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Abstract

Sparse Autoencoders (SAEs) have emerged as
a promising solution for decomposing large lan-
guage model representations into interpretable
features. However, Paulo and Belrose (2025)
have highlighted instability across different
initialization seeds, and Heap et al. (2025)
have pointed out that SAEs may not capture
model-internal features. These problems likely
stem from training SAEs on external datasets—
either collected from the Web or generated
by another model—which may contain out-of-
distribution (OOD) data beyond the model’s
generalisation capabilities. This can result
in hallucinated SAE features, which we term
"Fake Features", that misrepresent the model’s
internal activations. To address these issues,
we propose FaithfulSAE, a method that trains
SAEs on the model’s own synthetic dataset. Us-
ing FaithfulSAEs, we demonstrate that training
SAEs on less-OOD instruction datasets results
in SAEs being more stable across seeds. No-
tably, FaithfulSAEs outperform SAEs trained
on web-based datasets in the SAE probing task
and exhibit a lower Fake Feature Ratio in 5 out
of 7 models. Overall, our approach eliminates
the dependency on external datasets, advanc-
ing interpretability by better capturing model-
internal features while highlighting the often
neglected importance of SAE training datasets.

1 Introduction

Sparse Autoencoders (SAEs), an architecture intro-
duced by Faruqui et al., 2015, have demonstrated
the ability to transform Large Language Model
(LLM) representations into interpretable features
without supervision (Huben et al., 2023). SAE la-
tent dimensions can be trained to reconstruct activa-
tions while incurring a sparsity penalty, ideally re-
sulting in a sparse mapping of human-interpretable
features. This approach enables decomposition of
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Figure 1: Fake Feature Ratio for SAEs trained on Faith-
ful dataset and Web-based datasets (lower is better).
Detailed values can be found in Table 7.

latent representations into interpretable features by
reconstructing transformer hidden states (Gao et al.,
2024) or MLP activations (Bricken et al., 2023b).

Despite the demonstrated utility of SAE fea-
tures, several concerns persist: SAEs can yield
very different feature sets depending on the initial-
ization seed (Paulo and Belrose, 2025), SAEs can
exhibit highly activated latents which reduce inter-
pretability (Stolfo et al., 2025; Smith et al., 2025),
and when trained on random or out-of-distribution
data, SAEs often capture dataset artifacts rather
than genuine model-internal patterns (Heap et al.,
2025; Bricken et al., 2023b). Such spurious dimen-
sions can be viewed as hallucinated SAE features
(henceforth, "Fake Features") that misrepresent the
model’s true activations.

This work investigates SAE reliability issues,
hypothesizing that this unreliability stems from
out-of-distribution (OOD) datasets in LLMs (Yang
et al., 2023; Liu et al., 2024), which are defined
as datasets not generalized in LLMs, either absent
from pretraining or too complex for the model’s ca-
pabilities. To compare the effects of OOD datasets,
a Faithful dataset is generated, self-generated syn-
thetic dataset by the LLM, to more accurately re-
flect LLM-intrinsic features and capabilities. Faith-
ful SAEs are trained on this dataset and their "faith-
fulness" is evaluated by measuring reconstruction
performance with Cross Entropy (CE), L2 loss,
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and Explained Variance metrics, while using fea-
ture matching techniques (Balagansky et al., 2025;
Laptev et al., 2025; Paulo and Belrose, 2025) to
assess stability across different seeds.

Based on our experiments, SAEs trained on
OOD datasets yield feature sets sensitive to seed
differences and lack robustness across different
datasets. First, SAEs were trained on instruction
dataset using non-instruction-tuned Pythia (Bider-
man et al., 2023) models, representing naturally
OOD data. Second, Faithful datasets were com-
pared with potentially OOD Web datasets with dif-
ferent model architectures. Results showed visi-
ble differences in stability across seeds between
instruction datasets and Faithful Datasets, while
such differences were less pronounced against
Web datasets. Additionally, SAEs trained on
Web datasets showed unstable faithfulness across
datasets with the above metrics, when compared to
FaithfulSAEs.

2 Background

2.1 Mechanistic Interpretability

Mechanistic Interpretability encompasses ap-
proaches that reverse-engineer neural networks
through examination of their underlying mecha-
nisms and intermediate representations (Olah et al.,
2020; Elhage et al., 2021). Researchers systemat-
ically analyse multidimensional latent representa-
tions, uncovering phenomena such as layer pattern
features (Olah et al., 2017; Carter et al., 2019) and
neuron-level features (Goh et al., 2021; Schubert
et al., 2021) within vision models. The develop-
ment of the attention mechanism (Vaswani et al.,
2017) and Transformer architecture has intensified
research into understanding the emergent capabili-
ties of these models (Wei et al., 2022b).

