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Abstract

The task of automatic dialect classification
is typically tackled using traditional machine-
learning models with bag-of-words unigram
features. We explore two alternative methods
for distinguishing dialects across 20 Spanish-
speaking countries: (i) Support vector machine
and decision tree models were trained on di-
alectal features tailored to the Spanish dialects,
combined with standard unigrams. (ii) A pre-
trained BERT model was fine-tuned on the task.
Results show that the tailored features gener-
ally did not have a positive impact on traditional
model performance, but provide a salient way
of representing dialects in a content-agnostic
manner. The BERT model wins over traditional
models but with only a tiny margin, while sac-
rificing explainability and interpretability.

1 Introduction

Dialects are often merely perceived as non-standard
ways of expressing oneself. However, this simplis-
tic view obscures the fact that dialects represent
distinct language varieties which are clearly asso-
ciated with specific geographic areas or groups of
speakers (Trudgill, 2003) and therefore constitute
a key part of a person’s identity. Dialect use can
reveal a lot about someone’s background and we
are constantly exposed to it in everyday life. For
this reason, automatic dialect classification to im-
prove non-standard representations and enhance
performance on downstream tasks such as dialogue
systems (e.g., in customer service applications) has
become a vital NLP task. Differently to other NLP
tasks, in automatic dialect classification simple tra-
ditional machine learning approaches like support
vector machines (SVMs) remain competitive with
transformer models (Chifu et al., 2024), presum-
ably because transformers lack explicit knowledge
of linguistic structures. Transformer models might
therefore primarily rely on topic-related lexical

cues (Zampieri et al., 2013), instead of focusing on
linguistic characteristics.

Following this line of reasoning, we hypothesize
that utilizing linguistic knowledge may be benefi-
cial for dialect classification: We investigate the
benefits of incorporating dialect-specific linguisti-
cally tailored features into machine learning clas-
sifiers using unigram features, and contrast them
with a transformer-based model. We focus on Span-
ish, which exhibits strong variations in vocabulary
and syntax across dialects, and has adequate re-
sources available. We primarily leverage linguistic
observations by Lipski (1994) to find potentially
helpful dialect-specific characteristics in corpus
data encompassing 20 Spanish dialects. Our clas-
sification task is therefore considerably more chal-
lenging than classification experiments in previ-
ous research, which only considered a handful of
Spanish dialects (e.g. Zampieri et al., 2014, 2015;
Chifu et al., 2024). The features are added to two
unigram-based models, namely an SVM and a deci-
sion tree (DT) model, and compared to the models
which only take individual feature types into ac-
count. Our contributions are as follows:1

1. We curate an extensive set of dialect-specific
empirical features for the task of Spanish dialect
classification.

2. We conduct a battery of classification experi-
ments demonstrating that the linguistically tai-
lored features do not enhance unigram-based
models, but do provide a promising way of rep-
resenting dialects in a content-agnostic manner.

3. We show that our transformer model only
marginally outperforms traditional methods,
raising the question whether this minor gain
warrants sacrificing efficiency, interpretability,
and explainability.

1Code and data can be found at: https://github.com/
lurr98/spanish_variation
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Label Included Countries
ANT Cuba, Dominican Rep., Panama, Puerto Rico
GC Costa Rica, Guatemala

MCA El Salvador, Honduras, Nicaragua
CV Colombia, Venezuela
EP Bolivia, Ecuador, Peru
AU Argentina, Uruguay

Table 1: Mapping of country labels to more coarse-
grained labels. CL, MX, PY and ES retain their own
labels, so the total number of classes is 10.

