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Abstract

With the advent of highly capable instruction-
tuned neural language models, benchmarking
in natural language processing (NLP) is in-
creasingly shifting towards pairwise compari-
son leaderboards, such as LMSYS Arena, from
traditional global pointwise scores (e.g., GLUE,
BIG-bench, SWE-bench). This paper empiri-
cally investigates the strengths and weaknesses
of both global scores and pairwise comparisons
to aid decision-making in selecting appropriate
model evaluation strategies. Through computa-
tional experiments on synthetic and real-world
datasets using standard global metrics and the
popular Bradley—Terry model for pairwise com-
parisons, we found that while global scores
provide more reliable overall rankings, they
can underestimate strong models with rare, sig-
nificant errors or low confidence. Conversely,
pairwise comparisons are particularly effective
for identifying strong contenders among mod-
els with lower global scores, especially where
quality metrics are hard to define (e.g., text gen-
eration), though they require more comparisons
to converge if ties are frequent. Our code and
data are available at https://github.com/
HSPyroblast/srw-ranking under a permis-
sive license.

1 Introduction

Modern natural language processing (NLP) bench-
marks are often represented as pairwise compar-
ison leaderboards, as seen in projects like LM-
SYS Arena (Chiang et al., 2024) and AlpacaEval
(Dubois et al., 2024). This trend has emerged due
to the development of highly capable instruction-
tuned large language models (LLMs) that output
textual rather than categorical responses on open-
ended questions. Earlier methods could be reason-
ably evaluated using static datasets or individual
benchmarks. However, modern methods require

*The work was done during the author’s internship at Jet-
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up-to-date benchmarks that incorporate live feed-
back from both humans and machines (Faggioli
et al., 2024). Previous benchmarks, such as GLUE
(Wang et al., 2019), BIG-bench (Srivastava et al.,
2023), and SWE-bench (Jimenez et al., 2024) or
its live-benchmark versions, relied on global point-
wise scores, prompting further research into the
best approach for NLP benchmarking. But what
method is most effective, and in which cases?

In this work, we empirically examine the
strengths and weaknesses of pairwise comparisons
and global scores. The goal of this study is to
aid decision-making in selecting the appropriate
model evaluation approach, which leads to the two
following research questions:

RQ1. What are the strengths and limitations of
global and pairwise evaluation criteria?

RQ2. Which approach is more suitable for clas-
sification problems with binary outputs and
for problems where decision values (logits) or
textual outputs are available?

To address these research questions, we con-
ducted a series of computational experiments using
both synthetic and realistic datasets that were dis-
tributed under permissive licenses and included
model decision scores. For global evaluation
scores, we selected metrics that are widely used
in natural language processing and other machine
learning tasks. These include accuracy, F-score,
and the area under the receiver operating charac-
teristic curve (ROC AUC) for classification tasks,
as well as character-level F-score (Popovié, 2015,
chrF), edit distance (ED) aka Levenshtein distance,
and word error rate (WER) for text generation
tasks.

Our findings show that while global scores pro-
vide more reliable rankings of models, they tend to
underestimate strong models that make rare but sig-
nificant errors or have modest confidence in their
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responses. In contrast, pairwise comparisons are
particularly effective for identifying strong mod-
els among those with relatively low overall scores,
especially in cases where the quality metric is dif-
ficult to define—such as in text generation, which
has been popularized since the release of highly-
capable generative models like GPT-3 (Brown et al.,
2020) and more advanced models.

The remainder of the paper is organized as fol-
lows. In Section 2, we review the related work.
In Section 3, we outline the background of our
study and formulate the problem. In Section 4, we
describe the datasets used in our study. In Sec-
tion 5, we examine the scoring stability of pairwise
comparisons in the case of similar model outputs
(RQ1). In Section 6, we analyze scoring stabil-
ity in extreme cases of model confidence (RQ2).
In Section 7, we summarize our findings and pro-
vide recommendations for using global scores and
pairwise comparisons in model selection. Finally,
in Section 8, we conclude with final remarks and
present a flowchart to guide decision-making. Ap-
pendices A, B, and C contain supplementary infor-
mation about the model scores in different settings
that we tried in our work.

2 Related Work

Earlier work by Fiirnkranz and Hiillermeier (2003)
was focused on using pairwise comparisons (rank-
ings) to train binary classifiers for ranking tasks,
while Broomell et al. (2011) explored the use of
pairwise model comparisons to identify groups of
tasks where each model performs best. Maystre
and Grossglauser (2017) shown that an optimal
ranking of models can be achieved in a linearithmic
number of comparisons, inspired by the quicksort
algorithm. Nariya et al. (2023) specifically exam-
ined the use of pairwise comparisons for small
datasets and studied how individual outliers and
confounders impact performance estimates.

In contrast to these studies, our work aimed
to identify specific scenarios in which pairwise
rankings failed or behaved inconsistently, as well
as cases in which they provided valuable insights
across different task types, namely text classifica-
tion and text generation.

