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logical tools that support language acquisition, | _
the field is turning to analytic AES (evaluating . \
essays according to different linguistic traits). We accomplish 3
This approach holds promise for generating more Es"fd‘:;"’e "\
more detailed essay feedback, but relies on ana- oot 35— pu=385|
lytic scoring data that is both more cognitively 57:5)’/’; gholaze 4 —/[c~095]
demanding for humans to produce, and prone —

to bias. The dominant paradigm in AES is to
aggregate disagreements between raters into a
single gold-standard label, which fails to ac-
count for genuine examiner variability. In an
attempt to make AES more representative and
trustworthy, we propose to explore the sources
of disagreements and lay out a novel AES sys-
tem design that learns from individual raters
instead of the gold standard labels.

1 Introduction

Writing practice is an essential part of learning
a second language (Graham et al., 2012; Monk,
2016). Unfortunately, assessing writing is long and
tedious, and educators frequently display inconsis-
tencies due to fatigue and biases (Uto and Ueno,
2018) which compromise the quality of their mark-
ing (Hussein et al., 2019). By providing consistent,
accessible, and cheaper written assessment, Auto-
mated Essay Scoring (AES) has the potential to
address this issue (Magliano and Graesser, 2012)."

In the past, AES research primarily focused on
holistic scoring, i.e., summarising the quality of es-
says with a single score (Phillips, 2007). However,
this approach fails to provide any kind of forma-
tive feedback in the classroom (Carlile et al., 2018).

' We limit the discussion to the assessment of written

text (or “essays”) produced by English as a Foreign Lan-
guage/English as a Second Language (EFL/ESL) students.
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Figure 1: Two essays are multi-marked by three raters
on a scale of 1-5. Their scores are then aggregated using
an average, and we obtain the same mean y. This is the
gold label. We compute a confidence score C' for each
gold label using the variance of the raw scores (Section
4.2) and find that we can be much more confident in the
second essay’s gold label than the first’s, despite their
being treated the same when training AES systems.

More recently, the field is turning to analytic scor-
ing which involves automatically assessing essays
along different dimensions to help students iden-
tify which aspects of their writing need improve-
ment (Ke and Ng, 2019). Traits like coherence
(Higgins et al., 2004), relevance to prompt (Louis
and Higgins, 2010), and persuasiveness (Carlile
et al., 2018) have already been studied. By break-
ing down essay quality into different traits, analytic
AES can help a learner identify their strengths and
weaknesses (e.g., Burstein et al., 2004).

However, though analytic scoring offers a ped-
agogically useful alternative, its implementation
in real-world classrooms is not without challenges.
The variety of writing tasks and ambiguity of scor-
ing rubrics make it difficult for AES systems to
consistently produce reliable scores (Xiao et al.,
2025). Further, concerns over the fairness, account-
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ability, and transparency of these systems are yet
to be properly addressed (Madnani et al., 2017).
These issues underscore the need for AES systems
that support teacher-Al collaboration (Deane, 2013;
Wilson and Roscoe, 2020) by not only producing
accurate scores but also providing educators with
confidence estimates, and explanations.

To design transparent systems, we must first ex-
amine the data on which AES systems are typically
trained: corpora of human-marked essays. Essay
scoring is a difficult and subjective task, prone to
rater disagreements (Brown, 2010). This is espe-
cially true for analytic scoring which is more cogni-
tively demanding and time-consuming than holistic
scoring (Hunter et al., 1996), and particularly vul-
nerable to rater effects (Myford and Wolfe, 2003).
Despite these limitations, the dominant paradigm
in Machine Learning (ML) and AES has always
been to reconcile rater disagreements under one
ground truth label referred to as the gold standard
via different aggregation methods (Abercrombie
et al., 2024). Not only does this neglect genuine
examiner variation, but it also erases precious infor-
mation about the essays (as illustrated in Figure 1)
which we could use to inform better analytic AES.

With the long-term goal of improving AES sys-
tems for teacher-in-the-loop applications (Colonna,
2024), we propose to draw on perspectivist litera-
ture (Section 2.3) which “aims at leveraging data
annotated by different individuals in order to model
varied perspectives that influence their opinions
and world view” (Frenda et al., 2024). In doing so,
we hope to align AES systems with the diversity
of rater judgements, enhancing the way in which
output confidence is measured.

This PhD thesis proposal is structured as follows:
Section 2 situates rater disagreements in written as-
sessment, advocating for a perspectivist approach
to data annotation in AES. Section 3 introduces
relevant analytic AES datasets and techniques. Sec-
tion 4 outlines our phased research plan which in-
cludes a study of disagreements in essay scoring
data, the development of multi-annotator AES mod-
els, and their application to feedback generation.
Section 5 summarises the proposal and its potential
contributions, and includes some ideas for future
research.

2 Background

We start by contextualising and introducing per-
spectivist literature as an alternative approach to
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using annotated data for model training, and make
a case that AES, and particularly analytic AES re-
search, can benefit from this paradigm shift.
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Modern NLP research is highly dependent on the
existence of annotated corpora for the training and
evaluation of models. Thanks in part to initiatives
such as SemEval or Senseval (Sabou et al., 2014),
and open-competitions such as those hosted by the
Kaggle? platform, the number of publicly available
datasets is growing. And with them, best prac-
tices on how to create annotations of consistently
high quality have been developed. Over the years,
the “science of annotation” (Hovy, 2010) has be-
come the subject of many dedicated conferences
and workshops such as HCOMP? or AnnoNLP
(Paun and Hovy, 2019).

Amongst the many guidelines that have been
set out, it is generally considered “axiomatic” that
any annotation task should be performed by two or
more raters acting independently. This allows us to
compare their rating decisions and measure the ex-
tent to which they agree (or disagree) on the same
instances of data (Hovy and Lavid, 2010). Tradi-
tional agreement measures includes Krippendorff’s
alpha (Krippendorff, 2004) or variations of Cohen’s
Kappa measure (Cohen, 1960). Reporting and act-
ing on agreement measures generally improves the
overall quality of the data being collected (Snow
et al., 2008; Nowak and Riiger, 2010).