2.2 Superposition Hypothesis

Within neural networks’ representational space, the
superposition of word embeddings (Arora et al.,
2018) has provided substantial evidence for super-
position phenomena. Through studies with toy
models, Elhage et al. 2022 elaborated on how
the superposition hypothesis emerges via Phase
Change in feature dimensionality, establishing con-
nections to compressed sensing (Donoho, 2006;
Bora et al., 2017). This hypothesis suggests that
polysemanticity emerges as a consequence of neu-
ral networks optimizing their representational ca-
pacity. Research has demonstrated that trans-

former activations contain significant superposition
(Gurnee et al., 2023), suggesting these models en-
code information as linear combinations of sparse,
independent features.

2.3 Sparse Autoencoders

Sparse Autoencoders (Huben et al., 2023; Bricken
et al., 2023b) address the Superposition Hypoth-
esis in Transformers by disentangling representa-
tional patterns through sparse dictionary learning
(Olshausen and Field, 1997; Elad, 2010) for the un-
derlying features. These models are structured as
overcomplete autoencoders, featuring hidden lay-
ers with greater dimensionality than their inputs,
while incorporating sparsity constraints through L1

regularisation or explicit TopK mechanisms (Gao
et al., 2024). Their architectural diversity encom-
passes various activation functions including ReLU
(Dunefsky et al., 2024), JumpReLU (Rajamanoha-
ran et al., 2025), TopK (Gao et al., 2024), Batch-
TopK (Bussmann et al., 2024), alongside differ-
ent regularisation approaches and decoding mecha-
nisms.

2.4 SAE Feature

The SAE features refer to the simplest factoriza-
tion of hidden activations, which are expected to
be human-interpretable latent activations for cer-
tain contexts (Bricken et al., 2023a). However,
sparsity and reconstruction are competing objec-
tives; minimizing loss may occur without preserv-
ing conceptual (Leask et al., 2025) coherence, as
sparsity loss randomly suppresses features, which
may cause low reproducibility in SAEs. Moreover,
SAEs trained with different seeds or hyperparam-
eters often converge to different sets of features
(Paulo and Belrose, 2025). This instability chal-
lenges the assumption that SAEs reliably uncover
a unique, model-intrinsic feature dictionary.

2.5 SAE Weight

The SAE reconstructs the activations through the
following process:

xfeature = σ(xhidden ·Wenc + benc) (1)

x̂hidden = xfeature ·Wdec + bdec (2)

where σ is the activation function.
The encoder weight matrix multiplication can be

represented in two forms that yield the same result:
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xfeature = σ

(
A∑

i=1

(ai · wenc
i,· ) + benc

)
(3)

xfeature = σ




D⊕

j=1

(xhidden · wenc
·,j + benc

j )


 (4)

where A is the activation size and D is the dic-
tionary size and

⊕
denotes group concatenation.

• wenc
i,· : Each row of the encoder matrix rep-

resents the coefficients for linearly disentan-
gling a hidden representation’s superposition.

• wenc
·,j : Each column of the encoder matrix rep-

resents the coefficients for linearly composing
a hidden representation from monosemantic
features.

• wenc
i,j : The specific weight at index (i, j) indi-

cates how much the jth feature contributes to
the superposition at the ith hidden representa-
tion.

The decoder weight matrix multiplication can
also be represented in two forms that yield the same
result:

x̂hidden =

D∑

j=1

(dj · wdec
j,· + bdec

j ) (5)

x̂hidden =
A⊕

i=1

(xfeature · wdec
·,i ) + bdec (6)

• wdec
j,· : Each row of the decoder matrix shows

dictionary features in hidden activations, a
Feature Direction (Templeton et al., 2024) that
capture the direction of the feature in the hid-
den space.

• wdec
·,i : Each column of the decoder matrix

shows how each monosemantic dictionary fea-
ture contributes to the reconstructed hidden
superposition.

• wdec
j,i : The specific weight at index (j, i) speci-

fies how feature j is composited to reconstruct
hidden representation i.

This formulation underscores the critical role of
the encoder and decoder weights in disentangling
features and accurately reconstructing hidden acti-
vations.

Figure 2: Shared Feature Ratio (SFR) comparison be-
tween Faithful Dataset and Instruction Dataset trained
SAEs. Detailed values for each run are listed in Table 2.