3 Problem Formulation

Suppose we are given a set of models M and
an evaluation dataset X, where for each element
x; € X, the ground truth labels G and the model
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predictions M;(z;) are known in advance. Our ob-
jective is to establish a partial order on M. As
is common in NLP, this can be done using either
global scores or pairwise comparisons. Examples
of global scores include widely-used evaluation
metrics such as accuracy, ROC AUC, and F-score,
while examples of pairwise comparison methods
include Bradley and Terry (1952), Elo (1978), New-
man (2023), and others. We are interested in under-
standing the reasons behind differences in rankings
produced by various methods, so we can effectively
leverage the strengths of these metrics.

Global Scores. For global scores, a function
f(M;, G) — R, called an evaluation score, assigns
a numerical score to each model, and the ranking
is determined by a permutation P such that

f(MplvG) > f(MpzaG) > 2 f(Mpm’G)'

Note that we conducted our experiments on
global scores using evaluation measures imple-
mented in scikit-learn (Pedregosa et al., 2011), edit
distance and word error rate from JIWER (Mor-
ris et al., 2004), and chrF from sacreBLEU (Post,
2018) libraries for Python.

Pairwise Comparisons. For pairwise compar-
isons, a function f(7") — P derives a ranking from
a sequence of pairwise comparisons (M;, M;, w),
where w indicates whether M; wins, M; wins, or
the comparison results in a tie. In our case, each test
sample x; provides (’;) pairs of models through an
auxiliary function

9(Mi(xe), Mjj(2), G(2)) — {Mi, Mj, 0},

and the resulting comparisons are aggregated into
the global score, usually indicating the probability
of each model winning against the others.

For pairwise comparisons, we used the widely
known Bradley and Terry (1952) ranking model
aka BT due to its popularity and simplicity.
Although other models such as Borda count
(de Borda, 1781), Elo rating (Elo, 1978), TrueSkill
(Herbrich et al., 2006), and Rank Centrality (Ne-
gahban et al., 2017) are also widely used, we chose
BT due it its simplicity and popularity. We inten-
tionally did not use Elo or TrueSkill, as their out-
comes depend on the order of comparisons,' which
is more appropriate for competitive games than
for time-insensitive model evaluation. Bradley and

1https: //www.cip.org/blog/11lm-judges-are-
unreliable
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Dataset Response # of examples # of methods # of pairs
Jigsaw (Adams et al., 2017)  Categorical 63,812 9 2,297,232
SST-5 (Socher et al., 2013)  Categorical 2,210 8 61,880
CEval (Nguyen et al., 2024) Textual 488 6 7,320

Table 1: Descriptive statistics of the datasets used in our study; note that Jigsaw and SST-5 are classification datasets
and CEval is a text generation dataset. Numbers of examples and methods are taken from the original test datasets
and the corresponding baselines. The number of generated pairs is added by us.

Terry (1952) is a probabilistic model that estimates
a set of latent parameters pq, . . ., D, such that the
probability that model M; outperforms model M
is given by

bi

P(M; = M;) = .
( i) pi +;

We defined M; > M; to mean that the output
of i-th model is closer to the correct answer than
that of the j-th model. We computed the BT scores
considering each tie as a half-win and half-lose
for both compared items. In our work, we used
the implementation of the model from the Evalica
library (Ustalov, 2025).

4 Datasets

We conducted experiments on two classification
benchmarks, Jigsaw by Google (Adams et al.,
2017)? and Stanford Sentiment Treebank (Socher
et al., 2013) aka SST-5, and on one textual bench-
mark called CEval (Nguyen et al., 2024); see Ta-
ble 1 for details. We selected these datasets be-
cause they provided model outputs for individ-
ual examples (including decision-function values),
were widely used in the research community, and
were available under permissive licenses. We used
only test subsets of all datasets. In addition, we ran
a series of trials on synthetic and mixed datasets
combining both synthetic and real labels.

For each test instance, we compared the outputs
of m different models in a pairwise fashion, yield-
ing (")) model pairs. For each pair, we then drew
12mlog(m) comparisons at random with replace-
ment, or else used all available test instances if
their count was smaller. Finally, we applied these
sampled comparisons to build a Bradley—Terry
ranking of the models.

2https://jigsaw.google.com/

3We adopted the linearithmic sampling strategy of Maystre
and Grossglauser (2017) and found through prototyping that a
multiplier of 12 gave the best performance.
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Jigsaw. We derived a dataset from a popular bi-
nary classification dataset for detecting text toxicity
called Jigsaw (Adams et al., 2017). We collected
the submission files for nine different models from
the leaderboard published by their authors.* Since
the authors did not provide ground-truth responses
for the test subset of the dataset, we reconstructed
them by taking the majority vote from the model-
generated responses. These models included the
winning method (TTA + PL), DistilBERT, JMTC-
20, NB-SVM, XGBoost, XLM-R Conv1D, XLM-
R, XLM-RoBERTa Bayesian, and XLM-RoBERTa.
Appendix A contains scores exhibited by these
models in several variations of this dataset that we
created for our experiments. Although the Jigsaw
suite of benchmarks contained other tasks than tox-
icity detection, e.g., classification bias detection,’
we found similar results on them during prototyp-
ing. Thus, we decided not to include them in our
study.