Multi-marking

2.2 Disagreements

Full agreement is rarely possible, especially for
complex or subjective tasks (Hovy and Lavid,
2010), such as essay scoring, where a single “right”
answer may not exist (Alm, 2011). This is because
having two distinct readers arrive at an identical
judgement for the same piece of writing is not al-
ways possible (Huot, 1990a), and there is no objec-
tive way of validating either’s rating (Sadler, 2009).
In fact, there is no single written evaluation stan-
dard that can be said to embody the ideal written
product of English (Kroll, 1990). In most cases,
disagreements are initially treated as a consequence
of low annotation quality, and addressed through
various strategies to minimise noisy data, such as
annotator training (Hovy et al., 2006; Carlson et al.,
2003) or reconciliation (Hovy and Lavid, 2010).
Any remaining disagreements are then reduced to a

2See https://www.kaggle.com.
3See https://www.humancomputation.com.
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single gold label by averaging (Sabou et al., 2014),
majority vote (Leonardelli et al., 2021) or adjudica-
tion by an expert (Waseem and Hovy, 2016).
Unfortunately, these approaches reduce labels to
the opinion of just one individual, precisely where
annotation exposes complexity (Hovy and Lavid,
2010). For instance, Plank et al. (2014b) show
that disagreements in part-of-speech (POS) anno-
tation can be systematic across domains and lan-
guages, and due to “linguistically debatable” or
hard cases rather than annotation errors (e.g., pos-
sessive pronouns may be classified as determiners
or pronouns). In essay scoring, raters have to rec-
oncile their impression of the text, its particular
features, and the relevant scoring rubric. Given the
boundless nature of language, the latter can never
be exhaustive, and markers must cope with the un-
derspecification of rating (Lumley, 2002). Further,
raters may be influenced by their cultural, politi-
cal, and socio-economic background (Guerra et al.,
2011; Amorim et al., 2018). And if something as
prescriptive and well-documented as POS-tagging
leaves room for interpretation as illustrated in Plank
et al. (2014a), then the high-level descriptors typi-
cally present in essay scoring rubrics will definitely
introduce ambiguity, and with it, debatable cases.

2.3 Perspectivism

At a time when Al systems are increasingly scru-
tinised over bias and fairness concerns, it is not
enough to assume a single “ground truth” as this
can erase legitimate disagreements. Perspectivism
challenges this assumption by pursuing approaches
that understand and account for genuine human
variability (Abercrombie et al., 2024).

A few studies have explored ways in which to
use disagreements during model training. For in-
stance, Prabhakaran et al. (2012) and Plank et al.
(2014a) have tried to incorporate rater disagree-
ments into the training loss functions: by penalising
errors made on highly agreed data points more than
those incurred from mislabelling complex instances
(that is, with higher disagreement). Others have
looked at actually modelling disagreement. Akhtar
et al. (2021) divided annotators into two groups
based on their polarisation (on a hate-speech clas-
sification task), and for each, compiled a different
gold standard dataset to train individual classifiers.
Combining these using an ensemble modelling ap-
proach outperformed previous state-of-the-art su-
pervised classifiers for that task. More recently,
Davani et al. (2022) compared three training strate-
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gies including ensembling, multi-label classifica-
tion (Tsoumakas and Katakis, 2009) and multi-task
learning (MTL; Caruana, 1993) on two tasks: hate-
speech and emotion classification. Their results
demonstrated that an MTL approach performs bet-
ter than a baseline trained on aggregated gold stan-
dard labels. Additionally, these architectures pro-
vide a way to estimate uncertainty in predictions by
preserving different annotators’ perspectives until
the prediction step. See Frenda et al. (2024) for a
full survey of perspectivist approaches. We note
that, to the best of our knowledge, perspectivism
has not yet been investigated in the context of AES
research.

In the next section, we show how (analytic) AES
research exemplifies the challenges and opportuni-
ties of handling subjectivity in annotation.

2.4 Analytic Scoring

At first, AES research primarily focused on sum-
marising the quality of essays with a single score
(e.g., the Intelligent Essay Assessor™; Landauer
et al., 2003) in response to the needs of large-
scale standardised tests such as TOEFL, IELTS and
GMAT (Chodorow and Burstein, 2004; Chen et al.,
2016). But where holistic approaches fall short in
terms of providing formative feedback to students
in the classroom (Carlile et al., 2018), analytic scor-
ing shows promise (Higgins et al., 2004; Louis and
Higgins, 2010; Somasundaran et al., 2014; Persing
and Ng, 2014; Kaneko et al., 2020).

Contrary to coarse holistic evaluations, analytic
criteria consider a wide range of linguistic dimen-
sions (or traits) involved in the composition of an
essay (e.g., coherence, syntax, relevance to prompt,
etc.) to better highlight the strengths and weak-
nesses of a student’s writing (Carlile et al., 2018).
Analytic scoring ensures that raters award appropri-
ate scores while also revealing the grounds for their
decisions to students by pointing out specific writ-
ing strengths and weaknesses (Reid, 1993, p.235).
In doing so, they have the potential to reduce the
apparent arbitrariness of grading (Lumley, 2002)
and can easily be used as the basis for fine-grained
feedback (Carlile et al., 2018; Banno et al., 2024).

Unfortunately, due to the fuzzy nature of
language (Douglas, 1997), analytic scales are
more cognitively demanding to use (Cai, 2015).
They also run the risk of being psychometrically
redundant (Lee et al., 2010) due to rater effects
(Engelhard, 1994). Moreover, the very idea that
text features are independent constructs whose



sum is a valid representation of the overall quality
of a text is subject of debate (Huot, 1990b).

Given the complex and subjective nature of ana-
lytic essay scoring data, greater even than that of
holistic scoring, we should not be blindly training
models on the gold standard, and posit that analytic
AES could benefit from a perspectivist approach.

3 Related Work

In this section, we review prior work in AES, with
a special focus on analytic AES, introducing the
datasets and main techniques relevant to our study.

3.1 Datasets

As was noted by Ke and Ng (2019), progress in
analytic AES is hindered in part by the lack of large
annotated corpora needed for model training. To
the best of our knowledge, only ICLE++ (Granger,
2003; Granger et al., 2009, 2020; Li and Ng, 2024),
ASAP++ (Mathias and Bhattacharyya, 2018), IC-
NALE GRA (Ishikawa, 2020, 2023), CELA (Xue
etal., 2021), and ELLIPSE (Crossley et al., 2024)
have been publicly released for the English lan-
guage. Of those, all but CELA have released the
original, raw multi-marks, alongside the aggregated
gold standard scores. See Appendix A for more
information about these datasets. Table 1 compares
these datasets along various dimensions including,
size and analytic traits assessed.

