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Abstract

This study proposes a novel, scalable, non-
invasive and channel-independent approach
for early dementia detection, particularly
Alzheimer’s Disease (AD), by representing
Electroencephalography (EEG) microstates as
symbolic, language-like sequences. These
representations are processed via text embed-
ding and time-series deep learning models
for classification. Developed on EEG data
from 1001 participants across multiple coun-
tries, the proposed method achieves a high
accuracy of 94.31% for AD detection. By
eliminating the need for fixed EEG configura-
tions and costly/invasive modalities, the intro-
duced approach improves generalisability and
enables cost-effective deployment without re-
quiring separate Al models or specific devices.
It facilitates scalable and accessible dementia
screening, supporting timely interventions and
enhancing AD detection in resource-limited
communities.

1 Introduction

Dementia is recognised as the seventh leading
cause of mortality globally and plays a ma-
jor role in increasing disability and dependence
among older adults (World Health Organization,
2023). Among the various forms of demen-
tia, Alzheimer’s Disease (AD) is the most preva-
lent, accounting for approximately 60% to 80%
of all cases (The Alzheimer’s Association, 2023;
Nguyen, 2024; Nguyen et al., 2024; Tran et al.,
2024a), with a higher incidence observed in indi-
viduals aged 65 and above. AD is characterised
by progressive cognitive deterioration, memory
impairment, and neuronal loss, ultimately result-
ing in brain atrophy and tissue damage (van der
Flier et al., 2023). Because no definitive cure cur-
rently exists (The Alzheimer’s Association, 2023),
detecting the disease at an early stage is critical
for decelerating its progression and enhancing in-
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dividuals’ Quality of Life (QoL) through appro-
priate interventions and supportive care (Dubois
et al., 2016; S et al., 2019).

The development of Artificial Intelligence (Al),
including Machine Learning (ML) and Deep
Learning (DL), has advanced significantly in early
AD detection. Nevertheless, many of these tech-
niques rely on costly modalities, such as Magnetic
Resonance Imaging (MRI) and Positron Emis-
sion Tomography (PET) (Dong et al., 2024; Ou
et al., 2024; Altay et al., 2021; Rallabandi and
Seetharaman, 2023), which are typically not vi-
able in resource-limited communities. They also
depend on invasive biomarkers such as Cere-
brospinal Fluid (CSF) (Gogishvili and others.,
2023; Nguyen and Duong-Trung, 2025), which
can cause pain, reduce willingness to undergo test-
ing, and limit their adoption. Therefore, Elec-
troencephalogram (EEG) presents a non-invasive
and more affordable option, making it more suit-
able for resource-constrained populations (Ade-
bisi et al., 2024; Klepl et al., 2023; Lassi et al.,
2023; Sharma et al., 2025; Nguyen, 2025a; Tran
et al., 2024b; Zhou et al., 2025). In particular,
EEG microstates' has emerged as a promising ap-
proach for AD detection, demonstrating notable
performance over traditional EEG-based features
(Smailovic et al., 2019; Yang et al., 2024).

However, conventional AI models for EEG-
based decision-making systems typically require
a fixed number of input channels, necessitating
the development of separate models for each EEG
channel configuration. This constraint poses a sig-
nificant barrier to the practical and cost-effective

'EEG microstates are quasi-stable periods of electrical
topography across the scalp, most commonly derived from
clustering EEG signals at peaks in Global Field Power (GFP).
These transient states, typically lasting 80-120 milliseconds,
represent the building blocks of spontaneous brain activ-
ity and provide insight into the temporal organisation of
large-scale neural dynamics (Haydock et al., 2025; Nguyen,
2025b).
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deployment of EEG-based Al systems for AD de-
tection, particularly in resource-limited settings.
In most clinical environments, EEG devices are
expected to function in various medical applica-
tions, making it neither practical nor efficient to
dedicate a specific system solely to AD detection
or develop bespoke Al models for each device
across different premises. Developing and main-
taining multiple models for varying channel con-
figurations imposes substantial resource demands,
increases development and maintenance costs, and
undermines the generalisability of these systems
in real-world and clinical contexts. Therefore,
developing Al models compatible with executing
EEG data across varying channel configurations
for AD detection is paramount, enhancing scala-
bility, facilitating broader adoption, and improving
clinical applicability to better support individuals
in need.