3 Methods

3.1 Faithful Dataset Generation
To develop Faithful SAEs that accurately reflect the
capabilities of LLMs, the training dataset should
closely align with the model’s inherent distribution.
The model’s generative distribution was captured
through unconditional sampling, providing only the
Beginning-of-Sequence (BOS) token as the input
prompt. This is referred to as the Faithful Dataset,
as it directly corresponds to the model’s natural
next-token prediction distribution.

3.2 Faithful SAE Training
Using the generated Faithful Dataset, the Top-K
SAEs (Gao et al., 2024) were trained. To demon-
strate the faithfulness of the trained models, two
Faithful SAEs were trained with the same con-
figuration but different seeds. For comparison,
SAEs with the same seeds were also trained us-
ing not only the SAE dataset but also various other
datasets.

3.3 Evaluation Metrics
Faithfulness was evaluated by examining individ-
ual learned features in the SAE latent space across
different seeds, with specific metrics as follows. To
quantify the faithfulness of SAEs, several comple-
mentary metrics were employed. The primary met-
rics include Shared Feature Ratio, Cross-Entropy
(CE) difference, L2 reconstruction error, and Ex-
plained Variance.

3.4 Feature Matching
To understand how different training conditions
affect the learned representations within SAEs,
features discovered by different SAEs are com-
pared using Feature Matching (Balagansky et al.,
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Model Total Tokens Vocab Size
All Token

Coverage (%)
First Token

Coverage (%)
KL (Model
→ Dataset)

GPT-2 Small 110,718,964 50,257 99.80 21.49 0.2631
Pythia 1.4B 99,999,541 50,254 99.31 5.43 1.0498
Pythia 2.8B 103,204,690 50,254 99.04 3.14 1.1198
Pythia 6.9B 57,580,971 50,254 99.41 13.38 0.2893
Gemma 2B 121,006,576 256,000 93.44 0.40 2.2392
LLaMA 3.2-1B 110,070,117 128,000 95.78 8.27 0.1521
LLaMA 3.2-3B 110,395,870 128,000 96.09 9.18 0.1909
LLaMA 3.1-8B 180,268,487 128,000 98.04 10.31 0.1054

Table 1: Token statistics across models in the Faithful dataset. KL (Model → Dataset) represents the forward KL
divergence between generated dataset’s first token distribution and BOS prediction distribution.

2025; Laptev et al., 2025; Paulo and Belrose,
2025). A common approach, inspired by Maximum
Marginal Cosine Similarity (MMCS) (Sharkey
et al., 2022), computes the cosine similarity be-
tween feature vectors using their corresponding
decoder weight vectors, where wj = wdec

j,· .

mj = max
w′

k∈W2

wj · w′
k

∥wj∥ ∥w′
k∥

Following Paulo and Belrose (2025), the Hun-
garian matching algorithm (Kuhn, 1955) was used
to find an optimal one-to-one correspondence be-
tween feature sets. We compute the similarity ma-
trix S ∈ Rd×d between all features of two SAEs:

Sj,k =
wdec
j,· · wdec′

k,·
∥wdec

j,· ∥ ∥wdec′
k,· ∥

After applying the Hungarian algorithm to find
the optimal assignment that maximizes the total
similarity, each feature is classified based on a
threshold τs into ’shared’ or ’orphan’ features, ter-
minology introduced by Paulo and Belrose (2025):

Feature Type(dj) =

{
shared if Sj,k ≥ τs,

orphan if Sj,k < τs.

This approach ensures that each feature from
one SAE is matched with at most one feature from
the other SAE, providing a measure of feature set
similarity.

Using this methodology, the Shared Feature Ra-
tio is defined as the proportion of shared features
relative to the total number of features in an SAE:

SFR =
|{dj ∈ D | Sj,k ≥ τs}|

|D|
where D is the complete dictionary of features

in the SAE, and | · | denotes the cardinality of a set.

3.5 Fake Feature Ratio
Frequently activating features have been identi-
fied as problematic in SAE literature (Stolfo et al.,
2025; Smith et al., 2025), often leading to poor
interpretability. "Fake Feature" is defined as a fea-
ture that activate on randomly generated token se-
quences (OOD inputs). A feature is considered
fake if it frequently activates on more than a certain
threshold τf of OOD samples. The Fake Feature
Ratio (FFR) is defined as:

FFR =
|{i ∈ D : activation frequency(i) > τf}|

|D|

where D is the total feature dictionary. Lower FFR
indicates better feature quality.