Put together, these datasets include scores for
34 distinct analytic trait names, ranging from low-
level dimensions like “grammar” or “syntax”, lexi-
cal dimensions like “word choice” or “vocabulary”,
to complex, discourse-level dimensions like “co-
herence” or “thesis clarity”. Further, while some
of these datasets share common trait names (e.g.,
“organisation”), it is important to keep in mind that
each comes with very different scoring rubrics, and
that the definitions of these dimensions might in
fact be radically different. While this diversity can
be seen as valuable, it is also an additional chal-
lenge for analytic AES research. Indeed, we cannot
make any link between datasets before having prop-
erly studied how the essays were annotated. The
same should be said for parallels made across stud-
ies which work with different sources of essay data.

Unfortunately, while there have been some
efforts to rationalise this—notably, Li and Ng
(2024, Table 2) offer a mapping between some of
ICLE++"s traits and those of the ASAP++ dataset—
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we identify a clear gap in the field’s general under-
standing of its analytic essay scoring datasets.

3.2 Machine Learning Approaches

Up until recently, the field of (analytic) AES
mainly focused on developing effective hand-
crafted feature-based models (Craighead et al.,
2020). Common features included grammatical
errors (Andersen et al., 2013), distinctive words
or part-of-speech n-grams (Page and Paulus, 1968)
and essay length (Lee et al., 2008).

With the recent surge of interest in neural net-
works, transformer-based systems have gained
favour (Ke and Ng, 2019): see Zhang and Lit-
man (2018); Ke et al. (2019); Mayfield and Black
(2020); Xue et al. (2021); Shibata and Uto (2022);
Ajit Tambe and Kulkarni (2022); Dadi and Sanam-
pudi (2023); Doi et al. (2024); Cho et al. (2024);
Ding et al. (2024). These models perform on par
with feature-based systems, and eliminate the need
for expensive feature engineering (Qiu et al., 2020).
However, this gain comes at the cost of needing
increasingly large quantities of annotated data for
training (Zhang et al., 2021) which can be a prob-
lem for analytic AES which lacks large datasets
(Section 3.1). Additionally, neural networks are
very sensitive (Uto, 2021): the models can inherit
biases present in data they are trained on which
can result in systematic errors and a drop in perfor-
mance (Amorim et al., 2018; Huang et al., 2019;
Li et al., 2020). Finally, the inherent lack of inter-
pretability of these “black box-like models” (Ku-
mar and Boulanger, 2020) raises ethical concerns
impacting safety (Danks and London, 2017), trust
(Ribeiro et al., 2016), accountability (Kroll et al.,
2016), and industrial liability (Kingston, 2018).

The most recent breakthrough, brought about by
LLMs such as the GPT models (Brown et al., 2020;
OpenAl, 2024). Thanks to their impressive per-
formance and ease of use, these models are being
applied to an ever-growing range of tasks, includ-
ing analytic AES. So far Banno et al. (2024), Nai-
smith et al. (2023), Yamashita (2024) and Sefler
et al. (2025) have obtained promising results with
GPT-4 (OpenAl, 2024) for analytic AES. LLMs
are now widely used as evaluators to approximate
human judgements, which are otherwise very ex-
pensive to obtain (Gu et al., 2024). The “LLM-as-
a-Judge” paradigm (Zheng et al., 2023) has enor-
mous potential for AES where data is so scarce.
For instance, Xiao et al. (2025) found that LLM-
generated feedback and confidence scores could



be used to enhance the efficiency and robustness
of grading. The capability of LLMs to generate
natural language explanations opens up a lot of
possibilities for the field of explainability (Zhao
et al., 2024). At the same time, these capabilities
raise new challenges, such as hallucinated expla-
nations (incorrect or baseless), along with their in-
herent opaqueness (Singh et al., 2024), and output
variability (Xia et al., 2024).

Finally, the multi-task learning (MTL) paradigm
seems to be getting a lot of attention in AES. This
approach “improves learning for one task by us-
ing the information contained in the training sig-
nals of other related tasks” (Caruana, 1997, Chap-
ter 1). It first appears in the work of Ridley et al.
(2021) whose Cross-prompt Trait Scorer (CTS) is
frequently used as a baseline on the ASAP++ cor-
pus which builds on top of the Prompt Agnostic
Essay Scorer (PAES; Ridley et al., 2020). Since
then, all sorts of MTL analytic AES systems have
been developed. Xue et al. (2021) fine-tuned BERT
on the multi-dimensional ASAP++ dataset using
a shared BERT layer and trait-specific heads. Ku-
mar et al. (2022) proposed a system whose primary
task is holistic scoring, but leveraged information
from analytic sub-scale scores to improve its over-
all performance using MTL. See also the works of
Ramesh and Sanampudi (2022); Lee et al. (2023);
Chen and Li (2023); Doi et al. (2024); Cho et al.
(2024); Ding et al. (2024).

We note that MTL is also one of the architec-
tures we plan to explore (Section 4.2), though to
the best of our knowledge, it has never been applied
to raw essay scores. In fact, not one of the studies
mentioned above used raw analytic scores in lieu
of the aggregated gold standard scores. This re-
flects a missed opportunity: treating rater disagree-
ment as “noise” rather than signal fails to capture
the full richness and variability of human judge-
ment, which is precisely the kind of information
that could enhance the transparency and reliability
of AES systems in real-world settings. Thus, to the
best of our knowledge, this area is yet unexplored.

4 Research Plan

We frame the following three research questions:

RQO: Can we identify common patterns
between essays that have high (or
low) examiner disagreement, both
within and across analytic traits?
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RQ1: How can examiner disagreements in
analytic essay scoring data be used
to measure and enhance confidence
and performance in AES systems?

RQ2: How can analytic AES serve as a

foundation for more effective auto-

mated essay feedback systems?

Through these, we hope to explore how we can
best harness rater disagreements in analytic essay
scoring data to improve the performance and confi-
dence in AES and feedback systems.

4.1 RQO: Preliminary Work

As mentioned in Section 3.1, there is a lack of re-
search into raw analytic essay scoring data. Yet
most, if not all, current AES systems are trained
on gold standard labels which are but a product of
raw scores (Davani et al., 2022). We first seek to
address this gap. Doing so will not only inform
the research questions presented above, but also
provide broader value to the field of AES by en-
hancing the interpretability of widely used datasets
and enabling more meaningful comparisons across
existing and future studies.

