to
K + 1 = 3 future tokens, and all BabyAI-Text
actions are shorter than three tokens. Thus, a single
prompt per game suffices.

Prompts are then batched and sent to the LLM;
its output logits are used to compute action proba-
bilities by looking up the relevant tokens and apply-
ing either Equation 1 or 2 for non-LA and LA mod-
els, respectively. An action is sampled from the
resulting distribution and executed in each game.
The rewards are then used to optimize the LLM
and calculate success rates. The rest of the setup
mirrors GLAM, except for batching parameters:
a batch_size of 64 and mini_batch_size of 16
were found to avoid out-of-memory errors in all
experiments.

5 Results

The main metric for the speed of training is FPS
(frames per second), which represents the number
of steps per second the agent can perform in the
game. As shown in Figure 3.A, it increases from
9 for non-LA model to a range of 11 to 20 for
LA models, showing more than a 2x improvement.
The LAE, LAA, and LAA2 models have gained
better FPS compared to LA most probably because
they have added less overhead to the number of
parameters (see Table 2). This negative correlation
between model size and FPS highlights the need
for efficient models.

A notable observation is that the nanoLlamaMul-
tiToken model performs worse than the non-LA
model. This can potentially be explained by its ar-
chitectural design, which introduces computational
overhead. Specifically, the model splits the hidden
states into multiple segments, feeds them to dif-
ferent layers, and then concatenates their outputs
back into a single tensor. This split–recombine
operation is executed at every iteration during the
forward pass, thereby increasing the overall compu-
tational load. While theoretically plausible, further
empirical investigation is required to validate this
explanation.

Another metric is the Success Rate which rep-
resents the performance of the agent in the game.
Figure 3.B does not show a significant change in
this metric, demonstrating that the approach has
not affected performance negatively. However, the
LA models have achieved a better success rate com-
pared to non-LA models. Considering both mea-
sures, the LAA model seems the best performing
one, but this has to be further verified after instruc-
tion fine-tuning, and Reinforcement Learning from
Human Feedback (RLHF).
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6 Conclusion

Based on the analysis provided in Section 3, the
performance gain is expected to be on the order
of action space size (6x for the case of GLAM),
however, the 2x speed up in the empirical results
reinforces the importance of model size as a deter-
mining factor. Preliminary experimentation with
Science World environments (Wang et al., 2022)
that contain more actions further revealed the ad-
vantage of this approach. Even with a fixed-size
action space, the improvement in running time pro-
vides the opportunity to run experiments for more
steps, try larger LLMs, and employ parallel com-
putation mechanisms. These results are limited by
current GPU resources, but its advantages would
be clearer with more powerful hardware.

Finally, the idea of using LA models for approx-
imated ranking can be applied in other applications
in which LLM are used not for generating a re-
sponse, but for ranking a set of potential responses.

The project code has been made open source2.

7 Future Works

The models in this study are decoder-only, but the
same approach is implemented on encoder-decoder
models like Flan-T5 in the Huggingface Transform-
ers, with ongoing work to pre-train and deploy
them in GLAM, both in the scale of nanoGPT as
well as in the scale of T5-large. This then paves
the way to perform a fair comparison between LA
and non-LA LLMs in BabyAI-Text and games with
larger action space.

Additionally, speculative decoding techniques
could be applied to the proposed LA models to as-
sess improvements in generation quality. Finally,
the overall approach may also benefit other appli-
cations in which LLMs are used to rank responses
rather than generate them.

Limitations

The success rate of models is currently low; how-
ever, it is worth considering that the original
GLAM has also struggled with this metric and
even with Google Flan-T5-Large (783M) it hardly
achieved the top success rate of 1. Moreover, mod-
els presented in the current work are not fine-tuned
on any instruction dataset or human preference
feedback, and their knowledge is limited to just

2For models based on nanoGPT see https://github.
com/HRezaei/nanoGPT, for models based on T5 in Trans-
formers, see https://huggingface.co/hrezaei/T5LA

Figure 4: The loss of pertaining models reported only
on the next immediate token after the prompt.

pre-training corpus. However, even without fine-
tuning, the Lookahead models achieved a faster
speed and an on-par success rate compared to non-
LA models. It is planned to perform fine-tuning
and study its effect as well.