3.6 SAE Probing
To evaluate downstream task performance of SAE,
three approaches are compared on classification
tasks: original model activations (Baseline), sparse
feature activations (SAE), and reconstructed activa-
tions (Reconstruction). Logistic regression probes
are trained for each representation type and ac-
curacy and F1 scores are measured across SST-2,
CoLA, AG News, and Yelp Polarity datasets. A
faithful SAE should show minimal performance
drop between baseline and SAE/reconstruction ap-
proaches.

4 Experiments

We used SFR with threshold τs as 0.7 between
SAEs trained with different random seeds. For the
FFR threshold, we followed Smith et al. (2025) and
set τf = 0.1. For each experiment, we trained mul-
tiple SAEs using two different initialization seeds
while keeping all other hyperparameters constant.
For all datasets except LLaMA 8B, we used 100M
tokens for training. For LLaMA 8B, we used 150M
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Figure 3: Shared Feature Ratio by model and dataset.
SAE training hyperparameters are listed in Appendix A,
and complete results appear in Table 4.

tokens to ensure convergence. FFR measurement
was measured by generating 1M tokens and aver-
aged across all different seed SAEs for a reliable
measure.

4.1 Instruction Dataset Comparison
The training dataset used during pre-training must
be publicly available. For example, models like
LLaMA (Team, 2024b) do not disclose their train-
ing data. The research leveraged the fact that pre-
trained models have internalised the distribution
of their training data and rely on this distribution
for inference. Therefore, the pre-trained model
was treated as a proxy for its training distribution
and used to generate synthetic data. The open-
source Pythia (Biderman et al., 2023) model was
employed, for which the training dataset is publicly
available.

For the Out-of-Distribution (OOD) datasets, In-
struction Tuning (Wei et al., 2022a) datasets were
used: FLAN (Longpre et al., 2023), OpenInstruct
(Wang et al., 2023), and Alpaca dataset (Taori et al.,
2023). Selecting an uncensored dataset was crucial
for constructing a valid OOD benchmark. This de-
cision was based on the fact that commonly used
datasets for training SAEs contain data scraped
from the same sources. Additionally, models with
different parameter scales were compared: Pythia
1.4B and Pythia 2.8B, to study the impact of model
size on SAE faithfulness.

4.2 Web-based Dataset Comparison
For cross-architecture comparison against Web-
based dataset and Faithful dataset, the Top-K SAE
model (Gao et al., 2024) was utilized. To evalu-
ate a diverse range of architectures and examine
scaling effects, five models were employed: GPT-
2 Small (Radford et al., 2019), LLaMA 3.2 1B,

LLaMA 3.2 3B, LLaMA 3.1 8B (Team, 2024b),
and Gemma 2B (Team, 2024a). SAEs were trained
on three distinct datasets—The Pile (Gao et al.,
2021), FineWeb (Penedo et al., 2024), and our
Faithful Dataset—for each model architecture, with
hyperparameters specified in Table 5. After train-
ing SAEs across different datasets and architectures
using two initialization seeds, the SFR metric was
compared when only the seed was altered to assess
model stability.

4.3 SAE Faithfulness Metrics

The objective is to determine whether training
SAEs on the generated Faithful dataset produces
more faithful sparse representations of model ac-
tivations. It is argued that a more faithful SAE
should adapt more flexibly to the model when en-
coding and decoding activations, maintaining the
essential information flow through the model. To
quantify this faithfulness, Cross-Entropy (CE) dif-
ference, L2 reconstruction error, and Explained
Variance were used as proxy metrics, comparing
trained SAEs to measure their impact on the under-
lying model. This evaluation was conducted using
SAEs trained on The Pile, FineWeb, and the Faith-
ful Dataset, and extended the test suite to include
not only these three datasets but also OpenWebText
(Gokaslan and Cohen, 2019) and TinyStories (Li
and Eldan, 2024) for comprehensive assessment.

4.4 SAE Probing

For our SAE Probing experiments, four di-
verse classification datasets were selected: SST-2
(Socher et al., 2013), CoLA (Warstadt et al., 2019),
AG News and Yelp Polarity (Zhang et al., 2015).
For each dataset, reconstructed activations were
used as input for logistic regression classifier. Acti-
vations were aggregated by mean pooling on every
token in the sequence. The classifiers were trained
on each representation type and accuracy score was
measured, using a maximum of 100,000 samples
for training. The accuracy scores were averaged
across all seed SAEs to obtain more reliable data.

