
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 517–527

July 28-29, 2025 ©2025 Association for Computational Linguistics

StRuCom: A Novel Dataset of Structured Code Comments in Russian

Maria Dziuba1,2, Valentin Malykh1,2,3,
1MTS AI, 2ITMO University, 3IITU University,

dziuba.maria@niuitmo.ru
valentin.malykh@phystech.edu

Abstract
Structured code comments in docstring format
are essential for code comprehension and main-
tenance, but existing machine learning models
for their generation perform poorly for Rus-
sian compared to English. To bridge this gap,
we present StRuCom — the first large-scale
dataset (153K examples) specifically designed
for Russian code documentation. Unlike
machine-translated English datasets that dis-
tort terminology (e.g., technical loanwords vs.
literal translations) and docstring structures,
StRuCom combines human-written comments
from Russian GitHub repositories with syn-
thetically generated ones, ensuring compliance
with Python, Java, JavaScript, C#, and Go stan-
dards through automated validation.

1 Introduction
The automated generation of structured code com-
ments in docstring format, including detailed de-
scriptions of functionality, parameters, return val-
ues, exceptions, and usage examples, greatly im-
proves codebase maintenance. Structured code
comments provide developers with quick and easy
access to the required information, and can also
be used to automatically generate project docu-
mentation, for instance, in HTML format. How-
ever, modern language models, such as Qwen2.5-
Coder (Hui et al., 2024) and DeepSeek-Coder
(Guo et al., 2024), primarily focus on English-
language data and therefore perform poorly for
Russian-language comment, neglecting the needs
of Russian-speaking developers. These develop-
ers, working on localized projects, who often en-
counter linguistic barriers, which can lead to code
misunderstanding and a waste of time. In view of
this, there is a strong need for a specialized model
for this task, which requires curated training data.

Unfortunately, existing datasets (English-centric
CodeSearchNet (Husain et al., 2019) or multilin-
gual MCoNaLa (Wang et al., 2023b)) mostly fo-

cus on code summarization and retrieval tasks,
not on function-level documentation generation.
The datasets that contain both simple comments
and docstrings in English (for example, the Vault
(Nguyen et al., 2023)), firstly, require a tool for
structure-based filtration to check comments for
existence of detailed functionality descriptions,
covering all function parameters, exceptions and its
return value. Secondly, machine translation of En-
glish comments cannot be straightforwardly used,
as it introduces distortions (Wang et al., 2023b)
and disrupts docstring structure.

In this work, we present StRuCom, the first spe-
cialized dataset for generating structured Russian-
language code comments. To create it, we de-
veloped a tool for filtering and validating com-
ment structures, supporting five popular documen-
tation styles: Python - GoogleDoc1, JavaScript -
JSDoc2, Java - JavaDoc3, C# - XML4, and Go
- GoDoc5. The dataset combines real-world com-
ments from Russian repositories with synthetically
generated examples. Using this data, we finetuned
the Qwen2.5-Coder model family (0.5B, 1.5B, 3B,
and 7B parameters), demonstrating statistically
significant improvements in generation quality via
chrF++ (Popović, 2017) and BERTScore (Zhang
et al.) metrics compared to baseline versions.

Our contributions: Filtering tool for struc-
tured comments. We developed an automated
tool to validate comment structures across five
documentation standards (Python, Java, Go, C#,
JavaScript). Dataset. We compiled a dataset
of 153K Russian-language code-comment pairs,

1https://google.github.io/styleguide/
pyguide.html

2https://jsdoc.app
3https://docs.oracle.com/javase/8/docs/

technotes/tools/windows/javadoc.html
4https://learn.microsoft.com/en-us/

dotnet/csharp/language-reference/xmldoc/
recommended-tags

5https://tip.golang.org/doc/comment

517

https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://jsdoc.app
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-tags
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-tags
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-tags
https://tip.golang.org/doc/comment

combining real-world examples from GitHub
repositories with synthetically generated annota-
tions for five programming languages.

2 Related Work

The existing datasets for code-to-text tasks are
mainly focused on English-language content. The
Stack (Kocetkov et al., 2022) combines multilin-
gual code from 658 programming languages (67
TB in version 2.x), collected from a variety of
sources: Software Heritage Archive, GitHub Is-
sues, Stack Overflow, etc. Despite its scale, the
set is not adapted for supervised fine-tuning (SFT)
tasks and requires significant preprocessing. The
Vault (Nguyen et al., 2023), derived from The
Stack v1, includes 43 million English-language
code-text pairs from 10 programming languages.
The data was obtained by extracting docstrings
and inline comments using the Code-Text parser 6.
However, structured comments (with parameters
and usage examples) remain rare, which is partly
explained by the predominance of short functions
in the source data. CodeSearchNet (Husain et al.,
2019), part of the CodeXGLUE benchmark (Lu
et al., 2021), contains 1 million English-language
code-text pairs for 6 languages. The set is focused
on code search: text descriptions are limited to
the first paragraphs of the documentation, which
simplifies comparison, but excludes complex de-
scriptions. MCoNaLa (Wang et al., 2023b) offers
limited multilingual support: 345 Russian, 341
Spanish, and 210 Japanese intent-snippet pairs for
Python. The focus on narrow “how-to” scenar-
ios and a small size limit the applicability of this
dataset for structured documentation tasks.

