
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 213–221

July 28-29, 2025 ©2025 Association for Computational Linguistics

Voices of Dissent: A Multimodal Analysis of Protest Songs through Lyrics
and Audio

Utsav Shekhar
IIIT Hyderabad

utsav.shekhar@research.iiit.ac.in

Radhika Mamidi
IIIT Hyderabad

radhika.mamidi@iiit.ac.in

Abstract

Music has long served as a vehicle for political
expression, with protest songs playing a cen-
tral role in articulating dissent and mobilizing
collective action. Yet, despite their cultural sig-
nificance, the linguistic and acoustic signatures
that define protest music remain understudied.
We present a multimodal computational analy-
sis of protest and non-protest songs spanning
multiple decades. Using NLP and audio analy-
sis, we identify the linguistic and musical fea-
tures that differentiate protest songs. Instead
of focusing on classification performance, we
treat classification as a diagnostic tool to inves-
tigate these features and reveal broader patterns.
Protest songs are not just politically charged;
they are acoustically and linguistically dis-
tinct, and we quantify how.

1 Introduction
Protest songs have historically functioned as pow-
erful tools for voicing dissent, mobilizing commu-
nities, and challenging dominant narratives. From
anthems echoing through mass gatherings to quiet
songs of resistance passed down across generations,
protest music has consistently voiced the collective
conscience. As demonstrated during Kenya’s 2024
Gen Z-led protests, music holds a dualistic power
serving both as a cultural artefact and a potent po-
litical tool for resistance and unity (Kirui, 2025).

Protest songs often transform personal struggles
into shared narratives. During the U.S. Civil Rights
Movement, We Shall Overcome became a sym-
bol of unity and resilience (Conklin, 2014). In
South Africa, anti-apartheid songs voiced resis-
tance against systemic oppression (Drewett, 2003).
India’s anti-colonial movement used music to in-
still courage and national identity (Raha, 2018),
while anti-war songs during the Vietnam era ampli-
fied global dissent. More recently, Turkey’s Gezi
Park protests (Bianchi, 2018) and Burkina Faso’s
pop-driven civic critique (Ouedraogo, 2018) illus-

trate the enduring mobilizing power of music in
diverse political contexts.

While prior work has emphasized the cultural
and social impact of protest music, the linguis-
tic and acoustic features that distinguish protest
songs from non-protest ones remain largely under-
explored. Most existing studies focus on symbolic,
thematic, or historical dimensions, with limited
use of computational methods. One exception is
(Miller, 1997), who manually annotated protest
songs from 1963 to 1970 to analyze thematic pat-
terns and stylistic features. However, such manual
analyses limited in scope and scale fall short of
capturing the full range of linguistic and acoustic
markers that define protest music.

To address this gap, we present a multimodal
computational analysis of protest music. We com-
pile a dataset of protest songs from (Jiang and Jin,
2022), sourced via Wikidata, and pair it with a
matched set of non-protest songs selected using
GPT-4 inference (OpenAI, 2023), aligned by time
period and ensuring genre diversity. Identifying
what differentiates protest music from other forms
illuminates how dissent is encoded in both lan-
guage and sound, with implications for musicology,
political communication, and digital activism.

2 Our Contributions
This work presents a comprehensive computational
study of protest music through the following con-
tributions:

• A multimodal protest music dataset. We
curate a novel dataset of 446 protest and
370 non-protest songs spanning diverse gen-
res, languages and decades. Each song in-
cludes full lyrics, 30 second audio excerpts,
and source separated vocal/accompaniment
tracks. Protest songs are sourced from Wiki-
data (Jiang and Jin, 2022), while non-protest
songs are filtered via GPT inference (OpenAI,
2023).
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• Text-based classification. We use multi-
ple transformer-based embeddings for protest
song classification, including both music in-
formed and general purpose text architectures.
Our comparative analysis shows that protest
lyrics exhibit systematic and classifiable dif-
ferences from non-protest songs.