5 Results

5.1 Impact of OOD Levels on SAE Stability
Across Datasets

As shown in Table 2, FaithfulSAEs, trained on a
synthetic dataset, exhibit greater stability across
seeds compared to SAEs trained on mixed or
instruction-based datasets. These results support
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Figure 4: Cross-Entropy difference between SAEs trained on different datasets. Colors represent training datasets:
orange for FineWeb, gray for Pile-Uncopyrighted, and green for Faithful dataset. Point shapes indicate evaluation
datasets: circles for FineWeb, squares for The Pile, X markers for TinyStories, crosses for OpenWebText, and
diamonds for Faithful dataset. You can find the detailed metrics in Appendix B.

our hypothesis that higher OOD levels reduce SFR.
Notably, layer 16 demonstrates higher stability than
layer 8, likely due to SAEs capturing more complex
features in deeper layers.

Dataset Pythia 1.4B Pythia 2.8B

Faithful 0.7145 0.2911
Alpaca-Instruction 0.7138 0.2231
Open-Instruct 0.7134 0.2210
FLAN 0.6113 0.1283

Table 2: Shared Feature Ratio for Pythia 1.4B and 2.8B
model. AI denotes Alpaca-Instruction for compactness.

5.2 SFR on Cross-Model Synthetic Datasets

Target Model Source Model SFR

Pythia 2.8b Pythia 2.8b 0.2911
Pythia 2.8B Pythia 1.4B 0.2288

Pythia 1.4B Pythia 1.4B 0.7145
Pythia 1.4B Pythia 2.8B 0.6887

Table 3: Shared Feature Ratio on Pythia models. Faith-
fulSAEs were trained on target models with synthetic
datasets generated from source models.

From Table 3, we observe that SFR is consis-
tently higher when the target model is the same as
the source model (e.g., training SAEs on a Pythia
2.8B model with a synthetic dataset from a 2.8B

model), and lower when the source and target mod-
els are different. This suggests that SAE training on
its own synthetic dataset is more stable even within
the same model family trained on the same dataset
with different scaling. This indicates that SFR dif-
ferences stem from out-of-distribution effects, and
a smaller model’s dataset is not necessarily easier
to learn stable feature sets from. The results are
consistent with our hypothesis: more OOD input
leads to lower SAE stability across seeds (lower
SFR), while less OOD leads to more consistent
SAE training (higher SFR).

5.3 Performance on Web-based Datasets

The Faithful dataset did not demonstrate higher
SFR compared to web-based datasets as shown in
Figure 3; rather, it showed lower SFR across most
models. As evident in Table 4, the Faithful dataset
exhibited lower SFR than FineWeb or The Pile for
all models.

Model Pile Faithful FineWeb

GPT-2 0.5405 0.5258 0.5209
LLaMA 1B 0.5778 0.5517 0.5789
Gemma 2B 0.3889 0.3881 0.4229
LLaMA 3B 0.2222 0.1835 0.2248
LLaMA 8B 0.1066 0.0914 0.0936

Table 4: Shared Feature Ratio across models and
datasets. It compares SAEs trained with identical set-
tings but different seeds. The models listed were used
for SAE activation extraction, and the datasets on the
right were used for training them.
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Figure 5: Faithful SAE representation for LLaMa 8B. This figure shows the SAE’s reconstruction of the LLaMa 8B
hidden state and its faithfulness across datasets.

We concluded that this issue arises because web-
based datasets are sufficiently diverse to encom-
pass model coverage, and out-of-distribution data
beyond the scope of the Faithful dataset does not
negatively impact the robustness of SAEs.

By observing that GPT2 relatively showed sim-
ilar SFR with other Web-based datasets, while
the larger models such as Gemma and LLaMA
consistently showed lower SFR. This is because
the pretraining datasets of Gemma and LLaMA
already contain Web-based data generalization,
which means they are not OOD datasets. To ad-
dress this limitation, generating larger Faithful
datasets would better cover the full range of model
capabilities, which we analyze in more detail in
Subsection 5.4 by comparing SAE faithfulness.

5.4 Faithfulness of Faithful Dataset

As shown in Table 1, KL divergence values stay
below 2 except for Gemma 2B, demonstrating ef-
fective mode covering via Forward KL. The ta-
ble confirms >90% Unique Tokens Used in All
Positions, indicating adequate model distribution
capture. However, first token distribution lacks vo-
cabulary breadth, possibly explaining why Figure 3
shows FaithfulSAEs underperforming Web-based
SAEs. Alternative approaches include starting with
a flat distribution instead of BOS tokens or increas-
ing the sampling temperature.