3 StRuCom Dataset

Collection Process. To construct our dataset, we
crawled all existing Russian-language repositories
on GitHub for the selected programming languages
(Python, Java, JavaScript (JS), C#, and Go). Since
the GitHub API does not provide a direct query
to identify the natural language used by repository
authors, we developed a novel approach to address
this limitation. Our program retrieved repositories
with Russian-language descriptions and permis-
sive licenses (allowing commercial use or lacking
licensing restrictions). The crawled repositories

6https://github.com/FSoft-AI4Code/
CodeText-parser/tree/main

contained comments written in various languages.
For details on comment extraction see Appendix A.

Filtration Process. At the initial stage of filter-
ing, all comments were standardized to follow a
uniform style based on the conventions established
for each programming language: Python - Google-
Doc, JavaScript - JSDoc, Java - JavaDoc, C# -
XML, and Go - GoDoc. Examples of these stan-
dardized formats can be seen on Fig. 1. To fur-
ther divide comments into types by structure, we
suggest the following terminology: A structured
comment is a comment that can be parsed by the
docstring_parser library7 and contains either
parameter lists, return value descriptions, or ex-
ception descriptions. A complete comment is a
structured comment that provides a comprehen-
sive description of all its component parts, includ-
ing types (if needed). An incomplete comment is a
structured comment that lacks a description of any
of its component parts, which is why it cannot be
called complete. Unstructured comments are those
that do not correspond to a specific format used in a
given programming language. For more informa-
tion about filtration by structure see Appendix D.
Only structured and complete comments were in-
cluded in the final version of the dataset.

Enhancement with LLM. Based on the statis-
tics on the structuredness of the collected data
from GitHub, many code comments are incom-
plete or unstructured and generally of poor quality.
For some programming languages (for example,
JavaScript and Python), there is very little data and
this is not enough to finetune neural networks. To
solve these problems, we used large language mod-
els (LLM), generating synthetic data using them in
two ways: generating comments from scratch and
improving existing comments. For additional in-
formation about comment’s enhancement see Ap-
pendix E.

Dataset Overview Table 1 presents the final sta-
tistical data of the final set, combining synthetic
improved by the Miqu-70B model comments and
generated from scratch by Qwen2.5-Coder-32B-
Instruct ones with real comments from more than
150,000 Russian-language GitHub repositories of
five programming languages: Python, Java, Go,
C# and JavaScript. The total amount of data is
153,181 examples, of which 79,548 are improved,
65,914 are synthetic, and 7,719 are real comments.

7https://github.com/nmd2k/docstring_parser

518

https://github.com/FSoft-AI4Code/CodeText-parser/tree/main
https://github.com/FSoft-AI4Code/CodeText-parser/tree/main
https://github.com/nmd2k/docstring_parser

short description

long description

Args:
name1 (type1): description1
name2 (type2): description2

Returns:
type: description

Raises:
type: description

(a) Python Google docstring style

/**
* short description
*
* long description
*
* @param name1 description1
* @param name2 description2
* @return description
* @throws type description
*/

(b) JavaDoc comment style

/// <summary>
/// description
/// </summary>
///
/// <param name="name1">description1</param>
/// <param name="name2">description2</param>
///
/// <returns>description</returns>
///
/// <exception cref="type">description</exception>

(c) C# XML comment style

/**
* short description
*
* long description
*
* @param {type1} name1 - description1
* @param {type2} name2 - description2
* @return {type} description
* @throws {type} description
*/

(d) JSDOC comment style

// NameOfFunction description

(e) GoDoc comment style

Figure 1: Comparison of documentation styles in different programming languages

Prog. lang. Enhanced From scratch Real
Python 14,625 10,078 359
Java 16,283 10,536 2,619
Go 7,278 20,339 232
C# 39,715 5,617 4,435

JavaScript 1,647 19,344 100∑
79,548 65,914 7,719

Table 1: Statistics of the collected Russian-language
data on programming languages and methods of ob-
taining them. The table shows the amount of improved
(modification of existing comments by the Miqu-70B
model), generated from scratch (synthetic data from
Qwen2.5-Coder-32B-Instruct) and real comments.