Recently, text embedding models” have signif-
icantly advanced, transforming natural language
inputs into semantically informative vector repre-
sentations. This has enhanced performance across
various Natural Language Processing (NLP) tasks,
such as text classification and information re-
trieval (Kalidindi et al., 2024; Darrin et al., 2024,
Enevoldsen et al., 2024). Notably, EEG signals
also contain semantic representations with pat-
terns that reflect meaningful cognitive states, be-
yond their electrical nature (Wang et al., 2024a;
Mohammadi Foumani et al., 2024a; Feng et al.,
2023; Wang and Ji, 2022). Hence, leveraging text
embedding models to convert EEG microstates
into standardised vector representations offers a
promising new way to capture and analyse under-
lying cognitive patterns, enabling consistent rep-
resentation across diverse EEG configurations.

This study utilises a dataset of 1001 partic-
ipants from multiple countries and achieves an
accuracy of 0.9431 using an advanced text em-
bedding model (Darrin et al., 2024; Enevoldsen
et al., 2024), text-embedding-3-small (Abdullahi
etal., 2024), and a deep learning time-series model
(Mohammadi Foumani et al., 2024b), Recurrent
Neural Network (RNN) (Zucchet and Orvieto,
2024). This approach enables the development of
an adaptive, high-performing Al model that gen-
eralises across heterogeneous EEG datasets. By
removing the dependency on a fixed number of

’Text embeddings are numerical representations of lan-
guage that capture its semantic information (Wang et al.,
2024b).

EEG channels, the framework eliminates the need
for separate configuration-specific models, reduc-
ing financial and computational cost and clini-
cal deployment complexity. In summary, this re-
search addresses the following Research Ques-
tions (RQs):

* RQ1: Is it feasible to leverage text embed-
ding models to capture meaningful and dis-
tinguishable representations from EEG data
for AD detection?

* RQ2: How can text embedding models be
utilised to standardise/generalise EEG mi-
crostates across varying channel configura-
tions, allowing for an adaptive Al model ap-
plicable to multiple EEG channel setups in
AD detection?

* RQ3: To what extent do the vector represen-
tations of Normal Control (NC) and AD cases
reveal meaningful and statistically significant
distinctions?

2 Related Work

Many studies have explored Al-based approaches
for AD detection using EEG data, incorporating
various ML and DL techniques across different
channel configurations and sample sizes. This sec-
tion summarises prominent contributions in the lit-
erature. One study proposed LCOWFBs-6 with 16
channels, reaching 0.9860 accuracy using 11 NC
and 12 AD participants (Puri et al., 2023). Simi-
larly, another investigation applied a k-NN classi-
fier to 19-channel EEG data, reporting 0.9000 ac-
curacy on a balanced dataset of 20 NC and 20 AD
cases (Yifan et al., 2019). A CNN-based model
was developed using 128 channels and achieved
0.7945 accuracy with 29 NC and 36 AD partici-
pants (Stefanou et al., 2025). The DEL model was
presented using 19 channels, obtaining 0.9790 ac-
curacy with 36 NC and 104 AD participants (Nour
et al., 2024). Likewise, the DICE-Net approach
utilised 19 channels to attain 0.8328 accuracy on
29 NC and 36 AD samples (Miltiadous et al.,
2023a). A graph neural network (GNN) method
achieved 0.9200 accuracy using 128-channel EEG
from 20 NC and 20 AD subjects (Klepl et al.,
2022), while a Gaussian Naive Bayes (GNB) clas-
sifier applied to 128-channel EEG reached 0.8100
accuracy with 19 NC and 36 AD participants (Si
et al., 2023).
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Figure 1: Proposed method of utilising Electroencephalogram (EEG) microstates with text embedding model and
time-series deep learning for Alzheimer’s Disease (AD) detection. NC: Normal Control, RNN: Recurrent Neural

Network.