SST-5. We used the Stanford Sentiment Treebank
dataset (Socher et al., 2013, SST-5),° a multi-class
benchmark for reviews spanning five sentiment cat-
egories. To obtain model predictions, we followed
the methodology of Gosgens et al. (2021) and re-
ran eight open-source baselines.” These baselines
included: dictionary-based methods VADER and
TextBlob, traditional machine learning methods
like logistic regression and support vector machine
(SVM), fastText classifier (Joulin et al., 2017), and
deep learning classifiers: BERT and ELMo with
Flair (Akbik et al., 2019) and fine-tuned BERT with

4https://www.kaggle.com/competitions/jigsaw—
toxic-comment-classification-challenge/code?
competitionId=8076&sortBy=scoreDescending&
excludeNonAccessedDatasources=true

Shttps://www.kaggle.com/competitions/jigsaw-
unintended-bias-in-toxicity-classification/
code?competitionId=12500&sortBy=scoreDescending&
excludeNonAccessedDatasources=true

6https://nlp.stanford.edu/sentiment/

7https://github.com/prra087/fine—grained—
sentiment
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Measure Acc AUC BT Fi BTy
Acc 1.00 090 -0.23 0.77 0.93
AUC 0.90 1.00 0.03 0.87 0.83
BT —-0.23 0.03 1.00 0.22 -0.28

F, 0.77 0.87 0.22 1.00 0.83
BTyin 0.93 0.83 -—0.28 0.83 1.00

Table 2: Spearman (1904) correlations between model
scores in Jigsaw (Adams et al., 2017).

Hugging Face (Wolf et al., 2020). Appendix B con-
tains the exhibited scores.

CEval. For a dataset featuring textual outputs
evaluated by non-classification metrics, we em-
ployed the CEval benchmark for counterfactual
text generation (Nguyen et al., 2024),® which mea-
sured models’ ability to generate text that reversed
the emotional tone of the original English input. In
this context, we evaluated six models from the orig-
inal benchmark: Crest, Crowd, GDBA, LLaMA,
Llama 2, and MICE. Appendix C presents the ob-
served scores.

5 Sensitivity to Distributions of Decision
Values

Our first point of interest was focused on the sen-
sitivity of aggregated pairwise comparisons com-
pared to global scores (RQ1). How can we estimate
the sensitivity of these evaluations? What occurs
when the models exhibit similar performance?

We investigated this by running experiments on
the Jigsaw dataset (binary classification) and on
SST-5 (multi-class classification). We then exam-
ined the decision values of models and used the
class with the highest decision value as the model’s
output.

Raw Decision Values. We compared the nine
Jigsaw models using accuracy (Acc), ROC AUC
(AUC), Bradley-Terry (BT) and F; scores. For
SST-5, we measured Fy, accuracy and pairwise
comparisons, treating the model with the higher
confidence score in each pairing as the winner. Ta-
ble 2 showed that the global scores (Acc, AUC,
F)) yielded consistent, highly correlated rankings,
as indicated by the Spearman (1904) correlation
coefficient.

On Jigsaw, we found that the anomalous BT
ranking resulted from some models, such as XG-

8https ://github.com/aix-group/CEval-
Counterfactual-Generation-Benchmark
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Measure Acc BT F1 BTun
Acc 1.00 0.90 0.83 0.69
BT 0.90 1.00 0.93 0.55
Fq 0.83 0.93 1.00 0.71

BThin 0.69 0.55 0.71 1.00

Table 3: Spearman (1904) correlations between model
scores in SST-5 (Socher et al., 2013).

Boost, outputting only decision values of O or 1.
This caused them to win disproportionately in pair-
wise comparisons and thus distorted the BT order-
ing. We observed the same effect on SST-5: SVM
rose to the top of the Bradley—Terry ranking due to
its more extreme confidence scores, even though its
F| score lagged behind Flair-BERT, Flair-EL.Mo,
or Transformer. Therefore, we recommend apply-
ing pairwise comparisons only to models whose
decision values share a similar domain.

Binarized Decision Values. To evaluate our rec-
ommendation, we transformed the score-based out-
puts from Jigsaw and SST-5 into binary values
by assigning 1 to each model’s most confident re-
sponse and O to all others, i.e., by rounding each
output to the nearest integer.

This transformation yielded an 88% fraction of
ties on Jigsaw, which affected the rankings derived
from pairwise comparisons (denoted as BTy;, in Ta-
ble 2), but did not change any of the rankings build
using global scores. On SST-5, we observed strong
correlations among accuracy, Fy, and BT rankings
(Table 3), and the ordering remained stable across
different random samples of pairs. Unlike Jigsaw,
the larger number of classes on SST-5 resulted in
a moderate proportion of ties (about two-thirds of
all comparisons), which in turn contributed to the
stability of the pairwise rankings. From these exper-
iments, we concluded that pairwise comparisons
were sensitive to the distributions of decision
values across the compared models.