• Interpretable linguistic feature analysis.
We extract and analyze a diverse set of in-
terpretable linguistic features to isolate the di-
mensions that distinguish protest lyrics from
non-protest ones. Protest songs exhibit sig-
nificantly higher repetition, lexical diversity,
and sentiment polarity, among other stylistic
differences.

• Audio-based classification. We evaluate a
range of pretrained audio models both general-
purpose and music specific for protest classi-
fication directly from raw audio. Vocal seg-
ments consistently yield higher performance
than instrumental ones, underscoring the cen-
trality of vocal expression in protest music.

• Audio feature analysis. We extract and ana-
lyze a range of interpretable audio features
to investigate the auditory dimensions that
distinguish protest songs from non-protest
songs. Key features such as repetition, spec-
tral rolloff, energy fluctuations etc extracted
from librosa (McFee et al., 2015) library are
used for comparative analysis. Also, we
human-annotated perceptual audio features
and found protest songs to be generally faster,
more energetic, and less acoustic than non-
protest songs

Source Separation. We decompose audio
tracks into vocals and accompaniment to ana-
lyze whether protest signals are more strongly
embedded in the lyrics or the musical arrange-
ment. Each stem is classified independently
to assess its contribution to protest prediction.
Additionally, we conduct a controlled mixing
experiment, combining protest vocals with
non-protest accompaniment and vice versa,
to quantify the influence of vocal and instru-
mental components on protest music classifi-
cation.

3 Dataset

Our dataset consists of two primary categories:
protest songs and non-protest songs. The
protest songs were sourced from a list curated
by (Jiang and Jin, 2022), which was itself
compiled from Wikipedia and includes 459
tracks linked to various protest movements
across different decades and regions. For each
song in this collection, we obtained relevant
metadata, Spotify and Wikipedia links, and
retrieved lyrics using the Genius API1. Of
these, lyrics were successfully extracted for
458 tracks, with only one track missing due to
unavailability.

To construct a suitable non-protest compari-
son set, we curated a collection of 400 songs
spanning a wide range of musical genres from
roughly the same time periods as the protest
songs. GPT-4 (OpenAI, 2023) inference was
employed to ensure that these tracks were not
associated with any social or political move-
ments. Specifically, we used GPT’s search
functionality to identify popular songs from
diverse genres, carefully maintaining a bal-
anced distribution across both decades and
musical styles. It was then manually veri-
fied that the songs are well spread across time
and are not related to any protest. Through
the same lyrics extraction pipeline used for
protest songs, we successfully retrieved lyrics
for 370 of the non-protest tracks.

The genre distribution across the two cate-
gories reveals some notable contrasts. In
the protest set, pop (21.69%), rock (18.03%),
and disco (16.06%) were the most promi-
nent genres, followed by hip hop (14.93%),
country (9.58%), reggae (9.30%), blues
(5.35%), classical (2.54%), metal (2.25%),
and jazz (0.28%). In contrast, the non-
protest set was dominated by rock (27.91%)
and metal (17.79%), with country (12.88%),
hip hop (11.04%), pop (10.12%), reggae
(7.36%), disco (5.21%), blues (3.07%), clas-
sical (3.07%), and jazz (1.53%) following be-
hind. Genre labels for each song were derived
using a music classification model fine-tuned
on the GTZAN dataset.2

1(https://genius.com)
2https://huggingface.co/

hungphan111/music_genres_
classification-finetuned-gtzan-finetuned-gtzan
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Audio availability posed certain limitations.
For protest songs, we were able to locate pub-
licly accessible audio for 330 of the 459 tracks,
primarily through Spotify links. In the case
of non-protest songs, audio was available for
355 tracks. These were retrieved using the
Pytube library, which enabled us to extract au-
dio from publicly available YouTube uploads.
To ensure consistency in analysis, we used
30-second excerpts from each song. Since the
beginning of many YouTube videos contains
silence or low-volume intros, we extracted
segments from the 15 to 45-second mark to
capture audio-rich sections for more accurate
processing. We acknowledge that the choice
of non-protest songs can influence classifica-
tion difficulty. Future work could construct
more adversarial baselines (e.g., thematically
similar but apolitical songs) to further probe
the boundary between protest and non-protest
music