In Appendix C, we verify the proper generation
of the dataset by confirming that the distribution
of top tokens follows the predicted distribution of
BOS tokens. However, due to limited sampling
in the dataset, it does not cover all token distri-
butions from the BOS prediction, which follow a
logarithmic decrease.

5.5 Faithfulness of FaithfulSAE
To determine whether training SAEs on the gener-
ated Faithful dataset produces more faithful SAEs,
we evaluated model fidelity during activation en-
coding and decoding processes with trained SAEs
as presented in Table 5. We measured Cross-
Entropy difference, L2, and Explained Variance
metrics across five datasets. The full results are
available in Appendix B, while the results for
LLaMa 8B are shown in Figure 5.

Although FineWeb SAE showed higher SFR
than Faithful SAE, it demonstrated significantly
higher CE difference and overall lower generalized
performance on faithfulness metrics. SAEs trained
on The Pile achieved higher SFR, while faithful-
ness metrics were similar as shown in Appendix B.
SAEs trained exclusively on the Faithful Dataset
demonstrated more stable performance across mul-
tiple evaluation datasets compared to FineWeb.

5.6 SAE Probing
Notably in Figure 6, FaithfulSAE demonstrates
overall better performance compared to the other
Web-based trained SAEs. FaithfulSAE achieved su-
perior performance in 12 out of 18 cases across six
models and three classification tasks. While perfor-
mance varied by task, FaithfulSAE consistently out-
performed alternatives on the CoLA dataset across
all model configurations. Despite showing lower
SFR compared to Web-based datasets, the higher
downstream task performance of FaithfulSAE sug-
gests it more accurately reflects the model’s hidden
state with less reconstruction noise.

5.7 Fake Feature
While FaithfulSAE generally shows lower SFR
compared to web-based datasets, it demonstrates
better performance in terms of FFR (lower), sug-
gesting potential benefits for interpretability with
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Figure 6: SAE Probing performance comparison between FaithfulSAE and Web-based SAEs with different types of
LLM architectures. Detailed values can be found in Table 6.

the Faithful Dataset. Among the 7 models tested,
5 models showed lower FFR with FaithfulSAE,
with the exception of the Pythia model family.
This is likely because the Pythia model, as men-
tioned above, was trained exclusively on The Pile
dataset, which closely overlaps with the web-based
FineWeb and The Pile datasets used for comparison.
We also observed that within the same model fam-
ily, larger models showed higher FFR with Faithful-
SAE, indicating that interpretability becomes more
challenging as model size increases.

6 Conclusion

Out-of-distribution datasets that exceed a model’s
pretraining distribution or capabilities hinder SAEs
from reliably identifying consistent feature sets
across different initialization seeds. To mitigate
this, we proposed Faithful SAE—trained on the
model’s own synthetic dataset—to ensure that train-
ing remains strictly within the model’s inherent
capabilities. Our experiments showed that Faith-
fulSAEs yield higher SFR than those trained on
instruction-tuned datasets and outperform SAEs
trained on Web-based datasets in the SAE prov-
ing task. While FaithfulSAEs obtain lower FFR
than web-based dataset trained SAEs leading to
improved potential interpretability, they also offer
a key advantage: encapsulation.

7 Limitations

While Faithful Datasets improve feature consis-
tency for non-instruction-tuned models, our experi-
ment lacked evaluation on instruction-tuned or rea-
soning models. Our evaluation of Shared Feature
Ratio may not fully reflect the complexity of high-
dimensional feature spaces, and we did not assess
the interpretability of individual features. Specifi-
cally, Shared Feature Ratio was higher compared

to instruction datasets, but lower compared to web-
based datasets. Additionally, we need to verify
whether Faithful SAE provides interpretable expla-
nations for individual features through case studies.
Although we defined the Fake Feature Ratio and
confirmed lower values, we did not remove these
features or assess their interpretability further.

8 Future Work

This work shows that our approach can reduce Fake
Features and improve probing performance. An im-
portant direction for future research is exploring
improved dataset generation and training strate-
gies that could completely outperform Web-based
methods. Such progress would further validate the
promise of training interpretability models using
only the model itself, without reliance on external
data. This dataset independence could be particu-
larly advantageous for interpretability in domain-
specific generative models where data is scarce.
For example, the FaithfulSAE approach could be
adopted for interpretability of models in biology or
robotics where data production costs are high.