2 Related Work

Variation in language poses considerable chal-
lenges for many NLP tasks, sparking growing inter-
est in the field. Concerning the dialect classification
task, interesting insights were obtained from early
shared tasks on discriminating between similar lan-
guages (DSL) (Zampieri et al., 2014, 2015), where
documents from different language varieties were
classified. Top-performing models used SVM clas-
sifiers or ensembles, a trend that was also observed
in later DSL tasks (Malmasi et al., 2016; Zampieri
et al., 2017), suggesting that traditional classifiers
tend to outperform neural networks on this task
(Zampieri et al., 2020). Results from recent it-
erations, however, indicate that neither approach
consistently dominates (Chifu et al., 2024).

Since much of previous work is based on feature-
based classifiers, the choice of features is of great
importance. Best performing models in the DSL
tasks used word-based representations or charac-
ter n-grams of higher order (Zampieri et al., 2020).
Furthermore, some studies incorporated linguisti-
cally motivated features like POS tags, resulting
in conflicting results about whether these features
contribute positively to the model performance
(Zampieri et al., 2013; Bestgen, 2017). Demszky
et al. (2021) even manually selected dialect-specific
features from linguistic literature to tackle the task
of dialectal feature detection. These linguistic fea-
tures are tailored to the specific dialects at hand.

3 Data

Our experiments on Spanish dialects rely on the
Web/Dialects portion of the Corpus del Español
(Davies, 2016). It contains texts from about two
million web pages from 21 Spanish-speaking coun-
tries (>2B words). Table 4 in Appendix A shows an
overview of the data by country.2 The corpus con-
sists of documents and is tokenized, lemmatized
and POS-tagged. For pre-processing, we lower-

2We did not include the data extracted from US websites.

Figure 1: Distribution of vos, tú and usted in the corpus.

Features Counted Items

Fr
eq

ue
nt

CLITIC clitics lo, le and les
DIFFTENSE 14 different verbal tenses/aspects

DIM -ito/a, -ico/a, -illo/a, -ingo/a
OVSUBJ 9 overtly realized subject pronouns

SER_ESTAR ser and estar for adjective predicates
VOSEO 1) “familiar” pron.s (vos, tú, usted)

2) verbs of the voseo paradigm
VOSOTROS pronouns vosotros and os

R
ar

e

ADA productive nouns ending in -ada
ARTPOSS indef. article, poss. adj. and noun
MASNEG más preceding negative adjectives

MUYISIMO muy preceding -ísimo
NONINV non-inverted WH questions
SUBJINF subj. pronoun and infinitive/gerund

Table 2: Description of the tailored features.

cased tokens and removed punctuation and digits.
Due to a significant imbalance in number of docu-
ments per class, the data was balanced by randomly
selecting from each class as many documents as
the smallest class contains, such that every class is
represented by an equal number of documents. The
data was randomly split into train, development
and test sets with a ratio of 80/10/10.

4 Experimental Set-Up

We conducted three experiments: (i) We trained
and tested the classifiers on the pre-processed, bal-
anced data set. (ii) We replaced named entities
(NEs) and nationalities (e.g. “peruano”) with a
placeholder and trained and tested the models on
the altered data to reduce reliance on too obvious
lexical cues, as noted for BOW models in prior
research (Zampieri et al., 2013). (iii) We took a
broader view on dialect classes by clustering coun-
tries belonging to a linguistic grouping of dialects
according to Lipski (2012) (see Table 1), and train-
ing and testing the models with these new classes.

4.1 Models
We fine-tuned a pre-trained BERT model3 on our
data. For the feature-based models (SVM and DT)

3The model can be found on huggingface (Wolf et al.,
2020): dccuchile/bert-base-spanish-wwm-cased.
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Model Features
Standard Classification Named Entity Filter Grouped Labels
Accuracy Macro-F Accuracy Macro-F Accuracy Macro-F

SVM
Tailored 0.10 0.08 - - 0.18 0.14
Unigrams 0.65 0.65 0.55 0.54 0.66 0.66
Both 0.65 0.65 0.55 0.55 0.66 0.66

DT
Tailored 0.09 0.09 - - 0.15 0.15
Unigrams 0.38 0.45 0.16 0.17 0.41 0.44
Both 0.38 0.45 0.17 0.17 0.42 0.44

BERT Embeddings 0.67 0.67 0.59 0.59 0.66 0.66

Table 3: Accuracy and Macro-F1 of all models on the test set in the initial experimental setup.

we used the machine learning library scikit-learn
(Pedregosa et al., 2011). While transformers yield
state-of-the-art performance in many NLP tasks,
they are black-box methods which are computation-
ally very expensive. In contrast, statistical models
are more efficient as well as interpretable.