Song Type Initial Count Lyrics Audio
Protest 459 458 330
Non-Protest 400 370 355

Table 1: Dataset Summary

4 Methodology

4.1 Overview

We adopt a multimodal approach to character-
ize and classify protest music using both tex-
tual and audio representations. Our pipeline
involves (1)Using only the textual part of the
song (Lyrics) for analysis. (2) Using the audio
part of the song for analysis (both vocals and
accompaniment) (3) We also perform source
separation to isolate vocals and accompani-
ment for analysis and 4) conduct human an-
notation to validate high-level musical differ-
ences. The annotated features such as repeti-
tion, ornamentation and melodic disjunctness
were selected based on prior qualitative analy-
sis by (Miller, 1997).

4.2 Linguistic Analysis

Our goal in this section is to investigate
whether protest intent is reflected in the stylis-
tic and structural properties of lyrics. To this

end, we employ both deep contextual embed-
dings and interpretable linguistic features to
identify the textual markers that differentiate
protest songs from non-protest ones.

Embeddings. We encode each song’s lyrics
using several pretrained transformer models,
including RoBERTa (Liu et al., 2019), XLM-
RoBERTa (Conneau et al., 2020), DistilBERT
(Sanh et al., 2020), and Veucci’s Bert based
lyrics-to-genre model3. RoBERTa, XLM-
RoBERTa, and DistilBERT are language-
driven models trained on general textual cor-
pora, capturing syntactic and semantic proper-
ties. In contrast, Veucci’s model is fine-tuned
on genre-labeled lyrics and is more sensitive
to musicality-related patterns. These models
convert lyrics into fixed-size embeddings via
mean pooling over the final-layer token repre-
sentations. To accommodate lyrics exceeding
the models’ 512-token context window, we
apply a sliding window approach with 50%
overlap. Embeddings from each chunk are
averaged to produce a single vector per song.

Rather than fine-tuning transformer models
which risks overfitting on our limited dataset
we use frozen embeddings as input features.
These are evaluated using a range of classi-
fiers: (1) Statistical models such as Logis-
tic regression (Cox, 1958) , support vector
machines (SVM) (Cortes and Vapnik, 1995),
random forests for interpretability, and (2)
lightweight neural models with trainable fi-
nal layers, including a linear layer and a shal-
low multilayer perceptron (MLP) have been
used. This setup enables a balanced compar-
ison of language- and audio-based features
across model complexity and generalization.

We employed an 80:20 train-test split to evalu-
ate model performance. Additionally, we used
k-fold cross-validation on the training set to
enhance the robustness of our results and mit-
igate variance due to data partitioning. The
final performance metrics reported are aver-
aged F1 (Van Rijsbergen, 1979) metric scores
computed across the folds, providing a more
reliable estimate of the model’s generalization
capability.

3https://huggingface.co/Veucci/lyric-to-genre
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Linguistic Features. In addition to deep em-
beddings, we extract a set of interpretable lin-
guistic features designed to capture stylistic
and structural properties of the lyrics. These
include sentiment score, average line length,
rhyme density, lexical density, the number of
figurative expressions (such as metaphors and
similes), unique word ratio, and repetition
metrics such as unigram and bigram repeti-
tion. All features are normalized and used to
train traditional classifiers, including logistic
regression and ensemble-based models.