Dataset mapping. We have identified four ana-
lytic scoring datasets whose raw multi-marks have
been made available to us: namely ICNALE GRA,
ELLIPSE, ICLE++, and parts of the ASAP++ cor-
pus. These differ in terms of the types of essays
they contain (e.g., argumentative or creative), score
ranges (e.g., 1-5 or 0-10), number of raters per
essay (e.g., ranging from 2 to 80), prompts, and, of
course, traits assessed (Appendix A). Our first step
will be to map the traits of these different datasets
together, where possible. For example, compar-
ing how “organisation” is defined in the rubrics of
ICLE++ and ASAP++, and how it differs from “co-
hesion” which is perhaps more broadly defined in
ELLIPSE. Obviously, we will have to take into ac-
count the types of essays as well. So far, Li and Ng
(2024, Table 2) have mapped some of ICLE++’s
traits to those of the ASAP++ dataset, for argumen-
tative essays only, which is a small subset of the
ASAP++ dataset. It is not our aim to oversimplify
the problem or forcibly merge these datasets, but
rather to offer a clearer understanding of how the
different rubrics and annotations align or diverge.
By doing so, we hope to improve the reusability
of these datasets, laying the groundwork for more
consistent cross-dataset comparisons in the field.



Qualitative analysis. Having done so, we shall
be better positioned to conduct a cross-dataset anal-
ysis of rater behaviour and scoring patterns, and
will next seek to answer RQO which we break down
into two sub-questions:

P1: What are the common patterns between the
essays that have high examiner disagreement,
both within and across analytic traits?

P2: Conversely, for essays that have high agree-
ment, what are the particular features that
make an essay prototypically good or bad?

To answer these questions, we will perform an in-
depth content analysis (Mayring, 2014) of the four
previously mentioned datasets. The goal of this
phase is to systematically code and categorise pat-
terns of rater agreement and disagreement across
traits. Coding will begin deductively using a set of
pre-defined categories informed by the rubrics of
the datasets themselves (e.g., organisation, gram-
mar, relevance to prompt) and prior studies on rater
effects (e.g., halo, severity/leniency; Myford and
Wolfe, 2003). Inductive coding will follow, allow-
ing new categories to emerge from the data where
rating patterns deviate from rubric norms or where
disagreements appear to cluster. These codes will
be applied at both the trait level (e.g., is there con-
sistent divergence in “cohesion” scores?) and the
essay level (e.g., do specific essays elicit unusually
wide score variance across traits?).

We will follow this with a thematic analysis
(Braun and Clarke, 2021) on a carefully curated
subset of essays selected based on results from the
content analysis. Specifically, we will include:

* Essays exhibiting extreme marker disagree-
ment (e.g., with scores ranging across the full
scale);

* Essays that display high cross-trait disagree-
ment (e.g., rated very highly in grammar but
poorly in coherence by the same rater); and

* Essays that exemplify strong consensus, serv-
ing as contrast cases for identifying stereotyp-
ically good or bad writing.

Selection will aim for balance across datasets,
genres, and prompts. These essays will be analysed
in depth to explore possible linguistic, structural, or
stylistic features that may account for disagreement
or consensus. Themes may include ambiguity in
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argument structure, unconventional grammar use,
cultural variation in rhetorical style, or misalign-
ment with rubric expectations.

Both content and thematic analyses will be com-
pleted on ATLAS.ti, a robust and well-established
qualitative data analysis software package (Paulus,
2023), which will support efficient coding, memo-
ing, and cross-case comparison.

Research questions P1 and P2 are conceptually
linked: by examining essays that provoke high dis-
agreement (P1), we gain insight into the limitations
or ambiguities of existing rubrics and linguistic
features that challenge human raters. Conversely,
analysing essays with high agreement (P2) helps
surface the features raters appear to consistently
associate with poor- or good-quality writing.

4.2 Towards RQ1

Using the insights of the preliminary phase, we pro-
pose a new AES system that learns from individual
raters instead of the gold standard labels.

Dataset. Despite our previous efforts to map the
dataset traits together (Dataset mapping), we do
not wish nor expect to use these datasets simultane-
ously. Doing so would require too many assump-
tions and restrict comparison with prior work. As
we turn to training and evaluating a new analytic
AES system, we must thus choose a dataset. Out
of the four previously considered, ASAP++ is by
far the largest with 12,980 essays, and has also
been widely used in holistic AES research (Section
A.2). Unfortunately, it is not well-suited to our
purposes: not all essays have been multi-marked,
and both the traits assessed and score ranges vary
depending on the essay prompts. Instead, we will
use the second-largest dataset, the ELLIPSE cor-
pus, with 6,482 essays. All of its essays have been
marked by two or three raters on a 1-5 scale using
the same analytic rubric (Section A.4). Further,
since this dataset was released as part of a Kaggle
competition?, the dataset comes with an established
test—train split (3,911 essays in the training set and
2,571 essays in the test set). For lack of an existing
set, we will use 10% of the training set for valida-
tion, aiming for balance across prompts, scores and
demographics.

Baseline. As baseline, we propose to use the pre-
trained DeBERTa model (He et al., 2021), a state-
of-the-art neural language model, which has been

* See https://www.kaggle.com/competitions/feedback-
prize-english-language-learning/data.
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used in past AES research with success (for exam-
ple: Hicke et al., 2023; Wang, 2024; Zhong, 2024,
Huang et al., 2024). Appendix B presents how we
selected this particular model. Specifically, we will
fine-tune six individual DeBERTa models (one for
each of the traits assessed in the ELLIPSE corpus)
for regression on the gold standard labels only. Ap-
pendix C describes in detail the methodology we
plan to use for these experiments.’

Modelling. Drawing from the work by Davani
et al. (2022), and for each of the six analytic traits
in ELLIPSE, we will consider three different multi-
annotator AES architectures which can mimic the
multi-marking setting, namely ensemble, multi-
label, and multi-task. We point out that some of
these architectures have already been used in an-
alytic AES in the past with success (Section 3).
However, unlike prior work and our baseline, we
will be training them on the raw, multi-marked es-
say scoring data as opposed to the gold standard
labels. See Figure 2 for a schematic overview of
this experimental design. Note that all variations
will be built on top of the pre-trained language
model DeBERTa.

Performance. We will then compare, for each
trait, the three architectures to the baseline using
the evaluation metrics defined in Appendix C.3.
Specifically, model performance will be measured
using the RMSE metric (Tyagi et al., 2022). Not
only is it a well understood and widely used metric
in ML (Karunasingha, 2022), Yannakoudakis and
Cummins (2015) argues that measures of agree-
ment (such as RMSE) are more appropriate than
correlation metrics for measuring the effectiveness
of AES systems. Beyond our baseline, we will also
compare the performance of our systems against
the leader-board of the dataset’s Kaggle competi-
tion*, and the few studies that have used ELLIPSE
(e.g., Sun and Wang, 2024).