The uniqueness of the proposed dataset is de-
termined by several factors (see Table 2). Firstly,
this is the first large corpus with Russian-language
documentation for functions. The only existing
dataset with comments in Russian, MCoNaLa, is
designed to solve a different problem - searching
for a code snippet based on the user’s intent and,
therefore, is not suitable for generating structured

comments in the docstring style. Secondly, our
dataset was strictly checked for structure and com-
pleteness: all comments were modified to one of
the formats used in the industry for each specific
programming language. In other datasets, either
there are no structured comments at all (MCoNaLa,
CodeSearchNet), or they have not been filtered by
structure (the Vault). Thirdly, as a result of the
addition of synthetic data, the proposed set, un-
like MCoNaLa, has a sufficient size to train large
language models for all five selected programming
languages.

4 Experimental Evaluation

We conducted experiments, where we first bench-
mark existing open-source code-specific LLMs of
different size (Qwen2.5-Coder (0.5B - 7B) and
DeepSeek-Coder (1.3B - 6.7B)), then finetune
Qwen2.5-Coder (0.5B - 7B) on 7,500 comments,
sampled from a synthetic part of our dataset and
evaluate all models on our test set, 500 comments,
sampled from real comments.

519

Feature CSN Vault MCoNaLa Our dataset
#Pairs

«code-text» 6.5M 43K 341 - es, 210 - ja,
345 - ru 153K

Code
format Functions Functions, classes, snippets Code snippets Functions

Text
format

Unstr.,
1-2 sent.

Mixed (unstr. and str. w/o
filtration by structure)

Unstr.,
(1-2 sent.)

Str. complete
(>5 sent.)

Progr.
lang.

Go, Java, PHP,
JavaScript,

Python, Ruby

Java, JavaScript, Python,
Ruby, Rust, Golang,
C#, C++, C, PHP

Python, Java,
JavaScript

Java, Python, C#,
Go, JavaScript

Nat. lang. en en ru, ja, es ru
Data

source GitHub The Stack Stack Overflow GitHub

Table 2: Comparison of the characteristics of the proposed dataset with existing analogues (CSN, Vault, MCoNaLa)
by key parameters. The table shows the amount of data, the formats of code and text representation, the coverage
of programming languages, linguistic features and data sources. The dataset we propose stands out with a strict
focus on Russian-language structured comments on functions (153 thousand pairs), which contrasts with English-
language counterparts operating with unstructured or mixed comments.

Evaluation with Textual Similarity Metrics
We evaluated the models using standard natu-
ral language generation metrics, including chrF++
(Popović, 2017) and a modified BERTScore
(Zhang et al.). Instead of the traditional BERT
(Kenton and Toutanova, 2019), we employed E5-
Mistral 7B (Wang et al., 2022, 2023a), which offers
superior performance for Russian, outperforming
BERT models. The results of evaluation are shown
in Table 7.

Side-by-Side comparison The Side-by-Side
comparison was performed with GitHub Copilot
using LLM-as-a-judge method (the judge is GPT-
4o-mini) (Zheng et al., 2023). Finetuning of mod-
els on our dataset leads to a great improvement in
the quality of comment generation for all program-
ming languages and model sizes, which is shown in
Table 6. More details are presented in Appendix G.

Training and Results The additional informa-
tion about training setup, hyperparameters, etc. is
located in Appendix F. Finetuning on the proposed
dataset significantly improves the quality of com-
ment generation using the BERTScore metric for
all model sizes and most languages. For chrF++,
significant improvements are observed in small
number of cases. The results confirm that the pro-
posed approach is effective for adapting language
models to the task of generating Russian-language
comments, especially in terms of semantic correct-
ness (BERTScore).

5 Conclusion

In this paper, we have developed a tool for filtering
structured comments, collected a dataset of 153
thousand Russian-language code-comment pairs
(real and synthetic data for 5 programming lan-
guages). We plan to expand the dataset by adding
other programming languages, and develop and
implement a quality criterion for structured code
comments to automatically filter data and therefore
improve the quality of the dataset.

6 Limitations

The study has several limitations, including a spe-
cific commenting style limitation, an imbalanced
test dataset, and the assumption that code com-
ments always contain useful information about
code functionality, which is not always true. Addi-
tionally, some code comments from GitHub may be
redundant, uninformative, or contain errors, nega-
tively impacting the dataset’s quality.

7 Acknowledgement

This research was supported by the Ministry of
Economic Development of the Russian Federa-
tion (IGK 000000C313925P4C0002), agreement
No139-15-2025-010. The authors express their
sincere gratitude to the Ministry for the essential
funding that enabled the pursuit of this work.

520

References
Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,

Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-
coder: When the large language model meets
programming–the rise of code intelligence. arXiv
preprint arXiv:2401.14196.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Édouard Grave, Piotr Bojanowski, and
Tomáš Mikolov. 2017. Bag of tricks for efficient text
classification. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers,
pages 427–431.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2. Min-
neapolis, Minnesota.