4.3 Audio Analysis

Deep Audio Representations. We extract
fixed-size embeddings using pretrained audio
models Contrastive Language-Audio Pretrain-
ing (CLAP) by (Elizalde et al., 2022), Hid-
den Unit BERT (HuBERT) by (Hsu et al.,
2021), and Wave2Vec by (Baevski et al., 2020)
without fine-tuning. CLAP captures joint
language-musical cues, HuBERT focuses
on speech-related features, and Wave2Vec,
trained on raw audio, provides deeper speech
representations. These embeddings serve as
inputs to classifiers such as Support Vector
Machines (SVM), Random Forest, and Mul-
tilayer Perceptrons (MLP), allowing for ef-
fective comparison between musicality and
speech-driven representations. To ensure
a fair and consistent evaluation, we adopt
an 80:20 train-test split, stratified to main-
tain class balance across both sets. Within
the training set, we perform k-fold cross-
validation to account for variance in model
performance due to data partitioning. Final
results are reported as the average F1 score
across folds on the held-out test set, providing
a robust measure of classification effective-
ness.

Audio Feature Extraction. We extract low-
level audio features using Librosa (McFee
et al., 2015) spectral flux, shimmer, and
MFCCs which capture fine-grained aspects
of timbre, dynamics, and texture. These audio
features are used to train a logistic regression
classifier, following the same setup as for lin-
guistic features.

Human Annotation. To complement our
computational analysis, we conducted human

annotation on a subset of protest and non-
protest songs (20 songs from each set were
chosen for annotation) . Annotators rated mu-
sical attributes such as repetition, ornamenta-
tion, vocal roughness, melodic contour, and
emotional delivery. These attributes were se-
lected based on a qualitative framework from
(Miller, 1997). The annotations were used to
validate the directionality and salience of ob-
served differences between the two categories.
About 50 annotators participated in the exper-
iment. Annotators were mostly from 20-25
age group and were students with mostly no
formal musical training.

Source Separation. We use Spleeter, an
deep learning based source separation tool
developed by Deezer, to decompose each au-
dio track into two stems: vocals and accom-
paniment (which includes instruments and
background music). This separation enables
a more fine-grained analysis of whether the
protest signal is embedded more strongly in
the lyrical delivery or in musical arrangement.
For each stem, we extract CLAP and HuBERT
embeddings and classify them independently
to assess their contribution to protest predic-
tion. Beyond individual stem analysis, we
conduct a controlled mixing experiment: we
combine the vocal tracks of protest songs with
the accompaniment of non-protest songs and
vice versa. This allows us to quantify which
component vocal or instrumental carries more
predictive weight in classification. We mea-
sure the percentage of mixed tracks classified
as protest or non-protest, providing empirical
insight into how each part contributes to the
perception and modeling of protest music.

5 Results and Discussion

5.1 Text-based Results

Among the language models evaluated, XLM-
RoBERTa achieved the highest performance
with an F1-score of 91.10%, significantly out-
performing both RoBERTa (82.66%) and Dis-
tilBERT (82.47%). Veucci’s lyrics-to-genre
model performed reasonably well with an F1-
score of 80.82%, but still lagged behind the
textual models including smaller ones , sug-
gesting that linguistic features, rather than
domain-specific lyric or musical cues, play
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Model Model Size Accuracy Precision Recall F1 Score
XLM-
RoBERTa

270M 89.37% 89.26% 93.01% 91.10%

RoBERTa 125M 81.61% 83.41% 83.72% 82.66%
DistilBERT 66M 80.57% 84.52% 83.32% 82.47%
Ensemble – 80.16% 82.04% 84.31% 81.64%
Veucci 110M 81.47% 84.97% 83.38% 80.82%
Logistic Regres-
sion

