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Abstract

In Recent years, advances in Neural Machine
Translation (NMT) heavily rely on large-scale
parallel corpora. Within the context of China’s
Belt and Road Initiative, there is increasing de-
mand for improving translation quality from
agglutinative languages (e.g., Mongolian, Ara-
bic) to Chinese. However, the translation sce-
narios for agglutinative languages (which form
words by concatenating morphemes with clear
boundaries) face significant challenges includ-
ing data sparsity, quality imbalance, and in-
active sample proliferation due to their mor-
phological complexity and syntactic flexibil-
ity. This study presents a systematic analysis
of data distribution characteristics in aggluti-
native languages and proposes a dual-module
framework combining fine-grained inactive
sample identification with target-side rejuve-
nation. Our framework first establishes a multi-
dimensional evaluation system to accurately
identify samples exhibiting low-frequency mor-
phological interference or long-range word or-
der mismatches. Subsequently, the target-side
rejuvenation mechanism generates diversified
noise-resistant translations through iterative
optimization of sample contribution weights.
Experimental results on four low-resource ag-
glutinative language tasks demonstrate signifi-
cant performance improvements (BLEU +2.1—
3.4) across mainstream NMT architectures.
Architecture-agnostic validation further con-
firms the framework’s generalizability.

1 Introduction

Neural Machine Translation (NMT) depends heav-
ily on large-scale training data (Koehn and
Knowles, 2017), yet issues like data noise and com-
plex patterns hinder effective training. Though
methods such as curriculum learning (Edunov
et al., 2020), data diversification (Nguyen et al.,
2020), and denoising (Wang et al., 2018) im-
prove data quality, they fail to tackle inactive
samples—instances that contribute little or neg-

atively to model performance. These samples, of-
ten affected by morphological complexity or word-
order mismatches, are especially problematic in
agglutinative-to-Chinese translation tasks (Yatu
et al., 2024; Ji et al., 2019). The structural gap
between SOV agglutinative languages and SVO
Chinese limits sentence-level confidence metrics
(Kumar and Sarawagi, 2019) in detecting unstable
translations.

To address this challenge, we propose a data
rejuvenation framework for agglutinative lan-
guage translation, specifically handling: (1) low-
frequency morpheme interference (e.g., Mongolian
suffix -) through multi-dimensional metrics, and
(2) SOV-t0-SVO mismatches (e.g., Uyghur object-
fronting) via target-side augmentation.

Specifically, we train a target-side data augmen-
tation model on active samples as the regener-
ator to relabel inactive samples, thereby obtain-
ing regenerated samples. First, multi-dimensional
metrics (e.g., sentence probability mean, stan-
dard deviation, and token-level extremal proba-
bilities) are designed to identify inactive samples
with low-frequency morphology or word-order
mismatches. Second, a target-side augmentation
mechanism based on latent space modeling gen-
erates diverse translations to mitigate data spar-
sity and word-order distortion. Finally, active
and regenerated samples are jointly trained (Guo
et al., 2024). Experiments on Mongolian—Chinese,
Uyghur—Chinese, and Arabic—Chinese tasks show
consistent improvements across LSTM (Domhan,
2018), Transformer (Vaswani et al., 2017), and Dy-
namicConv (Wu et al., 2019; Gehring et al., 2017)
architectures.

2 Related Work

Inactive Samples. Inactive samples refer to train-
ing instances with minimal or negative contribu-
tions to model performance, primarily due to in-

508

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 508-516
July 28-29, 2025 ©2025 Association for Computational Linguistics



effective feature encoding. This phenomenon is
observed in both computer vision (e.g., 10% redun-
dancy in CIFAR-10/ImageNet (Krizhevsky et al.,
2009; Deng et al., 2009)) and NMT (Jiao et al.,
2020). However, agglutinative languages (Mongo-
lian, Arabic) pose unique challenges in Chinese
translation: rich morphology (complex affixation)
and free word order (SOV structure) induce dis-
tinctive inactive patterns like low-frequency mor-
phological interference and long-range syntax mis-
matches. Traditional single-metric approaches
(e.g., sentence-level probability) fail to capture
these fine-grained features (Pan et al., 2020), moti-
vating our multi-dimensional evaluation system in-
tegrating sentence probability statistics (mean/std)
and token-level confidence extremes.