4.2 Features of the Statistical Models
Linguistically Tailored Features: Assuming that
features that are tailored to the dialects at hand
are beneficial to the models, we collected features
with indicative morphological and syntactic
characteristics from literature research (Lipski,
1994). For example: Pronoun usage varies across
Spanish dialects, with “vos” replacing “tú” in
some dialects (voseo), while others prefer the
formal “usted” in familiar settings. Corresponding
counts in our corpus capture these characteristics
well (see Figure 1 for the above example), thus
confirming linguistic assumptions from prior
research and suggesting the usefulness of these
features. The tailored features can be grouped
into two categories: (i) features that model
distributions of frequently occurring phenomena
and (ii) features that count the occurrences of rare
phenomena. In total, 13 features were extracted,
they are listed in Table 2.

Unigram-based Features: Here, we pursued a
simple BOW approach, using term frequencies (tf )
by means of scikit-learn’s TfidfVectorizer class:

tf(t,D) =
#tD∑

t′∈D #t′D
(1)

where #tD is the frequency of a token t in a
document D, divided by the total amount of tokens
in the document (Manning et al., 2008). Only
tokens that occur at least twice in the training data
were considered. We ignored tokens corresponding
to tailored features in order to clearly distinguish

the informativeness of the two approaches.

Merged Features: We joined unigram-based and
tailored features by normalizing the tailored feature
vectors by the number of tokens in the document
to match the tf scale and concatenating them with
the corresponding unigram-based vectors.

4.3 Hyperparameter Choice
Hyperparameters for the traditional models were
selected using scikit-learn’s GridSearchCV; results
and best values are shown in Tables 5 and 7 in Ap-
pendix A. For the transformer, we limited epochs
to 5 to keep runtime reasonable, and set batch
size to 16 to avoid memory issues (Table 6 in Ap-
pendix A).

5 Results

Table 3 shows the results of the classification ex-
periments, which are further discussed below.

5.1 Standard Classification
The BERT model achieves the best performance
with an accuracy score of 0.67, closely followed
by the SVM models (0.65) using purely unigram-
based or merged features. The corresponding DT
models lag behind with an accuracy of 0.38 in both
settings. The tailored features perform much worse
with scores around 0.1. While the confusion ma-
trices of most models exhibit a typical diagonal,
Figure 3 shows that the SVM model using tailored
features mainly resorts to class ES (Spain), thus
implying that this class exhibits characteristics that
are distinct from all other dialects, which is sup-
ported by linguistic literature (Lipski, 1994). The
DT model using solely BOW or merged features
behaves similarly (Figure 4 in Appendix A).

To exploit the interpretability of the models, we
calculate feature weights to get insights into the
behavior of the models. Figure 2 shows the most
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Figure 2: Feature relevance in SVM models: tailored, BOW and merged features

Figure 3: Confusion matrix (SVM, tailored features)
over the predicted vs. true country labels.

important features of the SVM models using the
three feature types, based on their coefficients. The
weights indicate that the most important features of
the SVM model only using tailored features display
a high focus on tenses and VOSEO and OVSUBJ fea-
tures. Generally, the most frequent features are
also the most relevant ones, which is also true for
the DT model. In unigram-based models, topic-
related tokens (e.g. nationalities, places) dominate
the importance rankings, which is consistent with
prior research (Zampieri et al., 2013). The merged
models exhibit similar rankings, while some tai-
lored features like VOSEOvos appear among the
most important ones (Figure 2). Given that these
tokens would anyway occur as unigram features,
the tailored features provide little extra benefit.