Additionally, the DSL-GN hybrid model used
23 EEG channels and reached 0.9400 accuracy on
20 NC and 20 AD participants (Cao et al., 2024).
Another work introduced LEADNet with 16 chan-
nels, reporting the highest accuracy of 0.9924 on
a small dataset of 11 NC and 12 AD (Puri, 2024).
An LSTM-based approach using 16-channel EEG
achieved 0.9790 accuracy with 15 NC and 20 AD
samples (Alessandrini et al., 2022). A comparative
study applying k-NN and 19 channels reported
0.9300 accuracy on a dataset of 29 NC and 36 AD
(Lal et al., 2024). Lastly, a CNN-based method
with 19 channels achieved 0.9860 accuracy with
11 NC and 15 AD participants (Sen et al., 2023).

Despite promising results, three key research
limitations exist in the current literature. First,
most existing work is trained and validated on
a single private dataset with a fixed EEG chan-
nel configuration, which restricts their ability
to generalise across different EEG devices and
clinical settings.  Second, the limited sam-
ple sizes—often comprising tens of participants
per group—undermine the generalisability of the
models. Finally, the emphasis on achieving high
predictive accuracy often overlooks the impor-
tance of thorough error analysis and the interpre-
tation of group-level patterns. These analyses are
essential for enhancing the transparency of Al sys-
tems, fostering user trust, and enabling more reli-
able systems.

3 Developed Approach

3.1 Background
3.1.1 Primer of EEG Microstates

The EEG microstate technique models brain sig-
nals as a sequence of discrete, non-overlapping to-
pographic maps (Haydock et al., 2025), which are
aligned with the original EEG data using spatial
correlation methods (Tarailis et al., 2024). These
signals are viewed as sequences of topograph-
ical patterns (Khanna et al., 2014). EEG mi-
crostates have been proven to effectively detect
various neurological diseases due to their infor-
mative representations, such as AD (Lassi et al.,
2023; Smailovic et al., 2019), Parkinson’s disease,
Mild Cognitive Impairment (MCI) (Chunguang
et al., 2022), and epilepsy (SA et al., 2024).

The microstate extraction procedure was per-
formed using the Global Field Power (GFP)
method (Thomas et al., 2011). GFP is initially cal-
culated at each time point:

GFP(t (D

\/ Zz 1 UZ ’U( ) )2

where v;(t) represents the voltage recorded at
electrode 7, v(t) is the average voltage across all
electrodes at time ¢, and n is the total number
of electrodes. EEG scalp maps corresponding to
GFP peaks—points of highest signal-to-noise ratio
(SNR)—are selected and clustered using a mod-
ified k-means algorithm (Pascual-Marqui et al.,
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1995). The Global Map Dissimilarity (GMD)
(Pascual-Marqui et al., 1995) is used to quantify
the similarity between two topographic maps and
is computed as:

1 - U; (% 2
GMDuw =\ ; <GFPU B GFPU> @

As we can see in Figure 1, this study em-
ploys four standard microstates—A, B, C, and
D—widely recognised in resting-state EEG liter-
ature for representing core functional networks:
auditory, visual, salience, and attention (Armen
et al., 2022). An additional category, microstate
E, includes all scalp patterns that do not conform
to the above four (Férat et al., 2022).