Data Manipulation. Existing methods fall into
two categories: 1) Data purification/augmentation
(Gao et al., 2024) including denoising (Wang et al.,
2018) and forward translation (Nguyen et al., 2020;
Jin, 2024; Li et al., 2022); 2) Sample weighting
via self-paced learning (easy samples), hard ex-
ample mining, or curriculum learning. While ef-
fective for general NMT, these approaches inade-
quately address agglutinative-specific issues. For
instance, Jiao et al.’s (Jiao et al., 2020) forward
translation method introduces word order errors
during SOV-to-SVO conversion (Luo et al., 2024),
amplifying translation noise. Our innovation lies in
target-side data augmentation through latent space
posterior distribution modeling, generating multi-
ple noise-resistant translation variants to mitigate
single-annotation dependency.

Low-Resource Utilization. Recent advances
leverage knowledge distillation and corpus refine-
ment: Ding et al. (Ding et al., 2021, 2022)
propose bidirectional distillation to enhance low-
frequency word alignment, while Briakou et al.
(Briakou and Carpuat, 2022) employ semantic
equivalence classifiers for noise filtering. These
methods synergistically complement our sample
activation framework—bidirectional distillation ex-
pands lexical coverage, corpus refinement ensures
data purity, and our multi-metric evaluation opti-
mizes sample utility weights—collectively enhanc-
ing NMT robustness for agglutinative languages.

3 Methodology

This chapter presents the architecture of the data re-
juvenation framework for agglutinative languages
(Figure 1). The Identification Module implement-

ing multi-metric evaluation (sentence-level proba-
bility, standard deviation, min/max token probabili-
ties) to detect inactive samples through fine-grained
analysis of translation behaviors under complex
morphological and syntactic structures; 2) Activa-
tion Module employing target-side data augmen-
tation to generate diverse translations, thereby en-
hancing low-contribution samples’ utility. The re-
generated samples are combined with original ac-
tive data to train the final NMT model.

3.1 Identification Model

Current NMT approaches predominantly rely on
single metrics (e.g., sentence-level probability) to
evaluate sample activity. However, this paradigm
exhibits critical limitations in low-resource lan-
guage pairs with significant grammatical diver-
gence like agglutinative-to-Chinese translation.
Firstly, sentence-level metrics fail to account for:
(1) low-frequency token impacts (e.g., their prob-
abilities are masked by high-frequency counter-
parts), (2) long-range dependencies, (3) complex
syntactic structures—all crucial for capturing gram-
matical relationships and semantic coherence (Mo-
hamed and Al-Azani, 2025; Shaalan et al., 2019;
Refai et al., 2023). Additionally, the coarse-grained
nature of sentence-level metrics lacks token-wise
translation quality assessment, impairing both
model training efficacy and inactive sample identi-
fication.

To address these deficiencies, we propose a
multi-metric evaluation framework that compre-
hensively analyzes training samples through four
dimensions:

Sentence-level probability (pscnt mean): The
trained Neural Machine Translation (NMT) model
evaluates the generation relationship between
source and target sentences by computing the
sentence-level probability p(y|x), which represents
the confidence of generating target sentence y given
source sentence x. Specifically, this probability
is derived by calculating the conditional probabil-
ity p(y¢|z, y<¢) at each time step, where 7' is the
length of the target sentence, y; denotes the ¢-th
word in the target sentence, z is the source sentence,
and y.,; represents the first t — 1 target words. This
computation indicates that the model progressively
assesses the conditional probability of each word
during target sentence generation, ultimately de-
termining the overall sentence probability. A low
sentence-level probability for a training sample sug-
gests poor translation quality, weak alignment with
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Figure 1: The framework of data rejuvenation. The ina
reconstructed through a rejuvenation model, and then ¢

the source sentence, and low model confidence,
thereby contributing minimally to model perfor-
mance.