Denis Kocetkov, Raymond Li, Loubna Allal, Jia Li,
Chenghao Mou, Carlos Ferrandis, Yacine Jernite,
Margaret Mitchell, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro Werra, and Harm Vries.
2022. The stack: 3 tb of permissively licensed source
code.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
MING GONG, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
LIU. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks, vol-
ume 1.

Dung Nguyen, Le Nam, Anh Dau, Anh Nguyen, Khanh
Nghiem, Jin Guo, and Nghi Bui. 2023. The vault:

A comprehensive multilingual dataset for advanc-
ing code understanding and generation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 4763–4788, Singapore.
Association for Computational Linguistics.

Maja Popović. 2017. chrf++: words helping character
n-grams. In Proceedings of the second conference
on machine translation, pages 612–618.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In Proceedings of the
26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 3505–
3506.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023a. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F.
Xu, and Graham Neubig. 2023b. MCoNaLa: A
benchmark for code generation from multiple natural
languages. In Findings of the Association for Com-
putational Linguistics: EACL 2023, pages 265–273,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

A Comment Extraction
To extract comments, we used the function_parser8

tool for Python, Java, and Go. For JavaScript
and C#, we employed Code-Text. The GitHub
data collection process consisted of several steps.
First, code snippets from Python and JavaScript li-
braries with very few non-English comments were
excluded. The formatting of comments in Java,
JavaScript, and C# was then standardized. In C#,
XML tags such as <summary> were corrected. For
Java and JavaScript, redundant whitespaces, line

8https://github.com/ncoop57/function_parser

521

https://doi.org/10.48550/arXiv.1909.09436
https://doi.org/10.48550/arXiv.1909.09436
https://doi.org/10.48550/arXiv.1909.09436
https://doi.org/10.48550/arXiv.2211.15533
https://doi.org/10.48550/arXiv.2211.15533
https://doi.org/10.18653/v1/2023.findings-emnlp.316
https://doi.org/10.18653/v1/2023.findings-emnlp.316
https://doi.org/10.18653/v1/2023.findings-emnlp.316
https://doi.org/10.18653/v1/2023.findings-eacl.20
https://doi.org/10.18653/v1/2023.findings-eacl.20
https://doi.org/10.18653/v1/2023.findings-eacl.20
https://github.com/ncoop57/function_parser

breaks in block comments (delimited by /** and
*/), and HTML tags were removed. Next, automat-
ically generated comments in C# and JavaScript
were filtered out. Duplicate comments in the func-
tion and docstring columns were eliminated, along
with duplicates based on function and docstring in-
dependently. The language of each comment was
then identified using Lingua 9. More information
about language identification methods that we used
is in Appendix B. If Lingua failed to determine
the language, the corresponding comments were
excluded from the dataset. To improve language
identification accuracy, Lingua was provided with
short descriptions of comments, ensuring tags and
identifier names that could degrade identification
quality were removed. This process was applied to
all programming languages except Go, which has
a relatively simple comment structure.

The final dataset, after filtering, is summarized
in Table 3. The results show that JavaScript and
Go are characterized by a similar trend: a high
proportion of commented repositories (70.8% and
55.9%) and functions (70.2% and 25.8%) are com-
bined with a low percentage of Russian-language
comments (24.0% and 16.4%), which may indi-
cate the predominance of English-language doc-
umentation in their ecosystems. On the con-
trary, Python and C# show an increased propor-
tion of Russian—language comments (49.2% and
36.4%), which is probably due to regional de-
velopment practices - the active participation of
Russian-speaking communities in projects in these
languages, where comments are often written in
their native language for the local context.

B Language Identification
We applied two language identification methods
to determine the language of the comments: Fast-
Text (Joulin et al., 2017, 2016) and Lingua. Fast-
Text uses a bag-of-n-grams approach to capture
partial word order information, enabling efficient
processing of large datasets on consumer hardware.
Its pretrained models can classify text into one of
217 supported languages with high speed and ef-
ficiency. Lingua, on the other hand, employs a
probabilistic n-gram model combined with rule-
based heuristics, focusing on achieving high de-
tection accuracy across 75 supported languages.
While FastText offers broad language coverage
and high efficiency, it demonstrated high preci-

9https://github.com/pemistahl/lingua-py

sion but low recall for identifying Russian com-
ments, frequently misclassifying them as less pop-
ular languages. Lingua, although slower and more
memory-intensive, excels at handling short text and
mixed-language inputs, which are common in code
comments where natural language often intermixes
with programming-specific syntax (e.g., tags and
identifier names). Lingua’s robustness in these
scenarios makes it a preferable choice for detect-
ing natural language within code comments.