Binary Responses. We simulated a binary clas-
sification task to examine how binary responses
influenced pairwise comparisons and global scores.
Three models each produced uniform random bi-
nary outputs 1,000 times using different random
seeds. An ideal evaluation metric would not have
favored any model. We found that accuracy, ROC
AUC and F; each equaled 0.5, whereas aggre-
gated pairwise comparisons systematically fa-
vored one specific model due to its larger number
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Measure Binary AP Penalized AP
MAE 0.38 0.86
AUC 0.90 0.94

BT [0.33,0.34] [0.59,0.66]
Fq 0.50 0.50

Table 4: Performance metrics on the adjusted decision
functions in the Jigsaw dataset (Adams et al., 2017).

Measure Binary AP
ACC 1
BT [0.70,0.71]
F, 0.5

Table 5: Performance metrics on the adjusted decision
functions in the SST-5 dataset (Socher et al., 2013).

of evaluated pairs. Spearman (1904) correlation
among all global scores was 1, while the Bradley—
Terry ranking exhibited a strong inverse correlation
of —0.5. These results suggested that pairwise com-
parison methods were ill-suited for distinguishing
between highly similar (or identical) models.

6 Instability with Overly Confident
Models

Our second point of interest focused on the stabil-
ity of pairwise comparisons given varying model
confidence in the positive class (RQ2). Instead of
calculating accuracy, we computed the mean abso-
lute error (MAE) between the binary label of the
target class and the model’s decision value.

Binarized Decision Values. We inflated the con-
fidence of model decision values in the Jigsaw
dataset through binarization to assess its impact on
model rankings. A good evaluation score should
distinguish the original models from the binarized
ones, ideally ranking the originals at the top and
the binarized models at the bottom.

In the Jigsaw experiments, we observed that un-
der MAE and AUC metrics, most binarized models
fell in the rankings according to the average preci-
sion score (Buckley and Voorhees, 2000). However,
based on Fy, the binarized models received identi-
cal scores to the originals due to the binarization
performed internally inside the models. In contrast,
the Bradley—Terry rankings were disrupted by the
inflated model confidences (see Table 4, Binary
AP). Confidence intervals for the Bradley—Terry
model, here and throughout the paper, were esti-
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Measure Penalized AP
ED 0.37
WER 0.38
chrF 0.66
BT [0.66,0.70]

Table 6: Performance metrics on the adjusted decision
functions in the CEval dataset (Nguyen et al., 2024).

mated as 95% intervals by drawing 1,000 random
subsamples of 12m log(m) match sets for each
model pair.

Although increased model confidence might
challenge the evaluation in text generation tasks,
in practice it seems difficult to alter textual out-
puts in a way that changed pairwise rankings
without also affecting other evaluation metrics.
In the CEval experiments, both WER and chrF
scores remained correlated with the Bradley—Terry
pairwise rankings, even after simple manipulations
such as appending random strings to the outputs
(see Table 7).

Penalized Decision Values. In this experiment,
we artificially perturbed the model outputs in the
Jigsaw and CEval datasets using the ground-truth
responses to generate a heavier tail of incorrect
answers and to assess how the rankings responded
to such perturbations.

For the Jigsaw dataset, we binarized the decision
value whenever the model made a mistake, simi-
larly to the previous experiment; otherwise, we left
the decision values unchanged. Hence, any mistake
led to a model receiving worse scores, while mod-
els without errors retained their original scores. We
found that under MAE and AUC, most penalized
models fell to the bottom of the rankings, whereas
F; produced results identical to those of the earlier
experiment. The Bradley—Terry rankings did not
correlate well with the other metrics; nevertheless,

Measure ED WER chrF BT
ED 1.00 094 —-094 —-0.94
WER 0.94 1.00 —-1.00 -0.89

chrF —-094 —-1.00 1.00 0.89

BT —-0.94 —-0.89 0.89 1.00

Table 7: Spearman (1904) correlations between model
scores in CEval (Nguyen et al., 2024). Note that some
values are negative due to inverted rankings.
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Figure 1: Dependency of the correlation between ab-
solute and pairwise rankings in a synthetic experiment
based on the CEval dataset (Nguyen et al., 2024). The
results show that the Bradley—Terry model produces re-
liable rankings even with a large fraction of ties.

they correctly placed most original models above
the penalized ones (see Table 4, Penalized AP, and
a similar Table 5 for SST-5).

A similar pattern arose in the text-generation
tasks. We appended random long strings to a ran-
dom 5% of model outputs in the CEval dataset,
which caused their distance-based global scores
(ED and WER) to decline, positioning them near
the bottom. However, the pairwise and chrF rank-
ings remained largely stable (see Table 6, Penal-
ized AP). Given that a 5% error rate can represent a
substantial difference, we recommend filtering out
such extreme cases or employing multiple evalua-
tion metrics, since pairwise comparisons tend to be
relatively insensitive to rare but large deviations.