– 76.97% 75.24% 86.81% 80.61%

Table 2: Performance Comparison of Textual Models

a central role in distinguishing protest songs.
To further explore this hypothesis, we trained
logistic regression and ensemble models us-
ing only the extracted linguistic features. The
linguistic features(along with p values (Fisher,
1925) used were: Average Line Length (p-
value = 1.23 × 10−8), Rhyme Density (p-
value = 0.3928), Lexical Density (p-value
= 3.13 × 10−4), Sentiment Score (p-value
= 4.26 × 10−8), Unique Words (p-value =
7.76 × 10−4), One-gram Repetition Rate (p-
value = 4.06× 10−16), Two-gram Repetition
Rate (p-value = 4.21 × 10−19), Three-gram
Repetition Rate (p-value = 1.08× 10−18) as
shown in figure 1. Figure 1 illustrates clear

Figure 1: Comparison of linguistic features

linguistic distinctions between the two classes,
particularly in n-gram repetition, sentiment
scores, and lexical diversity—each signifi-
cantly higher in protest songs. These mod-
els also outperformed Veucci, providing ad-
ditional support for our claim. The results
are displayed in Table 2. The statistical mod-
els were also trained and evaluated using the
80:20 split. This further strengthens our claim
that in the textual dimension linguistic fea-

tures are more significant than music specific
lyrical features in distinguishing protest and
non protest songs.

5.2 Audio-based Results

We evaluated three large-scale pretrained au-
dio models CLAP, HuBERT, and Wav2Vec2
by extracting frozen embeddings and training
lightweight classifiers on top of them. As
shown in Table 3, CLAP significantly out-
performed HuBERT and Wav2Vec2, achiev-
ing an F1-score of 90.62%. While CLAP
is marginally larger in size, its superior per-
formance is meaningful. Unlike HuBERT
and Wav2Vec2, which are primarily trained
on speech data, CLAP is trained to capture
joint language-audio representations with a
strong emphasis on music. It is thus more
attuned to musical attributes such as tim-
bre, rhythm, and expressive style. These re-
sults indicate that in the audio domain, mu-
sic specific features not general acoustic or
speech based cues play a more critical role
in distinguishing protest songs from non-
protest ones. In addition, we trained a lo-
gistic regression model on musical features
extracted via Librosa, which achieved an F1-
score of 86.45%. The Audio features used
were spectral_flatness (9.30 × 10−25),
spectral_flux (1.28×10−21), mfcc (7.73×
10−17), rms (1.39 × 10−16), repetition
(1.60× 10−8), spectral_contrast (1.70×
10−6) etc as shown in figure 2.

Despite its simplicity, this model outper-
formed both HuBERT and Wav2Vec2, rein-
forcing the insight that musically grounded
features can outperform large models trained
on general-purpose or speech-centric audio
data. This further reinforces that in the audio
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Figure 2: Comparison of audio features

domain, music-specific features are more ef-
fective than general-purpose or speech-based
features in distinguishing between protest and
non-protest songs.

5.3 Effect of Source Separation on Model
Performance

As shown in Table 4, both CLAP and Hu-
BERT achieved higher F1-scores for vocals
(0.7470 and 0.6921, respectively) than for ac-
companiment (0.7273 and 0.6239). However,
when evaluating mixed protest/non-protest
tracks, both models attributed more protest
content to the accompaniment. CLAP de-
tected protest in 33.13% of accompaniment
segments, compared to just 6.13% in vocals,
while HuBERT flagged 65.64% of accompa-
niment and 42.33% of vocals. Despite Hu-
BERT’s overall higher protest detection rates,
CLAP showed a smaller difference between
vocal and accompaniment F1-scores (0.7470
vs. 0.7273), suggesting it relies more evenly
on musical features. In contrast, HuBERT’s
higher protest detection in accompaniment
could be due to its reliance on speech-like
features, which may not generalize well to

musical components. These results suggest
that models may misattribute protest signals
to accompaniment due to biases in how they
interpret musical features, rather than reflect-
ing a true distribution of protest cues between
vocals and instrumentation.