C Comment Structure
The examples of comment structure for five se-
lected programming languages are shown in Figure
1. Notably, Python’s GoogleDoc and JavaScript’s
JSDoc are the only styles among the selected ones
that require explicit descriptions of parameter types
and return types, reflecting the dynamically-typed
nature of these languages. JSDoc shares stylistic
similarities with JavaDoc, emphasizing structured
documentation. By contrast, C# utilizes XML for
comment formatting, providing a more tag-based
approach. GoDoc stands apart with its flexible
and descriptive style, as it imposes no strict format
requirements, allowing developers to use a nearly
free-form commentary approach.

D Filtration by Structure
For filtration-by-structure stage, we utilized the
fork of docstring_parser library 10 and javalang 11

tools to extract information about comment struc-
ture and Code-Text to gather information about
code structure. We also added missing types in
Python comments where possible using Code-Text.
The dataset’s collection showed significant dif-
ferences in structured comments’ availability and
completeness across programming languages, as
summarized in Table 4. The results demonstrate
an inverse relationship between the complexity of
the commenting standard and the proportion of
complete structured comments. Go, with mini-
mal requirements (only the function name at the
beginning of the comment), shows the maximum
percentage of full comments (56.4%, 10,880). On
the contrary, Python and JavaScript, where stan-
dards require specifying types and complex anno-
tations, have an extremely low proportion of com-
plete comments (1.5% and 1.4%), with unstruc-
tured ones dominating (94,968 and 14,091). Java

10https://github.com/rr-/docstring_parser
11https://github.com/c2nes/javalang

522

https://github.com/pemistahl/lingua-py
https://github.com/rr-/docstring_parser
https://github.com/c2nes/javalang

Programming
language

#Repositories #Functions #Comments
With

comments Total % With
comments Total % in Russian Total % in

Russian
Python 18,535 64,440 28.8% 305,187 1,627,726 18.7% 150,255 305,187 49.2%
Java 13,525 42,271 32.0% 409,506 2,684,650 15.3% 98,622 409,506 24.1%
Go 2,592 4,639 55.9% 117,691 456,347 25.8% 19,276 117,691 16.4%
C# 8,858 26,329 33.6% 291,142 596,905 48.8% 106,058 291,142 36.4%

JavaScript 15,073 21,291 70.8% 129,767 184,871 70.2% 31,084 129,767 24.0%

Table 3: Statistics on data collection from GitHub, including analysis of repositories, functions, and comments
on programming languages, grouped into three categories: repositories (the total number of repositories for each
programming language, the number of at least one comment, and the percentage of the latter), functions (the total
number of functions, the number of functions with comments and their relative proportion) and comments (the
total number of comments, the number of Russian-language comments and their percentage).

and C++ with moderately complex standards oc-
cupy an intermediate position: 29.8% and 22.7%
of full comments, respectively, but a significant
number of unstructured (48,347 and 30,188). The
table confirms that the simpler the syntax of a struc-
tured comment, the higher the proportion of its
compliance. The extremely high Go score is ex-
plained by the simplified standard, and the low
Python/JavaScript values are due to the excessive
complexity of the requirements, which leads to a
preference for unstructured comments.

E Enhancement of Comments via LLM

The final dataset includes only those data with the
length of both the code and the comment ranging
from 250 to 1,000 characters. Very short com-
ments and functions were excluded, as the goal
was to create a dataset with detailed and compre-
hensive documentation. Very long comments or
features are outliers and therefore were not con-
sidered. Comments were generated from scratch
using the Qwen2.5-Coder-32B-Instruct model for
functions without comments (see Table 3) and for
functions, which comments were not successfully
enhanced. To improve the dataset, the MIQU 70B
12 model was used, which was further trained in
Russian. The goal of the improvement is to gen-
erate a complete and detailed comment of the best
quality based on the function and the existing com-
ment on it. An example is illustrated in figure 2.
System and user prompts used for mentioned two
types of synthetic data collection are placed in Ap-
pendix, see 3, 4, 5 and 6, prompts for generation
from scratch are in English, while the ones for
enhancement are in Russian, as finetuned MIQU
70B works better with Russian prompts. Candi-

12https://huggingface.co/miqudev/miqu-1-70b

dates for improvement were selected from all the
structuredness groups that were not included in the
dataset in the “real” group. Comment is consid-
ered improved if it has become complete as a result
of the improvement. Table 5 shows statistics on
improving the dataset. Go stands out for the max-
imum efficiency of improvements (avg = 84.3%),
especially for complete comments (91.5%), which
is explained by a simple commenting standard,
where it is enough to specify the function name.
Python and JavaScript show the lowest averages
(31.9% and 33.5%), which is due to the complex-
ity of their standards, which require specifying data
types, which makes automatic modification diffi-
cult. C# and Java occupy an intermediate position:
C# shows a high average percentage of improve-
ments (80.1%) with a peak in the full comments
category (92.4%), while Java shows moderate re-
sults (avg = 48.2%).