From this experiment, we concluded that pair-
wise comparisons can still favor promising mod-
els even when they commit rare but significant
€rrors.

Scored Responses. As suggested by Gosgens
et al. (2021) and confirmed by our experiments,
the F; score was a viable alternative to accuracy for
binary classification tasks with an available deci-
sion function. However, ROC AUC and BT yielded
more accurate results and recovered the true rank-
ing. Nonetheless, pairwise comparisons had to
be conducted carefully to avoid favoring models
that produced more confident predictions, e.g.,
decision values closer to the extremes, like logits
near 0 or 1.
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7 Discussion

Draws in Comparisons. We noticed that Bradley
and Terry (1952) rankings had performed poorly
when a large fraction of comparisons resulted in
draws (Section 5). They produced indistinguish-
able results and required a high number of observa-
tions to achieve a stable ranking, which led to high
computational costs. Accuracy also tended to pe-
nalize models that made rare but significant errors.
In contrast, pairwise comparisons identified such
models effectively, although they sometimes de-
manded additional measures to ensure correctness
(Section 6). Pairwise comparisons proved particu-
larly useful for tasks which are uneasy to evaluate
according to the ground-truth data, as had been
confirmed by modern benchmarks (Chiang et al.,
2024; Dubois et al., 2024).

In text generation tasks, ties occurred far less fre-
quently than in classification, since evaluation met-
rics for generation rarely yielded identical scores.
Using the CEval dataset as an example, we simu-
lated the effect of introducing synthetic ties on the
resulting rankings. More specifically, we measured
the correlation between average rankings and pair-
wise chrF-based rankings for five models, varying
the tie probability from O to 1 in increments of 0.01.
For each probability level, we conducted 1,000 tri-
als with 12m log(m) matches per model pair. The
results demonstrated that the rankings maintained a
strong correlation (0.8) even when ties represented
up to 50% of outcomes (see Figure 1).

However, we observed that this behavior gen-
erally depended on both the closeness of model
performance and the total number of comparisons
done.

Comparison Stability. To examine how the num-
ber of comparisons affects ranking stability, we
constructed Bradley—Terry rankings by randomly
selecting an equal number of comparisons for each
pair of models, varying this number from 10 to
1000 in increments of 10. At each step, we com-
puted the average number of changes in the rank-
ing over 100 trials, relative to the ranking obtained
using 100,000 random comparisons per pair. As
mentioned earlier, we adopted the linearithmic sam-
pling strategy proposed by Maystre and Gross-
glauser (2017) and settled on using 12m log(m)
comparisons, which provided stable results while
maintaining a low computational complexity. Fig-
ure 2 presents the corresponding plot for the Jigsaw
dataset, though a similar effect was observed across
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Figure 2: Comparison of stability in the Jigsaw
dataset (Adams et al., 2017). The red line indicates
12mlog(m).

the other datasets as well.

Magnitude of Difference. As in the binary-
response experiment described earlier, we investi-
gated the magnitude of differences that aggregated
pairwise comparisons could detect. Specifically,
we examined how the probability of correct rank-
ing depended on the difference between the deci-
sion functions of the models, such as logits or class
scores. We created a grid of score differences span-
ning 0.9 to 1.0 in 100 steps. At each step, we sub-
tracted the value from a randomly selected pair’s
scores and repeated this procedure 1,000 times. As
shown in Figure 3, pairwise comparisons per-
form best when the difference between model
outputs is non-negligible; for example, when there
was at least a 10% difference in class probability in
our synthetic example.

8 Conclusion

Our studies showed that pairwise comparisons iden-
tified potentially good models among those with
poor global scores. They performed well on prob-
lems where the quality measure was difficult to de-
fine, such as text generation (RQ2). However, when
a large fraction of comparisons ended in ties, the
algorithm required a large number of comparisons
to converge. In contrast, global scores performed
better on evaluation measures that were easier to
define and generally required smaller amounts of
data (RQ1). Nevertheless, global scores tended
to underestimate models that committed rare but
significant errors. These results were consistent
across synthetic datasets, multiple public datasets,
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Figure 3: Dependency of probability on difference in
a synthetic experiment: the larger the difference be-
tween model outputs, the better pairwise comparisons
can correctly rank the models.

and their variations.

While our study was limited to experiments on
only three datasets, we believe the actionable rec-
ommendations we have discovered will advance
the state of benchmarking in NLP. In addition to
replicating our experiments on other datasets with
different sets of models, we also find it interesting
to explore which subset of the data each model
performs best on, where we expect pairwise com-
parisons to excel. Figure 4 presents the flowchart
for the model evaluation approach selection. An-
other possible limitation of our study was the use of
well-known NLP datasets released before the wide
adoption of LLMs. However, we believe that our
results would generalize to newer datasets and mod-
els, as we observed the same effects consistently
across all datasets, including the relatively recent
textual dataset CEval. This analysis included then
state-of-the-art open LLMs, such as Llama 2 and
LLaMA. Running our experiments on a new multi-
task dataset with frontier LLM responses would
allow for a more comprehensive evaluation of the
observed effects in a modern setting.