Another priority is to evaluate whether Faithful
SAEs provide meaningful and interpretable expla-
nations for individual features through detailed case
studies. For example, we hypothesize that pruning
Fake Features from a Faithful SAE may yield a
representation close to the Simplest Factorization
(Bricken et al., 2023a), aligning with the principle
of Minimal Description Length (Ayonrinde et al.,
2024). Confirming this connection remains an open
and exciting avenue for future investigation.
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Appendix

The source code for this paper is available at this repository 1.

A SAE Training

For the SAE training, the learning rates and TopK values roughly followed the scaling laws proposed by
Gao et al. (2024). 100 M tokens were used for all datasets except for LLaMA 8B, where 150 M tokens
were used to ensure convergence. All SAE training was conducted using an NVIDIA RTX 3090ti 24GB.
Additionally, to obtain a sufficiently complex feature set when training a single layer, we used the target
layer at the 3/4 position except Gemma2 2B model. For the uncensored instruction dataset, we utilized
FLAN2, Open-Instruct 3, and Alpaca dataset 4 in our experiments.

Model Layer DictSize TopK LR Seed Dataset Sequence Length

GPT2-small 8 12288 48 0.0002 42,49 Faithful-gpt2-small 128
GPT2-small 8 12288 48 0.0002 42,49 Pile-uncopyrighted 128
GPT2-small 8 12288 48 0.0002 42,49 FineWeb 128
GPT2-small 8 12288 48 0.0002 42,49 OpenWebText 128
GPT2-small 8 12288 48 0.0002 42,49 TinyStories 128

Llama-3.2-1B 12 14336 48 0.0002 42,49 Faithful-llama3.2-1b 512
Llama-3.2-1B 12 14336 48 0.0002 42,49 Pile-uncopyrighted 512
Llama-3.2-1B 12 14336 48 0.0002 42,49 Fineweb 512

Gemma-2-2b 20 18432 64 0.0003 42,49 Faithful-gemma2-2b 1024
Gemma-2-2b 20 18432 64 0.0003 42,49 Pile-uncopyrighted 1024
Gemma-2-2b 20 18432 64 0.0003 42,49 Fineweb 1024

Llama-3.2-3B 21 18432 64 0.0001 42,49 Faithful-llama3.2-3b 512
Llama-3.2-3B 21 18432 64 0.0001 42,49 Pile-uncopyrighted 512
Llama-3.2-3B 21 18432 64 0.0001 42,49 Fineweb 512

Llama-3.1-8B 24 16384 80 6e-05 42,49 Faithful-llama3.1-8b 512
Llama-3.1-8B 24 16384 80 6e-05 42,49 Pile-uncopyrighted 512
Llama-3.1-8B 24 16384 80 6e-05 42,49 Fineweb 512

Pythia-1.4B 18 14336 48 0.0002 42,49 Faithful-pythia-1.4b 512
Pythia-1.4B 18 14336 48 0.0002 42,49 Faithful-pythia-2.8b 512
Pythia-1.4B 18 14336 48 0.0002 42,49 Open-Instruct 512
Pythia-1.4B 18 14336 48 0.0002 42,49 Alpaca-Instruction 512
Pythia-1.4B 18 14336 48 0.0002 42,49 FLAN 512

Pythia-2.8B 24 15360 64 0.0001 42,49 Faithful-pythia-1.4b 512
Pythia-2.8B 24 15360 64 0.0001 42,49 Faithful-pythia-2.8b 512
Pythia-2.8B 24 15360 64 0.0001 42,49 Open-Instruct 512
Pythia-2.8B 24 15360 64 0.0001 42,49 Alpaca-instruction 512
Pythia-2.8B 24 15360 64 0.0001 42,49 FLAN 512

Table 5: SAE training hyperparameters for each model and dataset. The configuration includes the model name, layer
index, dictionary size, top-k sparsity, learning rate, random seed, training dataset, and sequence/token dimensions.
(a) and (b) are shorthand tags used for table compactness.

1https://github.com/seonglae/FaithfulSAE
2https://huggingface.co/datasets/Open-Orca/FLAN
3https://huggingface.co/datasets/xzuyn/open-instruct-uncensored-alpaca
4https://huggingface.co/datasets/aifeifei798/merged_uncensored_alpaca
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B Faithful SAEs

The figures below show how each SAE trained on different datasets generalizes its reconstruction capability
on other datasets, demonstrating its faithfulness. They compare the Explained Variance, L2 loss, and CE
difference across datasets when the LLM’s hidden state is replaced by the SAE’s reconstructed activation
trained on a specific dataset. The X-axis represents the evaluation dataset, and the Y-axis indicates the
SAE’s training dataset. All results are based on SAE models trained with seed 42. The trained SAEs are
available in the following collection 5.