Confidence. The main novelty these models
bring to AES is that we will be able to use their
raw outputs to estimate how confident we should
be in using an aggregate of the outputs together.
Indeed, suppose we approximate each model head,
or individual raw output as being a single rater’s
judgement. If all the outputs of our model agree,
then much like when human raters agree, we should

> All experiments presented in this proposal have been and
will be conducted using shared high-performance computing
resources which include three NVIDIA A100 GPUs.

24

be highly confident that aggregating the raw scores
together accurately conveys the quality of the essay
for the considered analytic trait. If, however, the
model outputs disagree, then perhaps aggregating
the scores is not the best course of action.

Davani et al. (2022) propose to use the variance
between the different raw model outputs as a mea-
sure of uncertainty. We describe below how to
convert that into a confidence score C, with a value
between 0 and 1 (as was used in Figure 1). Given
that the maximal variance between three values in
the 1-5 score range of ELLIPSE is 02, ~ 3.6
(rounded to 1 decimal place), achieved for outputs
(1,5,5) or (1,1,5), in no particular order. Then,
given any set of three raw model outputs repre-
sented as a three-dimensional vector x € [1, 5]3,
the confidence score associated to that prediction
is given by:

0-12113,)(

To validate this metric, we will measure the ex-
tent to which it correlates with the true rater dis-
agreement, using the original raw rater scores, on
the test set. We can further assess the reliability of
the metric by segmenting the test samples based on
the predicted confidence scores and measure the
correlation between these scores and model perfor-
mance as was done by Xiao et al. (2025). We will
also explore other confidence/uncertainty metrics
such as using the prediction probability from a soft-
max distribution of the final output (Hendrycks and
Gimpel, 2018) or Monte Carlo dropouts (Gal and
Ghahramani, 2016).

4.3 Towards RQ2

Having built a series of multi-annotator AES sys-
tems for a range of essay traits, we turn our atten-
tion to the area of essay feedback: How can ana-
lytic AES serve as a foundation for more effective
automated essay feedback systems?

We envision that the raw model outputs across
multiple traits can form a kind of feedback profile
for each essay, which may be mapped to specific
linguistic features. Insights from our preliminary
analysis (RQ0) may help identify textual charac-
teristics that consistently trigger high or low rater
disagreement. Simply highlighting these features
to learners may already provide useful formative
feedback, but they could also augment existing
feedback systems by offering more nuanced, trait-
specific insights. Specifically, we can explore how
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Figure 2: Schematic overview of the multi-annotator AES models (ensemble, multi-label, and MTL) and baseline
we plan to build for each analytic trait in ELLIPSE. Adapted from Davani et al. (2022, Figure 1).

LLMs can be used to translate raw trait scores
and disagreement-informed insights into natural
language explanations. These explanations could
help bridge the gap between system output and
learner interpretation, supporting feedback that is
not only data-driven but also accessible and peda-
gogically meaningful. However, careful prompting
and validation would be needed to ensure reliability
and mitigate risks such as hallucinated feedback or
overgeneralisation (Singh et al., 2024; Zhao et al.,
2024).

Evaluating the effectiveness of this kind of ap-
proach to feedback will ideally require engagement
with actual users: teachers and students. To that
end, we will design a small-scale, controlled user
study, time and resources permitting. In particu-
lar, we may draw from Wilson and Roscoe (2020)
who measured the effectiveness of their approach
through a series of metrics: writing self-efficacy,
holistic writing quality, performance on a state En-
glish language arts test, and teachers’ perceptions
of the AES system’s social validity. Particular atten-
tion would be given to how disagreement-informed
feedback compares with more conventional, rule-
based or gold-standard approaches.

We consider this a longer-term, exploratory ex-
tension of our project, recognising that user-facing
feedback is a complex and iterative design chal-
lenge. If direct user testing is not feasible within the
current project scope, we will instead rely on proxy
evaluations—such as alignment with rubric criteria,
interpretability assessments, or expert annotation
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studies—to ensure pedagogical relevance and prac-
tical utility. Ultimately, our goal is to contribute
to a learner-centred vision of AES that supports
teaching and learning in meaningful ways.

5 Summary

In this PhD proposal, we explored the idea that we
can advance analytic AES research by harnessing
examiner disagreements, rather than viewing them
as “noise” that should be quietened. We propose to
build a series of multi-annotator models to mimic
a multi-marker setting and output automated raw
scores. By placing the original raters of the training
data at the centre of our design, our solution will
not only help measure how confident we can be in
the model’s aggregated output, but also prove more
transparent than traditional approaches. And by
focusing on analytic scoring, we will be able to use
our suite of models to generate fine-grained feed-
back, offering more tailored and effective guidance
to learners. A key part of this work will require
conducting a systematic qualitative analysis of rater
disagreement in analytic essay scoring data. By im-
proving interpretability, surfacing uncertainty, and
enabling richer feedback, we hope to contribute to
the development of AES systems that are designed
for real-world classroom use.

We list below the expected outcomes of the pro-
posed thesis:

1. A set of guidelines and suggestions for re-
searchers working with the four multi-marked



analytic AES datasets explored during the pre-
liminary phase (Section 4.1).

2. A suite of multi-annotator models fine-tuned
on each trait of the ELLIPSE corpus, and a set

of baselines (Modelling in Section 4.2).

3. A novel approach to measuring model confi-
dence (Confidence in Section 4.2).

4. A system which can, given an essay, its an-
alytic scores and confidence score, generate
fine-grained natural language feedback (Sec-
tion 4.3).

Overall, we believe the project is feasible within
the timeframe of a PhD. The phased research plan
outlines the work will look to complete over the
next 18 months. Additionally, the recent release of
public multi-marked analytic AES datasets makes
this work both timely and well-grounded.

Limitations

The primary limitation of this study is the lack
of large, publicly-available multi-marked analytic
AES datasets. While our approach seeks to better
model rater variability and improve representation
in AES systems, most of the datasets we draw from
have been annotated by no more than two or three
raters per essay (see Appendix A). This relatively
shallow annotation may limit the extent to which
we can robustly capture and model inter-rater varia-
tion, particularly for traits that are inherently more
subjective or rubric-dependent. Importantly, we
note that this is not a limitation unique to this study,
but a broader challenge across AES.

A related constraint concerns language coverage.
All of the datasets used in this study are in English,
which was also our particular focus.! However, this
limits the immediate applicability of our findings
to English-language educational contexts. Future
work could extend this approach to other languages
as suitable multi-marked datasets become available.
Such extensions would be essential for ensuring
that AES advancements benefit a more diverse set
of learners and writing contexts.