T
Psent _mean — T Z yt‘fﬁ y<t (1)

Sentence Probability Standard Deviation
(psent_sta): The trained NMT model computes
the standard deviation Pi,; s of sentence prob-
abilities, where Pscnt mean 1 the mean of se-
quence conditional probabilities and 7" is the se-
quence length. By calculating the square root of
the mean squared deviation between each time
step’s conditional probability p(y;|z, y<;) and the
mean Psent mean, We obtain Pyeps g14, Which mea-
sures the fluctuation degree of generation prob-
abilities. A high Ps.,; sq indicates significant
confidence volatility during target sentence gen-
eration, suggesting inconsistent translation quality.
Consequently, such samples are less effective for
model improvement and may be classified as low-
contribution examples.

Psent_std - ytlx y<t Pscnt_mean)2 (2)

Y

Minimum Token Probability (P;o._min): Rep-
resents the lowest token-level confidence in gen-
erating target sentence y from source sentence .
Intuitively, a low Pk min indicates that certain to-
kens in the example are unlikely during generation,
potentially providing insufficient information to en-
hance translation performance. Here, p(y; |z, y<¢)
denotes the probability of generating the ¢-th token
in the target sentence given the source sentence x:

ctive samples are identified from the original training data,
ombined with active samples for NMT model training.

Piok_min = mtinp(yt\x, y<t) (3)

Maximum Token Probability (FPor maz):
Represents the highest confidence level for a sin-
gle token during target sentence generation. A high
Piok_maz indicates strong model confidence in gen-
erating a specific token:

Prok_mas = maxp(ye|z, y<t) (4)

Composite score:The composite score for each
sample is computed through a weighted combina-
tion of four metrics:

CompositeScore = & - Psent_mean + 3 - m
+ 7 Piok_min + 0 - 108 Piok_max

where «, 3, 7, and J are weighting coefficients
optimized via grid search (empirically set to 0.4,
0.3, 0.2, and 0.1 respectively), with e = 1 X 107°
preventing division by zero. The inverse rela-
tionship with Ps.,; 4 explicitly penalizes high-
variance samples.

Samples are then ranked by their composite
scores, and those below the threshold 7 are identi-
fied as inactive. These typically exhibit:

* Significant probability fluctuations (high
Psent_std)

* Extremely low token probabilities (Piok_min)
¢ Overconfident predictions (high Pior_maz)

Such samples are prioritized for rejuvenation dur-
ing optimization.
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Figure 2: The illustration of Target-Side Data rejuvenation: The rejuvenation model estimates translation distribu-
tions and samples data, optimizing MT model training through an intermediate latent variable.

3.2 Rejuvenation Model

In current NMT tasks, traditional optimization
methods primarily rely on forward and backward
translation, which expands training data by gen-
erating new source or target translations. How-
ever, these approaches exhibit limitations in low-
resource agglutinative language translation: 1) For-
ward translation heavily depends on source lan-
guage word order and syntax, often causing seman-
tic drift when processing free-word-order aggluti-
native languages, thereby reducing data effective-
ness; 2) Backward translation increases target-side
samples but lacks diversity, especially in captur-
ing long-range dependencies, complex syntactic
structures, and low-frequency vocabulary, failing
to effectively model source-target alignment. Con-
sequently, generated samples inadequately improve
model learning on inactive samples. To address
these issues, we employ target-side data augmenta-
tion for inactive sample rejuvenation. This method
models the posterior distribution of target sentences
to generate diverse potential translations, smooth-
ing the training data distribution. Figure 2 illus-
trates an example of target-side data augmentation
for Mongolians.

The core of target-side data augmentation lies
in modeling the posterior distribution Py, (y|z;, y;)
of target sentences. Given source sentence x; and
target sentence y;, we introduce latent variable z,
decomposing the posterior as:

Paa(ylzi,ys) = Y Poyles, 2)Pa(zlys)  (5)

z2€EZ;
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The Z; is the latent space; Py(y|x;, 2) represents
the conditional translation distribution, modeling
target sentence generation from x; and z; P,(z|y;)
denotes the latent variable distribution given y;,
describing the likelihood of generating z from y;.