Figure 7: Faithful SAE representation for GPT-2. This figure visualizes the SAE model’s ability to reconstruct
GPT-2’s hidden state.

Figure 8: Faithful SAE representation for LLaMA 1B. This figure demonstrates the SAE’s performance in
reconstructing the hidden state of LLaMA 1B.

Figure 9: Faithful SAE representation for LLaMA 3B. This figure highlights the SAE’s reconstruction quality for
the LLaMA 3B model’s hidden state.

5https://huggingface.co/collections/seonglae/faithful-saes-67f3b25ff21a185017879b33
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Figure 10: Faithful SAE representation for Gemma 2B. This figure shows the SAE’s reconstruction of the Gemma
2B hidden state and its faithfulness across datasets.

C Faithful Dataset

The figures below compare the model’s BOS token’s next token distribution and the empirical frequency
distribution of the first token from our generated Faithful dataset. The left two figures represent the
model’s distribution, and the right two figures represent the dataset’s token frequency distribution. The
upper two figures show only the top 10 tokens, which show almost identical shapes to the original model.
However, the bottom two graphs show that the frequency distribution does not cover the whole token
distribution, as the probability decreases exponentially for the first generation. By comparing the coverage
and token statistics, we verified that the Faithful dataset reflects the original model’s capability well.
Additionally, the Pythia 6.9B model was used solely to generate dataset and to verify that the first token
distribution matches the model’s BOS token and was not used for training. The Faithful datasets are
available in the following collection 6.

Figure 11: This figure compares the token distribution of the generated dataset for GPT-2 with the model’s expected
token distribution.

6https://huggingface.co/collections/seonglae/faithful-dataset-67f3b21ff8fca56b87e5370f
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Figure 12: This figure compares the token distribution of the generated dataset for LLaMA 1B with the model’s
original token distribution.

Figure 13: This comparison shows the token distribution of LLaMA 3B’s generated dataset versus the model’s
distribution.
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Figure 14: This figure visualizes how well the generated dataset represents LLaMA 8B’s token distribution.

Figure 15: This visualization compares the generated token distribution with the original model for Gemma 2B.
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Figure 16: This figure shows the token distribution for the generated Pythia 1.4B dataset, comparing it to the model’s
distribution.

Figure 17: This figure shows the token distribution for the generated Pythia 2.8B dataset, comparing it to the model’s
distribution.
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Figure 18: This figure shows the token distribution for the generated Pythia 6.9B dataset, comparing it to the model’s
distribution.

C.1 SAE Probing

Model SST-2 CoLA Yelp
Faithful Fineweb Pile Faithful Fineweb Pile Faithful Fineweb Pile

GPT2-small 0.7746 0.7723 0.7500 0.7076 0.6989 0.6912 0.6532 0.6502 0.6444
Pythia 1.4B 0.8451 0.8354 0.8314 0.7281 0.7253 0.7262 0.9341 0.9399 0.9289
Gemma 2B 0.7729 0.8394 0.8085 0.7478 0.7291 0.7430 0.9536 0.9495 0.9440
Pythia 2.8B 0.8050 0.8256 0.8365 0.6985 0.6371 0.6783 0.9392 0.9428 0.9442
LLaMA 1B 0.8342 0.8491 0.8428 0.7469 0.7411 0.7411 0.9431 0.9437 0.9429
LLaMA 3B 0.8532 0.8423 0.8497 0.6889 0.6826 0.6888 0.9547 0.9544 0.9525

Table 6: Reconstruction accuracy of SAE probing across 3 datasets and 6 model architectures. FaithfulSAE
compared against SAEs trained on web-based datasets (Fineweb, Pile).

C.2 Fake Feature

Dataset GPT2 Pythia 1.4B Gemma 2B Pythia 2.8B LLaMA 1B LLaMA 3B LLaMA 8B

Faithful 0.1139 0.3871 0.5425 0.4655 0.0314 0.1899 0.4150
Pile 0.1180 0.3871 0.5669 0.4460 0.0446 0.2930 0.5341
Fineweb 0.1587 0.3802 0.5995 0.4362 0.0600 0.2713 0.5493

Table 7: Average fake feature ratio (%) across training datasets and model architectures.
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