F Training and Results
The models were trained for 5 epochs with a con-
text length of 2000, a learning rate of 1e-4, and a
cosine scheduler with a weight decay of 0.1 and a
warmup ratio of 0.01. We used LORA (Hu et al.,
2021) adapters with a rank of 8, alpha of 16, and
a dropout rate of 0.05 for finetuning. From the
synthetic part of the dataset, we sampled 1,500 ex-
amples for each programming language, resulting
in 7,500 examples. For calculating metrics on real
data, we sampled 100 examples for each program-
ming language. The comparison is made with the
base models to determine the extent to which train-
ing on our synthetic dataset improves the quality.
Notably, with a batch size of 1, the model takes
approximately 20 hours to train on 5 programming
languages using DeepSpeed Zero2 (Rasley et al.,
2020) on a single A100 GPU. The results are shown

523

https://huggingface.co/miqudev/miqu-1-70b

Programming
language

Structured
Non-structured% complete out

of all Russian Complete Incomplete

Python 1.5% 2,176 30,115 94,968
Java 29.8% 29,367 12,221 48,347
Go 56.4% 10,880 - 8,396
C# 22.7% 24,017 41,898 30,188

JavaScript 1.4% 431 1,484 14,091

Table 4: The structure of Russian-language comments on programming languages. For each language, the
following are indicated: the percentage of complete structured comments out of the total number of Russian-
language comments (% of the total number), the absolute values of complete and incomplete structured comments,
as well as the number of unstructured ones. In Go, the dash in the “Incomplete” column is due to a feature of the
commenting standard: comments are considered complete if they begin with the function name, which excludes
the “incomplete” category.

Programming
language Non-structured Incomplete Complete

Python #Enhanced comments 10 775 3 455 395
∑

= 14 625
% out of the original quantity 24.2% 23.2% 48.1% avg = 31.9%

Java #Enhanced comments 7 066 3 810 5 407
∑

= 16 283
% out of the original quantity 32.0% 57.6% 55.1% avg = 48.2%

Go #Enhanced comments 3 018 - 4 260
∑

= 7 278
% out of the original quantity 77.1% - 91.5% avg = 84.3%

C# #Enhanced comments 12 467 18 148 9 100
∑

= 39 715
% % out of the original quantity 74.8% 73.1% 92.4% avg = 80.1%

JS #Enhanced comments 1 386 164 97
∑

= 1 647
% % out of the original quantity 20.4% 20.4% 59.5% avg = 33.5%

Table 5: Statistics on the improvement of Russian-language comments on programming languages, divided into
categories: unstructured, incomplete and complete structured comments. For each language, the absolute number
of improved comments, the percentage of improvements relative to the initial number in the category (from the
Table 4), the total number of improvements (

∑
) and the average percentage of improvements (avg) are indicated.

The dash in the category of incomplete comments for Go reflects their absence in the source data due to the
simplified standard for documenting functions.

in Table 7.

G Side-by-side Comparison
We adopt the LLM-as-a-judge paradigm (Zheng
et al., 2023), leveraging GPT-4’s RLHF-aligned
reasoning for automated pairwise comparisons, see
Table 6. This approach replaces costly expert la-
beling while maintaining 80% human judgment
consistency and providing interpretable rationales.
To mitigate positional bias, responses are evalu-
ated twice with reversed order, recording victories
only for consistent outcomes. Our implementation
introduces two tie types: «win» (both responses
adequate) and «lose» (both inadequate), refining
outcome granularity for semantically similar com-
ments.

The greatest progress is observed in compact
models (0.5B-3B parameters), which indirectly

confirms the hypothesis of high data relevance:
smaller architectures are more dependent on the
quality of training examples, and their visible per-
formance growth indicates a successful dataset se-
lection that compensates for the lack of parameters.

524

30

Улучшение набора данных

/**
* Читает код из файла MainS.java и записывает
его в одну строку string, заменяя все вхождения
"MainS" на "MainS2" и удаляя комментарии.
*
* @param s - строка для чтения из файла
* @param linePattern - шаблон для поиска строк
* @param lineM - объект Matcher для поиска
строк
*
* @return Строка с кодом, скомпилированным в
одну линию
*
* @throws IOException Если происходит ошибка
ввода-вывода при чтении файла
*/

/**
* Метод считывает код из файла MainS.java и
записывает в строку string
* @param s - полученная строка из файла
* @param linePattern
* @param lineM
* @throws IOException
*/

private static String codeToOneLine(String s, Pattern linePattern, Matcher lineM)
throws IOException {
 String string = """";
 try (BufferedReader bufferedReader = new BufferedReader(new
FileReader(""src/MainS.java""))) {
 while ((s = bufferedReader.readLine()) != null) {
 lineM.reset(s);
 while (lineM.find()) {
 s = lineM.group();
 s = s.replaceAll(""MainS"", ""MainS2"");
 s = s.replaceAll(""\\/\\/.+"", "" "");
 s = s.replaceAll(""\\t"", "" "");
 //oneLine.write(s);
 string += s;
 }
 }
 }
 return string;
}

Figure 2: An example of improving a comment. On the left is a function and a comment on it before improvement,
which (1) fails to explain the method’s purpose (converting code into a single line with modifications), (2) contains
an incorrect description of parameter "s" (presenting it as the result when it’s actually a buffer), (3) completely
ignores the return value, (4) omits key operations: replacing "MainS" → "MainS2", removing comments (//...),
and deleting tabulations. The comment after the improvement is devoid of these shortcomings.