After posterior modeling, the augmentation pro-
cess samples latent variables to generate diverse tar-
get translations, enhancing data variety and model
generalization. Specifically, for each z;, we first
sample {z;} from P,(z|y;), where each z; repre-
sents a semantic feature guiding diverse translation
generation. Then, we generate potential transla-
tions y; by maximizing the translation probability:

yj = argmax Py(ylxi, z;)  (6)

The final augmented set is:

M

i {argmijqb(ylxi,Zj)IZj ~ Pa(ZIyz')} (7)

j=1

This set of potential translations not only ex-
hibits formal diversity but also maintains semantic
consistency guided by the posterior distribution.
This augmentation process significantly expands
the possible target translations for each source sen-
tence, thereby enhancing both the diversity and
quality of the data.

4 EXPERIMENT
4.1 Experimental Setup

The experimental data in this paper is sourced
from in-house Mongolian-Chinese parallel corpora



and publicly available Arabic-Chinese and Korean-
Chinese datasets. The Mongolian-Chinese cor-
pus consists of 500K sentence pairs, covering di-
alogues, government documents, news texts, and
CCMT data, with 400K pairs selected for train-
ing. Additionally, we utilize two public corpora—
OpenSubtitles v2024 and MultiCCAligned v1.1—
to construct Arabic and Korean datasets. Open-
Subtitles v2024 contains movie and TV subtitles,
focusing on colloquial and multi-domain cover-
age, while MultiCCAligned v1.1 is derived from
automatically aligned multilingual web content, of-
fering diverse domains and large-scale data. Ap-
proximately 300K sentence pairs from each dataset
are used for Arabic-Chinese and Korean-Chinese
training. For each language pair, 5K sentence pairs
are reserved for validation and 5K for testing. All
data undergoes tokenization and BPE processing,
with results reported using BLEU.

We implement the proposed data rejuvenation
framework on representative NMT architectures:

* LSTM: Integrated within the Transformer
framework.

¢ Transformer: Pure attention-based architec-
ture.

* DynamicConv: Lightweight dynamic convo-
lutional architecture.

All models are implemented using Fairseq (Ott
etal., 2019). Training configurations:

* LSTM: 300K steps with 32K tokens/batch
(4096 x 8)

* Transformer: 300K (BASE)/1M (BIG) steps
with 32K tokens/batch

* DynamicConv: 1M steps with 57K to-
kens/batch (3584 x 16)

Finally, this study conducts experimental investi-
gations using DynamicConv on the identification
module (§3.1) and activation module (§3.2), fol-
lowed by reporting translation performance across
diverse model architectures and language pairs.

4.2 Inactive Examples

This section validates the rationality and consis-
tency of the identified inactive samples through a
series of experiments.

4.2.1 Rationality of Multi-Dimensional
Evaluation

BLEL

—— Most Inactive
Random
31— Most Active

T T T T T T
0 10 20 30 10 50

Ratio of Removed Examples (%)

Figure 3: Translation Performance of NMT Models
Trained on Data with Least Active Samples Removed:
Results are compared with models trained on the most
active samples and randomly sampled examples.
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Figure 4: Comparison of the impact degree on transla-
tion performance between inactive samples identified
using a multi-dimensional evaluation system and those
identified solely by sentence-level probability.

This experiment validates the rationality of inac-
tive sample identification by analyzing their impact
on translation performance. Theoretically, remov-
ing inactive samples lacking effective information
should not significantly affect model performance.
Based on this hypothesis, we remove the lowest
probability samples (most inactive) and evaluate
NMT models trained on the remaining data. Figure
3 demonstrates the impact of removing the most in-
active samples from the Mongolian-Chinese paral-
lel corpus identified by our multi-dimensional eval-
uation system. Overall, translation performance
gradually declines with an increased removal ratio.
However, compared to random removal, inactive
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sample removal shows milder performance degra-
dation, while active sample removal causes the
most significant deterioration. Notably, removing
10% of the most inactive samples slightly improves
performance, aligning with findings in computer
vision datasets.

Furthermore, we compare inactive samples iden-
tified by sentence-level probability methods and
our multi-dimensional evaluation system. As
shown in Figure 4, the multi-dimensional system
demonstrates a smaller performance impact and
slower decline rates under identical removal ratios,
proving its superior rationality in inactive sample
identification.