Although our experiments had been limited to
three datasets, we believe that the actionable rec-
ommendations we derived could advance the state
of NLP benchmarking. For future work, it would
have been useful to replicate our experiments on
additional datasets with diverse model sets and to
examine the specific data subsets on which each
model performed best, anticipating that pairwise
comparisons would have excelled in those scenar-
ios.
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Figure 4: How to choose between global scores and pairwise comparisons? Pairwise comparisons are especially
effective when the evaluation involves a difficult-to-define (“‘uneasy’’) measure, such as in text generation, or when
model scores vary widely and no model shows strong confidence. In contrast, if the measure is clearly defined, the
scores are relatively consistent, or some models produce more confident predictions, global evaluation metrics may

be a better choice.

Acknowledgments

The authors are grateful to three anonymous re-
viewers whose comments allowed us to improve
the manuscript. We are also grateful to the anony-
mous mentor who provided vital feedback during
the pre-submission mentorship program at the ACL
Student Research Workshop. Last but not least, we
are grateful to the Internships and Academy teams
at JetBrains for supporting Georgii’s work.

References

CJ Adams, Jeffrey Sorensen, Julia Elliott, Lucas Dixon,
Mark McDonald, Nithum Thain, and Will Cukierski.
2017. Toxic Comment Classification Challenge.
https://kaggle.com/competitions/jigsaw-
toxic-comment-classification-challenge.
Kaggle.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54-59, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ralph Allan Bradley and Milton E. Terry. 1952.
Rank Analysis of Incomplete Block Designs: 1.
The Method of Paired Comparisons. Biometrika,
39(3/4):324-345.

Stephen B. Broomell, David V. Budescu, and Han-Hui
Por. 2011. Pair-wise comparisons of multiple models.
Judgment and Decision Making, 6(8):821-831.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

47

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Lan-
guage Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems
33, NeurIPS 2020, pages 1877-1901, Montréal, QC,
Canada. Curran Associates, Inc.

Chris Buckley and Ellen M. Voorhees. 2000. Evaluat-
ing Evaluation Measure Stability. In Proceedings of
the 23rd Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR °00, pages 33—40, Athens, Greece.
Association for Computing Machinery.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E.
Gonzalez, and Ion Stoica. 2024. Chatbot Arena: An
Open Platform for Evaluating LLMs by Human Pref-
erence. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pages
8359-8388. PMLR.

Jean-Charles de Borda. 1781. Mémoire sur les élec-
tions au scrutin. Histoire de I’Académie royale des
sciences, pages 657—665.

Yann Dubois, Percy Liang, and Tatsunori Hashimoto.
2024. Length-Controlled AlpacaEval: A Simple De-
biasing of Automatic Evaluators. In First Conference
on Language Modeling.

Arpad E. Elo. 1978. The Rating Of Chess Players, Past
& Present. Arco Publishing Inc., New York.

Guglielmo Faggioli, Laura Dietz, Charles L. A. Clarke,
Gianluca Demartini, Matthias Hagen, Claudia Hauff,
Noriko Kando, Evangelos Kanoulas, Martin Potthast,


https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.2307/2334029
https://doi.org/10.2307/2334029
https://doi.org/10.1017/S1930297500004241
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/345508.345543
https://doi.org/10.1145/345508.345543
https://proceedings.mlr.press/v235/chiang24b.html
https://proceedings.mlr.press/v235/chiang24b.html
https://proceedings.mlr.press/v235/chiang24b.html
https://openreview.net/forum?id=CybBmzWBX0
https://openreview.net/forum?id=CybBmzWBX0

Benno Stein, and Henning Wachsmuth. 2024. Who
Determines What Is Relevant? Humans or AI? Why
Not Both? Communications of the ACM, 67(4):31—
34.

Johannes Fiirnkranz and Eyke Hiillermeier. 2003. Pair-
wise Preference Learning and Ranking. In Machine
Learning: ECML 2003, volume 2837 of Lecture
Notes in Computer Science, pages 145-156. Springer.

Martijn Gosgens, Anton Zhiyanov, Aleksey Tikhonov,
and Liudmila Prokhorenkova. 2021. Good Classi-
fication Measures and How to Find Them. In Ad-
vances in Neural Information Processing Systems 34,
NeurIPS 2021, pages 1713617147, Online. Curran
Associates, Inc.

Ralf Herbrich, Tom Minka, and Thore Graepel. 2006.
TrueSkill™: A Bayesian Skill Rating System. In Ad-
vances in Neural Information Processing Systems 19,
pages 569-576, Vancouver, BC, Canada. MIT Press.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. 2024. SWE-bench: Can Language
Models Resolve Real-World GitHub Issues? In Pro-
ceedings of the Twelfth International Conference on
Learning Representations (ICLR).