5.2 Effect of Named Entity Features
Table 3 shows that the overall performance drops
significantly compared to the standard setup when
NEs and nationalities are removed from the fea-
tures. Again, the transformer model outperforms
the other models with a score of 0.59. The accuracy
of the SVM is the same for merged and unigram-
based features (0.55). The DT results are again low,
showing a slightly but significantly stronger per-
formance (0.17>0.16) with merged features4. The
fact that all models deteriorate on this task shows
that they heavily rely on content-related textual
cues. Now tailored features play a bigger role for
the models using the merged feature set: More tai-
lored features are among the most important ones
in SVM and DT models (Figure 6 and 7 in Ap-
pendix A), such as indicative simple preterite tense.
This confirms that the tailored features add explicit
information to the models that can only be found
implicitly in unigrams.

5.3 Effect of Grouped Dialects
When grouping dialects into larger classes, all sta-
tistical models show an increase in performance
(Table 3), as expected due to the label reduction
of 50%, which renders the task easier. The trans-
former model, however, deteriorates and is now
on par with the unigram-based SVM model (ac-
curacy score: 0.66). Although the performance
is still comparably low, the models using tailored
features almost double their accuracy from 0.10 to
0.18 (SVM), and from 0.09 to 0.15 (DT), while the
unigram-based and merged features models only

4We measured statistical significance using the McNemar
test (Seabold and Perktold, 2010) with a threshold of 0.05.

542



slightly increase their performances. These obser-
vations show that the change in inter-class similar-
ity is clearly reflected by the models using tailored
features, whereas it has little effect on the others,
suggesting that the tailored features represent the
dialectal differences in the language better than the
standard BOW features.

5.4 Summary of Observations

Our results show that the traditional classifiers did
not outperform the fine-tuned transformer model.
Yet, it is important to note that the performance
gap to the SVM models, while statistically signifi-
cant, was marginal (at most 0.04 points) and in the
case of the grouped dialects non-existent. Consid-
ering that SVMs have significantly shorter runtime
than transformer models and are typically more
interpretable and transparent, it is valid to question
whether substituting slightly better performance
for a more efficient, explainable and interpretable
statistical model is reasonable.

The study of the features has revealed that the tai-
lored features perform much worse than the other
features and, with one exception, do not improve
performance of the unigram-based features. How-
ever, the high scores produced by the other features
and also the BERT model reflect a rather content-
dependent classification, which is not necessarily
desirable. In contrast, the tailored features by de-
sign model the dialects in a content agnostic man-
ner and the grouping of the classes has revealed that
they indeed reflect the inter-class similarity much
better than the other methods. In this light, we ar-
gue that the use of tailored features is a promising
approach that deserves to be explored further.

6 Conclusion

In this work, we tackled the task of automatic di-
alect classification for dialects from 20 Spanish-
speaking countries. We compared two traditional
machine learning models, an SVM and a DT model,
to a fine-tuned BERT model and experimented with
three types of features for the feature-based models:
linguistically motivated dialect-specific features,
BOW unigram features and a merged version. The
traditional models could not outperform the trans-
former model. However, the margin to the best-
performing SVM model was at most 0.04 points,
which raises the question of whether this slight im-
provement in performance is worth sacrificing the
efficiency, explainability and interpretability of tra-

ditional machine learning models. Regarding the
features, the current tailored feature set generally
did not contribute positively to the performance
of the traditional models. Still, we demonstrated
that they represent the dialects in a salient, content-
agnostic manner, and thus carry an inherent poten-
tial to go beyond obvious lexical cues like BOW
features and BERT embeddings, and to capture
inter-class similarity for broader linguistic areas.
Investigating the use of dialect-specific features
therefore constitutes a promising approach.