4.2.2 Validation of Inactive Sample Overlap
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Figure 5: Overlap Ratio of Sample Activity Levels
Identified by the Multi-Dimensional Evaluation Sys-
tem Across Model Variants
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Figure 6: Overlap Ratio of Sample Activity Levels Iden-
tified by Sentence-Level Probability Across Model Vari-
ants

Since the identification of inactive samples re-
lies on trained NMT models, a critical question

arises: Are these identified inactive samples model-
dependent? In other words, do different NMT mod-
els mark distinct portions of training data as inac-
tive? To address this, we perform data binning and
compute the proportion of samples shared among
LSTM, Transformer, and DynamicConv models. A
higher shared proportion indicates greater consis-
tency across models, suggesting that these samples
are not influenced by specific model architectures.

Following Wang et al. (Jiao et al., 2020),
we partition the data into 10 equal deciles (each
containing 10% of training samples). Figure 5
presents results from the multi-dimensional evalua-
tion method across three model architectures. For
inactive samples (first decile), the overlap ratio con-
sistently exceeds 80% across architectures, with
highly active samples (tenth decile) also showing
strong consistency. This high consistency suggests
that inactive sample identification depends more
on data distribution than specific model architec-
tures. Figure 6 compares results from sentence-
level probability methods across the same architec-
tures. The overlap ratios for the least and most ac-
tive samples are 60% and 57%, respectively, signifi-
cantly lower than those from the multi-dimensional
method. This indicates poorer identification perfor-
mance, greater susceptibility to model architecture,
and reduced stability.

4.3 Activation of Inactive Samples

This section first evaluates all samples using the
identification model’s multi-metric assessment,
computing composite scores. The lowest-scoring
RY% (Ratio) samples are marked as inactive, and the
impact of activating varying proportions of inactive
samples on translation performance is analyzed.
Experimental results demonstrate that activating
inactive samples consistently outperforms the non-
activated control, validating the effectiveness and
necessity of data activation. As shown in Figure 7,
BLEU scores exhibit a declining trend with increas-
ing R% values. This trend is expected, as some
relatively higher-scoring samples still contribute
to the NMT model, and their rejuvenation may de-
grade translation quality. Therefore, in subsequent
experiments, the lowest-scoring 10% of samples
are treated as inactive.

4.4 Main Result

This section presents experimental results of the
Data Rejuvenation method on four agglutinative-to-
Chinese translation tasks: Mongolian-Chinese (mn-
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Model mn-zh ug-zh ko-zh ar-zh
Existing NMT Systems
LstMo 2682 2710 2443 28.17
Transformer-Base 27.34 28.21 30.45 33.35
Transformer-Big 31.78 33.41 31.42 35.14
Transformer + CSGAN 34.81 32.64 31.84 35.64
DynamicConv 33.25 32.32 31.69 37.28
GCN 30.41 30.23 31.52 32.45
GCN-+att 31.62 32.34 31.95 33.74

28.741 (+1.92)
30.651 (+3.31)
35.541 (+3.76)
36.581 (+3.33)

LSTM + Agglutinative Language Data Rejuvenation
Transformer-Base + Agglutinative Language Data Rejuvenation
Transformer-Big + Agglutinative Language Data Rejuvenation

DynamicConv + Agglutinative Language Data Rejuvenation

29.261 (+2.16)
31.521 (+31.1)
34.911 (+1.50)
35.201 (+2.88)

27.131 (+2.70)
32.581 (+2.13)
34.531 (+3.7)
34.229 (+2.53)

30.181 (+2.01)
36.841 (+3.49)
39.811 (+4.67)
40.541 (+3.26)

Table 1: Evaluation of translation performance (BLEU scores) across model architectures and language pairs. “1”:
indicates statistically significant improvement over the corresponding baseline.

33.5 [=— w/ Rejuvenation

w/o Rejuvenation

33.0 T T T T T T
0 10 20 30 40 50

Ratio of Inactive Examples (%)

Figure 7: Effect of Activating different proportions of
inactive samples on translation performance.

zh) (Qing-dao-er ji et al., 2020), Uyghur-Chinese
(ug-zh) (Wang et al., 2019; Xu et al., 2021), Korean-
Chinese (ko-zh), and Arabic-Chinese (ar-zh). As
shown in Table 1, Data Rejuvenation consistently
outperforms baseline models across LSTM, Trans-
former, and DynamicConv architectures.