Finally, although our use of qualitative meth-
ods (content and thematic analysis) enriches the
interpretability of findings, these approaches carry
inherent subjectivity. Researcher bias in coding
and theme development is a known limitation of
qualitative work. To mitigate this, we will use a
transparent and iterative coding process, triangulate
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findings where possible, and document decisions
clearly through ATLAS.ti.

Ethical Considerations

Fairness is a core ethical concern in educational as-
sessment, particularly when deploying automated
systems that may influence learner outcomes. AES
models risk amplifying existing biases in train-
ing data, especially if rater disagreement, socio-
cultural variation, or language proficiency differ-
ences are not adequately accounted for. Our work
aims to address this by modelling rater disagree-
ment directly, promoting transparency and inter-
pretability, and supporting more equitable scoring
practices in diverse educational contexts.
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A Analytic AES Datasets

Table 1 records the main public datasets of analyti-
cally scored essays. We compare them along seven
dimensions:

1. Essay Types: the types of essays present in
the corpus—argumentative (A), response to
reading (R), narrative or creative (N), com-

ment (C), suggestion (S) and letter (L);

Writers’ Information: the language and aca-
demic levels of the essay writers;

No. of Essays: the total number of essays
present in the corpus;

Analytic Traits: the linguistic dimensions
(different from holistic) on which the essays
have been graded;

No. of Raters: the number of individual raters
(i.e., awarded marks) per essay;

Multi-marks Available?: whether those raw
marks have been made publicly available
(Yes), as opposed to only the aggregate scores
(No); and

Score Ranges: the score range of the essays
for a given dimension.

A1l ICLE++

The International Corpus of Learner English
(ICLE) is a corpus of essays written by upper-
intermediate and advanced non-native English
learners. The first version of the corpus, released
in 2002, contained 2.5 million words produced by
learners from 11 L1s (Granger, 2003). The cor-
pus has since grown to 5.7 million words from 25
L1s (Granger et al., 2020). Concurrently, the Hu-
man Language Technology Research Institute in
the University of Texas at Dallas, USA, contributed
to the corpus by annotating subsets of it along sev-
eral traits (Persing et al., 2010; Persing and Ng,
2013, 2014, 2015; Ke and Ng, 2019).

This effort culminated in the release of the
ICLE++ dataset®, which includes the annotation
of 1,006 ICLE essays with both holistic scores and
ten analytic scores (see Table 1). For the precise
definitions of these traits, refer to Li and Ng (2024).
This particular sample of essays was chosen in

6 The annotations are available via

https://github.com/samlee946/ICLE-PlusPlus.
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response to 10 specific prompts, chosen to be well-
represented in multiple languages, to support as
much L1 diversity as possible. In this annotation,
each essay was graded by two different annotators,
and disagreements were resolved through open dis-
cussion. The raw multi-mark scores have recently
been released.

A.2 ASAP++

The Automated Student Assessment Prize (ASAP)
dataset was introduced as part of the “The Hewlett
Foundation: Automated Essay Scoring” Kaggle
competition in 20127 and has since been widely
used in AES research, both for prompt-specific
(Alikaniotis et al., 2016; Taghipour and Ng, 2016;
Dong and Zhang, 2016; Dong et al., 2017; Tay
et al., 2017) and cross-prompt (Phandi et al., 2015;
Cummins et al., 2016; Jin et al., 2018; Ridley et al.,
2020) tasks. The original dataset contains eight dif-
ferent essay sets, one for each of the eight prompts
considered, for a total of 12,980 essays written by
native English speaking children between grades 7
and 10.8 Marking guidelines and rubrics specific
to each prompt were provided, and all essays were
holistically marked by two (or three) independent
human raters. Additionally, the essays for Prompts
7 and 8 were analytically scored by two markers:
the multi-marks can be found in the original dataset.
Subsequently, Mathias and Bhattacharyya (2018)
provided single-marked analytic scores for the re-
maining six prompts to form the ASAP++ dataset.”

A3 CELA

The Chinese EFL Learners’ Argumentation
(CELA) dataset'? is a collection of 144 argumen-
tative essays written by undergraduate students
in non-English majors in China first introduced
by Xue et al. (2021). Participants were asked
to write a 300-word essay in response one sin-
gle prompt. Subsequently, two expert raters in-
dependently scored the essays both holistically and
along five analytic sub-scales (Grammar, Lexicon,
Global and Local Organisation, and Supporting
Ideas). The final dataset only records the average
score of the two rater scores for each essay trait,

" The original dataset and annotation guidelines can be
downloaded from https://www.kaggle.com/c/asap-aes/data.
8 According to the K-12 (from kindergarten to 12th grade)

curriculum (Richardi, 2022)
9

These can be downloaded from
https://lwsam.github.io/AS AP++/lrec2018.html.
10 The dataset is available at

https://github.com/gzutxy/CELA.
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Table 1: Comparison of known analytic AES corpora.

Corpora Essay Writers’ No. of Analytic Traits No. of Multi-marks | Score
es nformation ssays olistic aters vailable? anges
P Inf ti Essay (# Holistic) Rat Available? Rang
Prompt Adherence
Thesis Clarity
Argument Strength
Non-native; gfvgrlgfﬁz?lt 14
ICLE++ A undergraduate 1,006 & 2 Yes (half-point
Coherence )
students Cohesion increments)
Sentence Structure
Vocabulary
Technical Quality
Content/Ideas
Conventions
Organisation 253,10——647
US students; Prompt Adherence (prompt-
ASAP++ A,R,N ¢ 12,980 Language 1-3 Partly promp .
Grades 7-10 dependent;
Sentence Fluency integer
Word Choice &
Voice scales)
Style
. Grammar
Non-native; -
ndergraduate Lexicon 1-8 (integer
CELA A u . 144 Global Organisation 2 No
students in S scales)
. Local Organisation
China -
Supporting Ideas
Cohesion
Syntax -5
A, N, C, | Non-native; Vocabulary B .
ELLIPSE S'L Grades 8-12 6,482 Phraseology 2-3 Yes ghalf-pomt
Grammar increments)
Conventions
Intelligibility
Asian English Complexity
Accuracy
language 136
ICNALE learners f:luencyh ibilit 0-10
A omprenensibility 80 Yes (half-point
GRA Logicality increments)
Sophistication
. . Purposefulness
Native English 4 Willingness
Involvement

not the raw multi-marks.