7 Limitations

A current limitation which regards the tailored fea-
tures is that – even after exhaustive literature search
– they constitute a comparatively small feature set
which moreover includes features that occur very
rarely. For future work, finding more dialectal
characteristics that occur with a relatively high fre-
quency and thus building a larger feature set could
improve the performance of the models using such
a feature set. Also, some of the literature that was
consulted for feature collection dates back to 1994
(Lipski, 1994) and, although very well-established,
may not be fully representative of the current vari-
eties that are spoken and written in Latin America.
This issue may have contributed to the generally
poor performance of the tailored features.

The focus of our paper is on comparing statis-
tical vs. transformer-based classifiers, rather than
identifying the single best transformer model. Nev-
ertheless, it is worth noting that we do not know
whether the Spanish BERT model we used was pre-
trained on an appropriate amount of Latin Ameri-
can Spanish data. While we expect our fine-tuning
procedure to compensate for any such shortcom-
ings, it may still be relevant to experiment with
other Spanish BERT models to better assess the
effect of pre-training with different data mixes. Fur-
thermore, implementing models from different fam-
ilies (e.g. GPT) could yield different results and
presents an interesting direction for future work.

Finally, we observed that spacy’s built in NER
model did not consistently recognize all NEs in the
data. While we expect any effects to be roughly
the same for all classes, future work could benefit
from applying a more sophisticated NER model for
Spanish. Also, it would be reasonable to remove
other cues like country tags that are not directly
targeted by NER tools.
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A Appendix

Country Country tag # of Documents
Argentina AR 177,920
Bolivia BO 43,293
Chile CL 71,620
Colombia CO 184,970
Costa Rica CR 33,255
Cuba CU 51,708
Rep Dom DO 47,065
Ecuador EC 63,160
España ES 421,520
Guatemala GT 61,434
Honduras HN 43,227
México MX 286,275
Nicaragua NI 35,696
Panamá PA 29,312
Perú PE 121,814
Puerto Rico PR 33,879
Paraguay PY 33,301
El Salvador SV 38,217
Uruguay UY 36,154
Venezuela VE 112,571

Table 4: Overview of the number of documents in the
Corpus del Español per country (Davies, 2016).

Figure 4: Confusion matrix of the DT model using
tailored features.

C Acc. std
10 0.104 0.0010
0.1 0.094 0.0009
0.01 0.087 0.0009
0.001 0.080 0.0006

C Acc. std
10 0.637 0.0018
0.1 0.580 0.0019
0.01 0.496 0.0017
0.001 0.323 0.0015

Table 5: Accuracy and standard deviation results pro-
duced by SVM models using a different parameter value
for C using GridSearchCV. The tables show the results
for tailored (left) and unigram features (right).

Hyperparameter Name Value
Number of epochs 5
Batch size per device during training 16
Number of warm-up steps for LR scheduler 500
Weight decay 0.01

Table 6: Hyperparameters of transformer models.
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max_depth &
max_features

Acc. std

30_None 0.085 0.0002
50_None 0.085 0.0006
30_log2 0.083 0.0009
30_sqrt 0.083 0.0012
50_sqrt 0.083 0.0010
50_log2 0.082 0.0006

max_depth &
max_features

Acc. std

50_None 0.382 0.001
30_None 0.366 0.0018
50_sqrt 0.124 0.0105
30_sqrt 0.096 0.0056
50_log2 0.058 0.0012
30_log2 0.054 0.0009

Table 7: Accuracy and standard deviation results produced by DT models using different parameter combinations for
max_depth & max_features using GridSearchCV. Left table uses tailored and right table unigram-based features.

Figure 5: Confusion matrices of the SVM (left) and DT model (right) using BOW features.
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Figure 6: Feature relevance in SVM (left) and DT (right) models using merged features when NEs are filtered out.

Figure 7: Feature relevance in SVM (left) and DT (right) models using merged features for comparison with Fig. 6.
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