20

You are an AI programming assistant. Follow the user's requirements carefully & to the letter.

Please provide documentation comments (Docstring, GoDoc, JavaDoc, JSDoc, XML docs, etc., depending on
language) to this function. На русском языке, пожалуйста.

Figure 3: System prompt for generation from scratch

20

You are an AI programming assistant. Follow the user's requirements carefully & to the letter.

Please provide documentation comments (Docstring, GoDoc, JavaDoc, JSDoc, XML docs, etc., depending on
language) to this function. На русском языке, пожалуйста.

Figure 4: User prompt for generation from scratch

18

Вы опытный программист, который вышел на пенсию и сейчас помогает советом своим коллегам. У вас много свободного
времени, поэтому вы читаете всю новейшую литературу в данной области, а также готовы прийти на помощь любому
попросившему в любой момент. Вы в совершенстве знаете языки программирования Java, Python, Go, C#, JavaScript и их стили
документации - JavaDoc (Java), JSDoc(JavaScript), GoDoc(Go), XML (C#) .

Вы терпеливы, умеете объяснять в деталях каждое конкретное решение, но при этом задание выполняете максимально
лаконично. Вы всегда предельно вежливы и отзывчивы.

Ваша главная задача - помогать составлять комментарии к коду на тех языках программирования, которые вы знаете.
Комментарии должны быть только на {right} языке, если Вы сгенерируете комментарий на {wrong}, то Вас оштрафуют на 1000000
долларов.

Ваш ответ должен состоять только из комментария к функции в стиле, определённом для конкретного языка программирования

Не забывайте оборачивать текст в комментариях к коду на C# в тэг <summary>.

Помните, что для Go общепринятый стандарт не устанавливает жесткие ограничения на структуру комментария, достаточно, чтобы
первое слово в комментарии было названием комментируемой функции. Нужно, чтобы комментарии для Go были максимально
подробными, и по смыслу включали в себя то, что и в других языках (описание параметров и их типы, тип и описание
возвращаемого значения, а также тип исключения с описание ситуации, когда оно выбрасывается).

Figure 5: System prompt for the enhancement of existing comments

525

19

Исходный комментарий:
"Выполняет поиск в базе данных
Args:
 import_id : уникальный идентификатор поставки

db (Database):
 projection: словарь

Returns:
 List[dict]: Список жителей

Улучшенный комментарий:
"Выполняет поиск в базе данных (db) записи с указанным

идентификатором импорта (import_id) и возвращает список с данными
о гражданах из этой записи. Если запись не найдена, генерируется
исключение PyMongoError с сообщением об отсутствии записи с
указанным идентификатором.

Проекция (projection) - это словарь, который определяет, какие поля из
записи должны быть возвращены в результате. Если projection не
указан, все поля будут возвращены.

Примечание: Этот код предполагает, что в базе данных есть коллекция
'imports', в которой хранятся записи о импортах, и каждая запись
содержит поле 'citizens', в котором хранятся данные о гражданах.

Args:
 import_id (int): уникальный идентификатор поставки

db (Database): объект базы данных, в которую записываются наборы
данных о жителях

projection (dict): словарь проекции выборки

Returns:
 List[dict]: Список жителей
Raises:

 class:PyMongoError: Поставка с указанным уникальным
идентификатором отсутствует в базе данных"

Figure 6: User prompt for the enhancement of existing comments

Experiment type Python Java Go C# JavaScript
Qwen2.5-Coder-7B-Instruct

w/o finetuning 48.0/2.0/16.5/33.5 65.5/6.0/1.0/27.5 43.5/3.5/6.0/47.0 22.0/2.0/3.0/74.0 44.0/4.5/3.0/48.5
w finetuning 45.0/6.5/19.0/29.5 85.0/4.0/0.5/10.5 61.0/5.5/5.0/28.5 81.0/3.5/2.0/13.5 71.0/2.0/0.0/27.0

Qwen2.5-Coder-3B-Instruct
w/o finetuning 7.0/0.0/16.5/76.5 24.0/0.5/2.5/73.0 7.0/0.5/4.5/88.0 7.0/0.0/4.5/88.5 19.5/0.5/5.0/75.0
w finetuning 41.5/4.5/21.0/33.0 81.5/6.0/0.0/12.5 58.0/3.5/4.5/34.0 82.0/4.0/2.0/12.0 65.5/5.0/0.5/29.0