Predicting lookahead tokens imposes a negative
impact on the quality of the next-immediate to-
ken compared to the same position predicted by a
non-LA LLM. To confirm this intuition, the loss is
tracked for each position individually during pre-
training. The result is shown in Figure 4. As ex-
pected, all Lookahead models faced a higher loss,
but the difference can be considered acceptable
given the fact that generation is not the primary
concern in GLAM design. Moreover, applying
the verification phase (of the Guess-And-Verify
paradigm) that is normally done in Speculative De-
coding approaches might remedy this limitation.

The idea of this paper is examined in tiny-scale
LLMs. On larger scales, though, the overhead on
the number of parameters imposed by the first LA
model is considerable, because it replicates the LM
head, and that head is very large for fully-fledged
LLMs. However, the other three proposed models
are very efficient in this regard.

More broadly, although the aim of GLAM is
language grounding in conversational interactions,
the current work only proposes a novel way to boost
training. However, this speed up has facilitated
further investigations and experiments to measure
the extent of impact on grounding as the ultimate
goal. The work is in progress in this regard.

Most of the above limitations are primarily due
to limited access to GPU infrastructures. The avail-
able resources were either 3xA40 40GB or 2xH100
PCIe 80GB each on a maximum of 2 days for a
single run.
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Appendix A Pretraining Models

To keep the comparison as fair as possible, the
model configurations are kept the same, as listed in
Table 1. Therefore, the discrepancy in the number
of parameters, shown in Table 2, is mainly the
result of different architectural designs. Regarding
the training iterations, although nanoGPT’s best
results are reported after 600K iterations, taking
nearly 4 days on a single 8xA100 40GB node 3,
here the models are trained only for nearly 60K
iterations during 2 days on a single 3xA40 40GB

3https://github.com/karpathy/nanoGPT

Figure 5: The loss of pertaining models on validation
set has not changed significantly after 60K iterations.

Table 1: Configuration of all models.

Name Value

Embedding size 768
# Heads 12
# Layers 12
Block size 1024
Batch size 12
Lookahead size 2
Data Type bfloat16

available node. This early stopping in pretraiing
is decided to be performed, because the loss of
all models remained almost constant after a while,
indicating no further improvement, as reported in
Figure 5.

Appendix B Action Selection Mechanism

As shown in Equation 1, GLAM used log probabil-
ities to compute probability of actions and justified
it in Section 3.2 of their paper with the intention "to
avoid multiple normalization operations". How-
ever, the multiple normalizations they were con-
cerned about occur across different dimensions,
and both are necessary. The first one (skipped by
GLAM) is across tokens in the vocabulary. In more

Table 2: Size of models (number of parameters).

Name Parameters (M)

nanoGPT2 110
nanoLlamaMultiToken 136
nanoGPT2LA 160
nanoGPT2LAA 135
nanoGPT2LAA2 135
nanoGPT2LAE 110
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Figure 6: LLM prediction example (vocab size=3):
"turn right" has lower probability, but GLAM wrongly
selects it by comparing sum of log-likelihoods (2 > 0)
instead of normalized logits (1.16 > 0.66).

details, for an action ai the probability of its j-th
token wj after p, w0, w1, ..., wj−1 is computed by:

PLLM (wj |p, w<j) =
eLPLLM (wj |p,w<j)

∑|V |
k=0 e

LPLLM (wk|p,w<j)

(3)
where p is prompt, and |V | stands for vocabulary

size. For simplicity denote PLLM (wj |p, w<j) as
P(j) then Equation 3 can be rewritten as:

P(j) =
eLP(j)

∑|V |
k=0 e

LP(k)
(4)

which means the probability of j-th token is equal
to its log-likelihood normalized by sum of log-
likelihood of all vocabulary tokens.

The second normalization however, is across
actions in the game as formulated in the Equation
2 of the GLAM paper. The first one is needed,
because without it, an action which is less likely
to appear after prompt, might wrongly be selected,
just because logits for the other actions neutralize
each other, as shown in Figure 6.
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