A.4 ELLIPSE Corpus

The English Language Learner Insight, Proficiency
and Skills Evaluation (ELLIPSE) Corpus was re-
leased by the Vanderbilt University and the Learn-
ing Agency Lab'! in 2022 for the “Feedback Prize —
English Language Learning” Kaggle competition*
(Crossley et al., 2024). The full dataset contains
6,482 essays written by English language learners
between the 8th and 12th grade on 29 different
prompts as part of state-wide standardised writing
assessments in the 2018/19 and 2019/20 school
years in the US.!?

All essays were independently marked by a
minimum of two raters along six analytic dimen-

1" See https://www.the-learning-agency-lab.com.

2 The dataset can be downloaded
https://github.com/scrosseye/ELLIPSE-Corpus.

from
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sions, Cohesion, Syntax, Vocabulary, Phraseol-
ogy, Grammar, and Conventions which are defined
in Crossley et al. (2024, Table 1).13, as well as a
holistic score. All scores follow a 9-point Likert
scale and range from 1.0 to 5.0 with increments
of 0.5, where a maximal score in one of these di-
mensions signifies a native-like proficiency. Any
disagreement between raters was adjudicated in a
discussion between the two parties and both mean
and raw scores have been published. Finally, the
authors of the dataset conducted an MFRM analy-
sis for the raters and essays and found the scores to
be reliable (Crossley et al., 2024).

13 These were identified by teaching and research advisory
boards of experts in the fields of composition and ELL edu-
cation as the principal components of language acquisition
(Learning Agency Lab, 2023).
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Table 2: Best hyper-parameter settings for each of the different pre-trained models when fine-tuned on the CLC

FCE corpus.
Model No. of No. of | Batch Learning Weight
Parameters Epochs Size Rate Decay
microsoft/deberta-v3-base | 184M 7 8 4.02e-5 8.98e-2
roberta-base 125M 6 8 2.02e-5 6.20e-2
bert-base-cased 109M 7 16 4.16e-5 2.87e-2
bert-base-uncased 109M 7 8 4.47e-5 4.28e-2
distilbert-base-cased 65.8M 4 8 6.87e-5 6.26¢-2
distilbert-base-uncased 65.8M 6 16 3.32e-5 3.96e-2

A.5 ICNALE GRA

The Global Rating Archive (GRA) was devel-
oped as part of the International Corpus Network
of Asian Learners of English (ICNALE) corpus
(Ishikawa, 2020, 2023), a corpus of more than
15,000 essays written by Asian English language
learners (ELLs), monologues, and speeches. In
particular, GRA includes 140 essays written to one
single prompt on the topic of part-time jobs for col-
lege students. Of those essays, 136 were written by
Asian ELLs representing ten different regions, and
the remaining four were written by native English
speakers. Most uniquely, the essays were indepen-
dently marked by 80 human raters both holistically,
and analytically for 10 different essay traits. See
Ishikawa (2020, 2023) for a detailed description of
the corpus.

B Choosing DeBERTa

To motivate our choice of underlying baseline
model (Section 4.2), we considered six variants of
the pre-trained BERT model (Devlin et al., 2019),
which have been successfully applied to AES in the
past (Mayfield and Black, 2020; H. Beseiso, 2021;
Schmalz and Brutti, 2022). Each was then fine-
tuned on the seminal holistic AES dataset (Ke and
Ng, 2019): the CLC FCE corpus (Yannakoudakis
et al., 2011).1* This dataset is a collection of
2,469 short essays written by ELLs from around the
world who sat the Cambridge English for Speak-
ers of Other Languages (ESOL) First Certificate
in English examinations between 2000 and 2001.
Essays were marked by an examiner with a 0-5
band score using the rubric from the University of
Cambridge Local Examinations Syndicate (2001,
p-19). Following Yannakoudakis et al. (2011), we
mapped these scores to a 0-20 linear scale, ideal
for a regression task. Table 2 shows a summary of
the models we considered, their size (in number of

14 Note that at the time of running these experiments, the
new corrected version of this dataset had not been published.
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parameters), and the best hyper-parameter values
we obtained for each in the step-by-step method in
Appendix C.4.

Table 3 shows the average performance of the
different models for the best hyper-parameter set-
ting in Table 2 across the five random seeds. De-
BERTa (He et al., 2021) outperforms all of the
other models across all five of our evaluation met-
rics (Appendix C.3), obtaining a record low RMSE
score of 2.308 for the random seed 1002. However,
it is also the model that has the largest variance
across different random seeds for RMSE, accuracy,
precision and recall, which suggest that the model
is not the most robust to random-seed instability
(Madhyastha and Jain, 2019). Further, DeBERTa is
more heavy-weight than the other models (i.e., it is
larger in terms of number of parameters; Table 2),
and thus, takes more time to train. But despite these
limitations, we chose to use DeBERTa for the next
part of the experiments because it unambiguously
surpassed all the other candidates.

C Methodology

In this section, we describe the research methodol-
ogy we plan to use for running our ML experiments.
Note that this may be improved in the future. This
same methodology was used in the experiment de-
scribed in Appendix B.

C.1 Reproducibility

Ensuring the computational reproducibility of a
project is very important both to allow others to
build on the research and for its credibility: anyone
should be able to obtain the same results if they use
the exact data, models and code provided by the au-
thors (Donoho et al., 2009). When it comes to ML,
many model architectures and algorithms are by
nature non-deterministic (Reimers and Gurevych,
2017). To overcome this, it is standard practice to
set a random seed, making any subsequent “ran-
dom” number deterministic.



Table 3: Average performance of the different models on the CLC FCE test set using 0-20 scores as in Yannakoudakis
et al. (2011) across the five random seeds (rounded to 3 decimal places) for the best hyper-parameter setting in Table
2 (Avg.). The (+) rows show the difference between the average and the maximal value achieved for each metric
for a particular seed. The (—) rows include the difference between the average and the minimal values. Together
they show the variation of performance across the five seeds for a metric: the largest ranges are underlined for each
metric.