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427-431, Valencia, Spain. Association
for Computational Linguistics.

Lucas Maystre and Matthias Grossglauser. 2017. Just
Sort It! A Simple and Effective Approach to Ac-
tive Preference Learning. In Proceedings of the 34th
International Conference on Machine Learning, vol-
ume 70 of ICML 2017, pages 2344-2353, Sydney,
NSW, Australia. PMLR.

Andrew Cameron Morris, Viktoria Maier, and Phil
Green. 2004. From WER and RIL to MER and WIL:
improved evaluation measures for connected speech
recognition. In Interspeech 2004, pages 2765-2768.

Maulik K. Nariya, Caitlin E. Mills, Peter K. Sorger, and
Artem Sokolov. 2023. Paired evaluation of machine-
learning models characterizes effects of confounders
and outliers. Patterns, 4(8):100791.

Sahand Negahban, Sewoong Oh, and Devavrat Shah.
2017. Rank Centrality: Ranking from Pairwise Com-
parisons. Operations Research, 65(1):266-287.

Mark E. J. Newman. 2023. Efficient Computation of
Rankings from Pairwise Comparisons. Journal of
Machine Learning Research, 24(238):1-25.

Van Bach Nguyen, Christin Seifert, and Jorg Schlttterer.
2024. CEval: A benchmark for evaluating counter-
factual text generation. In Proceedings of the 17th

International Natural Language Generation Confer-
ence, pages 55-69, Tokyo, Japan. Association for
Computational Linguistics.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Edouard Duchesnay. 2011. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learn-
ing Research, 12(85):2825-2830.

Maja Popovié. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Charles Spearman. 1904. The Proof and Measurement
of Association between Two Things. The American
Journal of Psychology, 15(1):72-101.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta,
Adria Garriga-Alonso, Agnieszka Kluska, Aitor
Lewkowycz, Akshat Agarwal, Alethea Power, Alex
Ray, Alex Warstadt, Alexander W. Kocurek, Ali
Safaya, Ali Tazarv, and 432 others. 2023. Beyond
the Imitation Game: Quantifying and extrapolating
the capabilities of language models. Transactions on
Machine Learning Research, 5.

Dmitry Ustalov. 2025. Reliable, reproducible, and re-
ally fast leaderboards with evalica. In Proceedings of
the 31st International Conference on Computational
Linguistics: System Demonstrations, pages 46-53,
Abu Dhabi, UAE. Association for Computational
Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. In Pro-
ceedings of the 7th International Conference on
Learning Representations (ICLR) 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,


https://doi.org/10.1145/3624730
https://doi.org/10.1145/3624730
https://doi.org/10.1145/3624730
https://doi.org/10.1007/978-3-540-39857-8_15
https://doi.org/10.1007/978-3-540-39857-8_15
https://proceedings.neurips.cc/paper/2021/file/8e489b4966fe8f703b5be647f1cbae63-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/8e489b4966fe8f703b5be647f1cbae63-Paper.pdf
https://doi.org/10.7551/mitpress/7503.003.0076
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://aclanthology.org/E17-2068/
https://aclanthology.org/E17-2068/
https://proceedings.mlr.press/v70/maystre17a.html
https://proceedings.mlr.press/v70/maystre17a.html
https://proceedings.mlr.press/v70/maystre17a.html
https://doi.org/10.21437/Interspeech.2004-668
https://doi.org/10.21437/Interspeech.2004-668
https://doi.org/10.21437/Interspeech.2004-668
https://doi.org/10.1016/j.patter.2023.100791
https://doi.org/10.1016/j.patter.2023.100791
https://doi.org/10.1016/j.patter.2023.100791
https://doi.org/10.1287/opre.2016.1534
https://doi.org/10.1287/opre.2016.1534
http://jmlr.org/papers/v24/22-1086.html
http://jmlr.org/papers/v24/22-1086.html
https://doi.org/10.18653/v1/2024.inlg-main.6
https://doi.org/10.18653/v1/2024.inlg-main.6
https://jmlr.org/papers/v12/pedregosa11a.html
https://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.2307/1412159
https://doi.org/10.2307/1412159
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://aclanthology.org/2025.coling-demos.6/
https://aclanthology.org/2025.coling-demos.6/
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

49


https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

A Jigsaw Rankings
We present below the scores of the described models from our Jigsaw-derived dataset (Adams et al., 2017).