Qwen2.5-Coder-1.5B-Instruct
w/o finetuning 18.5/0.5/16.5/64.5 20.0/1.0/3.5/75.5 9.5/0.0/8.5/82.0 7.0/0.5/2.0/90.5 13.5/0.0/3.5/83.0
w finetuning 38.0/2.5/26.0/33.5 78.0/4.0/1.5/16.5 58.0/4.5/6.5/31.0 73.0/4.5/3.5/19.0 58.5/4.5/1.0/36.0

Qwen2.5-Coder-0.5B-Instruct
w/o finetuning 36.0/2.0/25.0/37.0/ 24.5/0.5/4.5/70.5 12.5/0.0/13.5/74.0 5.5/0.5/5.0/89.0 8.5/0.0/4.0/87.5
w finetuning 18.0/1.0/22.0/59.0 60.0/3.5/2.0/34.5 31.5/2.0/5.0/61.5 53.5/2.5/4.0/40.0 41.0/1.5/2.0/55.5

Table 6: The results of the Side-by-side evaluation with the GPT-4o-mini judge. The estimates are presented as:
Model VS Copilot, win/win_tie/lose_tie/lose, which corresponds to the estimates of 10/11/00/01. The answers
were evaluated twice with a change in their order to solve the problem of positional bias.

526

Model Python Java Go C# JavaScript
BERTScore chrF++ BERTScore chrF++ BERTScore chrF++ BERTScore chrF++ BERTScore chrF++

Baselines
DeepSeek-Coder 1.3B 0.837 18.3 0.827 19.2 0.811 10.4 0.812 18.4 0.839 24.7

±0.041 ±9.8 ±0.040 ±7.2 ±0.042 ±4.5 ±0.044 ±16.9 ±0.038 ±8.7
DeepSeek-Coder 6.7B 0.878 34.1 0.873 36.9 0.838 21.0 0.844 36.3 0.876 38.4

±0.043 ±10.5 ±0.044 ±14.2 ±0.047 ±11.1 ±0.052 ±18.2 ±0.033 ±10.9
Qwen2.5-Coder 0.5B 0.863 26.6 0.839 20.7 0.816 10.9 0.815 14.1 0.799 9.6

±0.052 ±9.8 ±0.056 ±9.3 ±0.052 ±5.6 ±0.052 ±8.5 ±0.035 ±6.1
Qwen2.5-Coder 1.5B 0.841 22.8 0.838 21.2 0.815 11.5 0.821 31.5 0.841 23.8

±0.045 ±10.8 ±0.045 ±10.5 ±0.039 ±5.0 ±0.051 ±14.9 ±0.035 ±7.9
Qwen2.5-Coder 3B 0.784 14.2 0.829 17.2 0.819 11.0 0.817 25.7 0.841 23.7

±0.061 ±8.4 ±0.039 ±6.0 ±0.041 ±4.4 ±0.046 ±15.5 ±0.033 ±6.2
Qwen2.5-Coder 7B 0.880 34.3 0.873 35.0 0.854 23.5 0.847 24.3 0.872 33.5

±0.040 ±7.7 ±0.039 ±9.8 ±0.039 ±9.1 ±0.037 ±12.2 ±0.031 ±7.9
Finetuned Models
Qwen2.5-Coder 0.5B 0.873 35.3 0.872 39.7 0.859 28.7 0.849 44.4 0.871 40.3

±0.042 ±9.0 ±0.040 ±9.8 ±0.038 ±6.8 ±0.041 ±10.2 ±0.035 ±0.03
Qwen2.5-Coder 1.5B 0.877 34.4 0.880 41.6 0.863 32.1 0.857 45.7 0.877 40.3

±0.040 ±7.5 ±0.036 ±8.8 ±0.035 ±6.3 ±0.038 ±9.3 ±0.031 ±0.03
Qwen2.5-Coder 3B 0.880 34.9 0.881 40.6 0.864 32.5 0.859 46.4 0.878 41.3

±0.040 ±7.5 ±0.035 ±8.3 ±0.035 ±6.2 ±0.037 ±9.7 ±0.031 ±8.5
Qwen2.5-Coder 7B 0.878 35.5 0.882 42.0 0.867 32.9 0.859 45.9 0.879 41.4

±0.039 ±7.3 ±0.036 ±8.9 ±0.035 ±6.2 ±0.034 ±9.5 ±0.032 ±7.6

Table 7: Comparison of base and finetuned models using BERTScore and chrF++ metrics with statistical signifi-
cance testing (Mann-Whitney criterion). Statistically significant improvements (p < 0.05) are highlighted in bold
when comparing the finetuned model with the corresponding sized base version. The values are presented as the
average ± standard deviation.

527