Model ‘ RMSE Pearson Spearman Acc. Prec. Rec. F1
microsoft/ Avg. | 2.705 0.690 0.680 0.152 0.134 0.135 0.115
deberta-v3- + 0.477 0.025 0.034 0.040 0.042 0.023 0.037
base — 0.397 0.022 0.021 0.030 0.041 0.017 0.027
roberta-base | Avg. | 2.927 0.252 0.257 0.137 0.009 0.069 0.017
+ 0.103 0.274 0.252 0.001 0.001 0.002 0.000
— 0.045 0.326 0.269 0.004 0.000 0.002 0.001
bert-base- Avg. | 2.959 -0.022 -0.048 0.137 0.014 0.071 0.022
cased + 0.076 0.351 0.364 0.007 0.010 0.004 0.010
— 0.068 0.171 0.242 0.004 0.005 0.004 0.006
bert-base- Avg. | 2.848 0.420 0.402 0.126 0.038 0.076 0.031
uncased + 0.151 0.110 0.153 0.015 0.033 0.023 0.018
- 0.094 0.227 0.250 0.026 0.028 0.013 0.014
distilbert- Avg. | 2.949 0.305 0.363 0.135 0.027 0.078 0.031
base-cased + 0.184 0.210 0.137 0.017 0.013 0.018 0.020
— 0.238 0.270 0.065 0.013 0.017 0.008 0.014
distilbert- Avg. | 3.953 0.183 0.098 0.122 0.009 0.069 0.015
base-uncased + 0.365 0.048 0.086 0.005 0.000 0.002 0.001
— 0.267 0.087 0.056 0.003 0.001 0.002 0.000

random. seed (SEED)

set_seed (SEED)

torch.manual_seed (SEED)
torch.cuda.manual_seed_all (SEED)
np.random.seed (SEED)
os.environ['PYTHONHASHSEED']=str (SEED)

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)

Figure 3: The code we use to set the random seed to the different Python packages needed in the experiments (top),
and some additional lines needed to achieve consistent results with the microsoft/deberta-v3-base model in
Appendix B.

We run the experiments with five different ran-  Chapter 8). We use the Bayesian hyper-parameter
domly chosen seeds'> for better comparability and  optimisation algorithm (Snoek et al., 2012) as im-
to ensure that the results we are seeing are not sub-  plemented by Comet ML!©, a search algorithm that
optimal. See Figure 3 for the code we use to ensure  is based on distributions and balances exploita-

the reproducibility of the results. tion/exploration to make decisions about which
hyper-parameter values to try next. This approach
C.2 Hyper-parameter Optimisation achieves optimal results with considerably fewer

trials. Figure 4 shows the configuration details that
we use (i.e., objective function, hyper-parameters
considered and value ranges).

The process of hyper-parameter optimisation con-
sists of finding the set of optimal hyper-parameters
(parameters whose values control the learning pro-
cess of an ML model; Goodfellow et al., 2016,

15 Specifically, the random seeds 1601, 2911, 1044, 1002, 16 See https://www.comet.com/docs/v2/guides/
and 2510 were used in the experiments of Appendix B. optimizer/configure-optimizer/ for more details.

37


https://www.comet.com/docs/v2/guides/optimizer/configure-optimizer/
https://www.comet.com/docs/v2/guides/optimizer/configure-optimizer/

{
"algorithm": "bayes",

"spec" : {
"maxCombo": 40,
"objective": "minimize",
"metric": "eval_rmse",

"minSampleSize": 100,

"retryLimit": 20,

"retryAssignLimit": 5,
1,

"parameters": {

"batch_size": {"type": "discrete", "values": [8, 16, 32]},

"learning rate": {"type": "double", "min": le-7,
"num_train_epochs": {"type": "integer", "min": 2,

"weight_decay": {"type": "double", "min": 0.0, "max":

s

"max": le-4},
"max" - 8} s

0.1}

Figure 4: Extract of the Comet ML Optimizer configuration file used in experiments.

C.3 Evaluation and Reporting

Within the field of AES, the evaluation of scoring
systems is traditionally carried out by comparing
a system’s predicted scores to the gold standard
labels for a held-out validation set of essays using
a series of metrics (Williamson et al., 2012; Yan-
nakoudakis and Cummins, 2015). Specifically, we
report:

1. the Root Mean Square Error (RMSE) (Will-
mott and Matsuura, 2005);

2. the correlation between the predicted and gold
standard scores with both the Pearson (Pear-
son, 1896) and Spearman Rank correlation
coefficients (Spearman, 1987);

3. as well as the main classification metrics (pre-
cision, recall, accuracy and F1-score; Hossin
and M.N, 2015) by rounding model predic-
tions to the closest grade class (e.g., ELLIPSE
uses a 1.0 to 5.0 scale with increments of 0.5;
Section A .4).

C.4 Step-by-step Method

Having introduced the individual components of
the experimental methodology, we now give below
the step-by-step process we use to train, evaluate
and test our models:

1. Start by running the Bayesian Hyper-
parameter Optimisation algorithm for each of
the five random seeds. Given a random seed:

(a) we wuse stratified data sampling
to randomly split the dataset of
essays into three parts using the
train_test_split() function of the
scikit-learn!” Python library using
a ratio of 70/15/15% for the training,
validation and test sets respectively to
limit sampling error;

(b) then at each step of the algorithm (the
total number of steps is given by the
maxCombo field in Figure 4 which we set
to 40), a different set of hyper-parameters
(Section C.2) is considered. With each,
a model is trained from scratch on the
training set, and then evaluated using the
RMSE on the validation set to inform
the next set of hyper-parameters the opti-
miser will try.

2. From step 1, retain the set of hyper-parameter
settings that achieved the best results on the
validation set in terms of the RMSE metric
across the five random seeds, and round the
learning rate and weight decay values to 3

17 For the documentation, see https://pypi.org/project/scikit-

learn/.
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significant figures.

3. Finally, re-run the experiments for all five
seeds with the setting obtained in step 2 and
report the maximum, minimum and average of
every evaluation metric mentioned in Section
C.3 across the five seeds on the test set.

Note that for the training and testing of mod-
els, we use the Trainer!® interface. By default,
Trainer implements the AdamW stochastic gradient
descent optimisation method, an Adam algorithm
(Kingma and Ba, 2017) with weight decay fix, as
introduced by Loshchilov and Hutter (2019). Us-
ing AdamW optimisation has become the standard,
and models trained with it generally yield better
results than those trained without (Loshchilov and
Hutter, 2019). Further, we use each model’s de-
fault regression training loss, which is typically
the Mean Squared Error (MSE), implemented with
the MSELoss () function from the PyTorch library'®
(Paszke et al., 2019). Finally, Trainer is set up such
that model weights are saved after each training
epoch and only the best model is loaded at the end
of training with regards to the RMSE metric.

'8 See https://huggingface.co/docs/transformers/main_classes/trainer
for a full documentation.

9 The library can be accessed from
https://pypi.org/project/torch/.
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