A.1 Raw Jigsaw Dataset (Section 5)

Model Acc AUC BT Fq BThin
TTA + PL 0.895 0.954 0.082 0.740 0.122
JIMTC-20 0.895 0.955 0.083 0.739 0.121
XLM-R 0.889 0.952 0.093 0.714 0.115
XLM-RoBERTa 0.886 0.944 0.067 0.721 0.118
XLM-R ConvlD 0.883 0.943 0.167 0.731 0.117
XLM-RoBERTa Bayesian 0.849 0.501 0.029 0.171 0.110
DistilBERT 0.835 0.882 0.144 0.523 0.105
NB-SVM 0.821 0.866 0.071 0.367 0.102
XGBoost 0.754 0.745 0.264 0.572 0.089

A.2 Binarized Jigsaw Dataset (Section 6)

Model Accuracy ROCAUC BT Fq

XGBoost 0.754 0.745 0.062 0.572
XLM-RoBERTa Bayes 0.797 0.501 0.008 0.171
NB-SVM 0.812 0.866 0.013 0.367
XLM-RoBERT 0.816 0.944 0.013 0.721
DistilBERT 0.819 0.882 0.021 0.523
XLM-R Conv1D 0.834 0.943 0.023 0.731
TTA + PL 0.846 0.954 0.015 0.740
JIMTC-20 0.849 0.955 0.015 0.739
XLM-R 0.856 0.952 0.017 0.714
Binarized XGBoost 0.754 0.745 0.060 0.572
Binarized NB-SVM 0.821 0.612 0.079 0.367
Binarized DistilBERT 0.835 0.681 0.081 0.523
Binarized XLM-RoBERTa Bayes 0.849 0.499 0.089 0.171
Binarized XLM-R Conv1D 0.883 0.819 0.100 0.731
Binarized XLM-RoBERT 0.886 0.804 0.099 0.721
Binarized XLM-R 0.889 0.791 0.099 0.714
Binarized 1st Place 0.895 0.813 0.104 0.740
Binarized IMTC-20 0.895 0.811 0.101 0.739
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A.3 Penalized Jigsaw Dataset (Section 6)

Model Acc AUC BT Fi

XGBoost 0.754 0.745 0.142 0.572
XLM-RoBERTa Bayesian 0.797 0.501 0.017 0.171
NB-SVM 0.812 0.866 0.040 0.367
XLM-RoBERT 0.816 0.944 0.032 0.721
DistilBERT 0.819 0.882 0.079 0.523
XLM-R ConvlD 0.834 0.943 0.088 0.731
TTA + PL 0.846 0.954 0.042 0.740
JIMTC-20 0.849 0.955 0.044 0.739
XLM-R 0.856 0.952 0.053 0.714
Penalized XLM-RoBERTa Bayesian 0.751 0.502 0.013 0.171
Penalized XGBoost 0.754 0.745 0.139 0.572
Penalized XLM-RoBERT 0.773 0.625 0.026 0.721
Penalized DistilBERT 0.787 0.385 0.065 0.523
Penalized NB-SVM 0.793 0.228 0.035 0.367
Penalized XLM-R Conv1D 0.793 0.656 0.072 0.731
Penalized 1st Place 0.812 0.638 0.034 0.740
Penalized IMTC-20 0.816 0.633 0.036 0.739
Penalized XLM-R 0.827 0.594 0.045 0.714

B SST-5 Rankings
We present below the scores of the described models from the SST-5 dataset (Socher et al., 2013).

B.1 Raw SST-5 Dataset (Section 5)

Model Acc BT |

TextBlob 0.284 0.067 0.255
VADER 0.316 0.084 0.315
Logistic Regression  0.409 0.135 0.383
SVM 0.414 0.126 0.401
fastText 0.434 0.120 0.384
Flair-ELMo 0.462 0.143 0.408
Transformer 0.491 0.162 0.486
Flair-BERT 0.511 0.162 0.491

B.2 Binarized SST-5 Dataset (Section 5)

Model Acc BT | O

TextBlob 0.225 0.032 0.255
VADER 0.248 0.054 0.315
Logistic Regression 0.258 0.043 0.383
fastText 0.272 0.052 0.384
Flair-ELMo 0.344 0.155 0.408
Flair-BERT 0.353 0.124 0.491
Transformer 0.360 0.154 0.486
SVM 0.384 0.386 0.401
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C CEval Rankings

We present below the scores of the described models from the CEval dataset (Nguyen et al., 2024).

C.1 Raw CEval Dataset (Section 6)
Model ED WER chrF BT

Crowd  162.041 0.239 81.326 0.444
MICE 229.711 0.299 73.674 0.163
Llama2 274.370 0.375 70.886 0.202
LLaMA 298.368 0.404 68.378 0.125
GDBA  333.184 0.540 55.427 0.017
Crest 362.584 0477 63.324 0.049

C.2 Penalized CEval Dataset (Section 6)

Model ED WER  chrF BT

Crowd 162.041 0.239 81.326 0.240
MICE 229.711  0.299 73.674 0.093
Llama 2 274.370 0.375 70.886 0.095
LLaMA 298.368 0.404 68.378 0.075
GDBA 333.184 0.540 55.427 0.025
Crest 362.584 0.477 63.324 0.023

Penalized Crowd 272.713 0.363 79.950 0.189
Penalized MICE 384.359 0.451 72.188 0.077
Penalized Llama 2 437.590 0.592 69.111 0.078
Penalized LLaMA 484.732 0.657 66.350 0.059
Penalized GDBA  475.117 0.698 54.434 0.022
Penalized Crest 458.033 0.589 62.539 0.022
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