5.4 Modality Comparison and Insights

Text-based models generally outperformed
audio-based models in our dataset, particu-
larly with larger pretrained transformers like
XLM-R. However, the performance gap was
not large: the best audio model (CLAP) was
within 2–3% F1 of XLM-RoBERTa. This sug-
gests that acoustic qualities such as vocal de-
livery, energy, and repetition are also strong in-
dicators of protest intent. The competitive per-
formance of interpretable linguistic features
and statistical classifiers further supports the
hypothesis that protest songs possess stylized,
expressive cues that are detectable both textu-
ally and sonically.

5.5 Human Annotation Results

Nine musical and expressive features were an-
notated across protest and non-protest songs.
Each feature was rated on a 5-point scale. The
annotated features included perceived speed
(tempo or pacing), energy (overall intensity,
volume, and emotional charge), and dance-
ability (rhythmic quality conducive to move-
ment). We also evaluated acousticness, re-
flecting the degree of natural or acoustic in-
strumentation versus electronic sounds, and
three dimensions of instrumentation: the com-
plexity and presence of backing instruments,
the prominence and clarity of melody, and
the emphasis on lyrics in the mix. Additional
features included ornamentation, referring to
expressive musical flourishes such as trills,
glides, and vibrato, and disjunctness, which
measures melodic smoothness versus the pres-
ence of jumps or wide intervals. The results
are summarized in Table 5, showing mean rat-
ings for protest and non-protest songs, their
differences, and the statistical significance (p-
values) based on independent t-tests. The
inter-annotator agreement test was conducted,
we used cohen kappa (Cohen, 1960) for ana-
lyis, for all annotated musical features, and the
results were as follows: Speed (Cohen’s k =
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Model Size Accuracy Precision Recall F1-Score
CLAP 438M 0.9130 0.9355 0.8788 0.9062
HuBERT (Large) 317M 0.7938 0.7586 0.8327 0.7938
Wav2Vec2 (Large, 960h) 317M 0.6934 0.7000 0.6364 0.6666
Logistic Regression – 0.8629 0.8655 0.8636 0.8645

Table 3: Performance of audio-based.

Model Audio Type Accuracy Precision Recall F1 Score
HuBERT Accompaniment 0.6985 0.7727 0.5231 0.6239
HuBERT Vocal 0.7280 0.7321 0.6312 0.6921
CLAP Accompaniment 0.7574 0.7857 0.6769 0.7273
CLAP Vocal 0.7794 0.7600 0.7350 0.7470

Protest Component after mixing CLAP (% Protest) HuBERT (% Protest)
Vocals 6.13% 42.33%
Accompaniment 33.13% 65.64%

Table 4: Performance and protest detection rates of CLAP and HuBERT on source-separated audio.

0.58), Energy (Cohen’s k = 0.54), Danceabil-
ity (Cohen’s k = 0.30), Acousticness (Cohen’s
k = 0.35), Disjunctness; melodic smoothness
vs. jumps (Cohen’s k = 0.30), Ornamenta-
tion; presence of extra musical effects (Co-
hen’s k = 0.08), and Instrumentation Contri-
bution: Melody (Cohen’s k = 0.24), Lyrics
(Cohen’s k = 0.18), Instruments (Cohen’s k =
0.28). These values indicate moderate agree-
ment for Speed, Energy, Acousticness, and In-
strumentation; Instruments, with fair to slight
agreement for the rest. Since annotators did
not have formal music training, lower consis-
tency is understandable for more complex or
technical features.