For Mongolian-Chinese (mn-zh), the LSTM
model improves from 26.8 to 28.7 BLEU (+1.9),
Transformer-Base from 27.3 to 30.6 (+3.3),
Transformer-Big from 31.7 to 35.5 (+3.8), and
DynamicConv from 33.2 to 36.5 (+3.3). Simi-
lar improvements are observed in other language
pairs: DynamicConv achieves 37.8 BLEU (+3.0)
for Uyghur-Chinese, Transformer-Big reaches 36.7
(+4.4) for Korean-Chinese, and DynamicConv at-
tains 40.5 (+3.3) for Arabic-Chinese.

These results demonstrate the effectiveness and
generalization capability of Data Rejuvenation
across agglutinative languages. Notably, these im-

provements are achieved without additional data
or significant model modifications, highlighting its
practicality in resource-constrained scenarios.

4.5 Comparative Experiment

Training Data BLEU A

Raw Data 32.3 -

- 10% mul_Inactive Examples | 35.58 | +3.28
+ Rejuvenated Examples 36.47 | +4.17
- 10% mul_Inactive Examples | 35.58 | +3.28
+ Forward Translation 34.1 +1.8
- 10% sent_Inactive Examples 33.6 +1.3
+ Rejuvenated Examples 34.87 | +2.57
- 10% sent_Inactive Examples | 33.6 +1.3
+ Forward Translation 33.2 +0.9

Table 2: A comparison is made between different meth-
ods of identifying and activating low-contribution sam-
ples and their resulting impact on the final NMT model
training outcomes.

This section designs a comparative experiment
to evaluate the combined effects of different in-
active sample identification and activation meth-
ods in Mongolian-Chinese translation. We analyze
their impact on final NMT model training and ex-
plore the role of two distinct models in data op-
timization. Experimental results (Table 2) show
that: 1) sentence-level probability identification
combined with target-side data augmentation im-
proves translation quality; 2) multi-dimensional
evaluation paired with forward translation also en-
hances model training. However, our proposed
method—combining multi-dimensional evaluation
with target-side data augmentation for inactive sam-
ple activation—achieves the best overall perfor-

514



mance. This demonstrates that our approach signif-
icantly improves inactive sample activation quality
in Mongolian-Chinese translation, establishing a
solid foundation for low-resource language data
optimization.

5 Conclusion

This study proposes a data rejuvenation method
for agglutinative language-to-Chinese NMT, com-
bining multi-dimensional evaluation for precise in-
active sample identification with target-side data
augmentation for rejuvenation. Experiments show
significant performance improvements across NMT
architectures (LSTM, Transformer, DynamicConv)
and language pairs (Mongolian-Chinese, Uyghur-
Chinese, Korean-Chinese, Arabic-Chinese), while
enhancing model stability and generalization. Com-
pared to sentence-level probability methods, our
approach better captures local confidence fluctu-
ations in agglutinative translation and mitigates
forward-translation instability. The framework op-
timizes data distribution without additional training
data, offering a universal solution for low-resource
scenarios. Future work will explore deep feature
learning for inactive sample identification and ex-
tend applications to more agglutinative languages.

6 Limitation

Threshold Dependency: The evaluation system
uses heuristic thresholds (e.g., 7) to detect inactive
samples. While empirically validated, these thresh-
olds may need manual tuning for different lan-
guages/datasets. Automating their selection (e.g.,
via reinforcement learning) could improve adapt-
ability in low-resource settings.

Computational Cost: The target-side rejuvenation
mechanism increases training overhead. Decompo-
sition reduces memory usage, but latent space mod-
eling and iterative sampling slow down inference,
especially for morphologically complex sentences.
Future work may employ lightweight latent rep-
resentations or parallelized sampling to optimize
efficiency.

Language Coverage: Experiments are limited to
agglutinative languages (e.g., Mongolian, Uyghur)
with SOV-to-SVO divergence. Generalizing to ty-
pologically diverse languages (e.g., polysynthetic
Inuktitut) may require adjustments for unique mor-
phological or alignment features.
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