6 Conclusion

Our results reveal that protest music is primar-
ily distinguished by general linguistic features
rather than domain specific lyric or musical el-
ements. Textually, the key differentiators are
broad linguistic markers such as sentiment,
lexical diversity, and n-gram repetition rate.
These features suggest that protest songs rely
on general linguistic cues that convey a sense
of urgency, rebellion, or defiance, rather than
on specific thematic or genre bound choices.
In the audio domain, protest songs are more
effectively characterized by music specific
features. Notably, models trained on inter-
pretable, genre agnostic features such as spec-
tral flux and repetition from the Librosa library

still achieved high scores. This reinforces
that the observed patterns are not merely ar-
tifacts of genre. Through source separation
and human evaluation, we observe that vo-
cals play a more prominent role than accom-
paniment in distinguishing protest from non-
protest songs. This aligns with the emotional
intensity and rawness often associated with
protest music. Yet, interestingly, our intermix-
ing experiments reveal that accompaniment,
while seemingly secondary, contributes more
significantly than anticipated in shaping the
perception of protest. The combination of in-
strumental and vocal elements particularly in
how they interact appears to be a crucial factor
in determining whether a song is perceived as
protest music. Taken together, these findings
suggest that protest music conveys its message
through a multimodal approach: linguistically,
by leveraging general textual signals that com-
municate the song’s intent, and musically, by
employing expressive and structurally distinct
audio features. The interplay between these
two domains text and music forms a holistic
signature that makes protest music uniquely
identifiable across both verbal and musical
planes.

7 Future Work

This work lays the groundwork for under-
standing protest music as a multimodal vehi-
cle of cultural resistance, aiming to explore its
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Feature Protest (Avg) Non-Protest (Avg) Difference p-value
Speed 3.97 2.17 1.80 7.74× 10−44

Energy 4.16 2.38 1.78 2.71× 10−41

Danceability 3.36 2.17 1.19 4.84× 10−13

Acousticness 2.03 3.40 -1.37 1.59× 10−19

contribution of Instruments 4.07 3.16 0.91 1.13× 10−9

contribution of Melody 2.72 3.61 -0.89 5.69× 10−8

contribution of Lyrics 3.11 3.40 -0.29 0.107
Ornamentation (Musical Effects) 3.46 3.07 0.40 4.21× 10−4

Disjunctness (Melodic Jumps) 3.32 2.22 1.10 6.84× 10−14

Table 5: Human annotation results comparing protest and non-protest songs. Statistically significant differences
(p < 0.005) (Dunn, 1961) after Bonferroni are in bold.

role in global social change. Future research
can build upon this by expanding the dataset
to include non-Western protest traditions such
as Arabic shaabi and Korean minjung kayo,
while also incorporating temporal metadata to
facilitate diachronic and cross-cultural anal-
ysis. Although we aimed for genre balance
during dataset construction, genre remains a
potential confounding variable. Future stud-
ies should explicitly control for genre to en-
sure that observed distinctions are attributable
to protest-related features rather than genre-
specific conventions. On the modeling front,
joint lyric-audio models with cross-modal at-
tention offer a promising direction, particu-
larly when fine-tuned on protest-specific cor-
pora to better capture rhetorical nuance. Addi-
tionally, the growing influence of digital plat-
forms warrants an investigation into how so-
cial media alters the creation, dissemination,
and perception of protest music. Finally, in-
corporating human-centered evaluation such
as listener surveys and focus groups will offer
deeper insights into how protest intent is per-
ceived by diverse audiences and can inform
the design of more socially aware classifica-
tion systems. To improve annotation consis-
tency for complex musical features, future
work may also consider involving trained mu-
sicians in the annotation process.

8 Ethical Considerations

All data used in this study, including song
lyrics and audio excerpts, were obtained from
publicly accessible, licensed platforms such
as Spotify and YouTube, and analyzed strictly
for academic research purposes under fair use

provisions. The human annotation study was
conducted with voluntary participants who
were fully informed about the study’s goals
and procedures; no personal or identifiable
information was collected. Throughout this
project, we have remained attentive to issues
of cultural sensitivity, particularly given the
politically charged and historically grounded
nature of protest music. Every effort was
made to contextualize songs respectfully and
accurately, avoiding reductive interpretations
or cultural appropriation. Our goal is to am-
plify, not oversimplify, the expressive and po-
litical power of protest music across traditions
and geographies.
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