3.1.2 Text Embedding Models for EEG

Recent advances in pre-trained models originally
developed for NLP have opened new avenues for
their application to non-text modalities, particu-
larly time-series data (Zhang et al., 2024). For ex-
ample, the AutoTimes framework was introduced
to leverage pre-trained architectures for autore-
gressive forecasting by encoding time series into a
token-based embedding space and generating fu-
ture values sequentially (Liu et al., 2024). One
study explored the use of Large Language Mod-
els (LLMs) in mental health domains, focusing
on the classification of depression and emotional
states (Hu et al., 2024). Another investigation
demonstrated the effectiveness of LLMs in han-
dling forecasting tasks involving multivariate time
series data (Tan et al., 2024). In a different ap-
proach, text embedding models were employed to
encode time series data, which were subsequently
used as input to classification models across multi-
ple temporal tasks (Kaur et al., 2024). Especially,
EEG signals have been shown to contain seman-
tic representations in various tasks (Wang et al.,
2024a; Mohammadi Foumani et al., 2024a; Feng
et al., 2023; Wang and Ji, 2022).

According to these foundations, leveraging text
embedding models to process EEG microstates
data for AD detection can be a relevant approach
as it aligns naturally with both time-series dynam-
ics and symbolic representations of discrete states.
In this paper, we explore using pre-trained text
embedding models (Nguyen et al., 2025) to en-
code sequences of EEG microstates. By translat-
ing microstate dynamics into a structured token-

like format, our approach facilitates consistent
and scalable representation across heterogeneous
EEG configurations (Jin et al., 2024), which is
utilised as input for a time-series model (Moham-
madi Foumani et al., 2024b) to detect AD.

3.2 Proposed Method
As illustrated by Figure 1, let

M={A,B,C,D,E}

denote the finite set of EEG microstates. For a
subject’s EEG recording, the entire microstate se-
quence is represented as a function

m:{1,2,...,T} = M,

where T = 200 x 60 x 5 = 60000 is the total num-
ber of time points for a 5-minute recording sam-
pled at 200 Hz. This yields a symbolic sequence
of the form

x = [m(1),m(2),...,m(T)] € M.

Step 1: Temporal Segmentation (Chunking)

Define the segmentation operator

N
Sy M — [ M,
i=1
T' =T/N = 12000,
N =5.
For each chunk i € {1,...,5}, define the cor-
responding time interval

i ={(G - 1T +1,...,iT'},
and extract the chunk as
X; = X|z, € M

Step 2: Text Embedding Transformation

Let text-embedding—3-small® be a pre-
trained language embedding model adapted for
EEG microstate sequences. Define the embedding
function

. T’ d
(I)text—embedding—3—small M =R = dz = 128,

which maps each symbolic sequence x; (treated as
a character string) into a continuous vector space:
128
Z; = q’text—embedding-}small(Xi) e R,

3The best performing model in this research among others
(see Section 5).
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All embedded segments are concatenated into a

matrix
VAl

Z2

Z — c R5X128

Zs
Step 3: RNN-based Classifier

Let the RNN (Zucchet and Orvieto, 2024) be de-
fined as
fRNN . ]R5><128 - ]Rdh,

which aggregates temporal embeddings into a la-
tent representation:

h= fRNN(Z) S Rdh.

A dense layer fgense maps the RNN output to
logits s = fgense(h) € R2, from which class prob-
abilities over Y = {NC, AD} are computed. The
predicted class is

U = argmaxy(y).
Yclass g vey Y(y)

4 [Experiments

4.1 Datasets

This research includes eyes-closed resting-state
wet EEG data from 1001 participants, com-
prising 715 individuals classified as NC (mean
age 58.0248.91) and 286 as AD (mean age
74.84+8.25). Medical domain professionals clini-
cally assessed and labelled the participants in ten
countries. All EEG recordings were acquired by
trained technicians following a standardised ac-
quisition protocol, ensuring consistency in resting-
state conditions. More information about the in-
cluded datasets can be found in the Appendix in
Table 3.

To maintain consistency and ensure cross-
participant compatibility, all EEG data were re-
sampled to 200Hz—a frequency demonstrated to
be effective for AD detection in various studies
(Rezaee and Zhu, 2025; Gutiérrez-de Pablo et al.,
2024; Moguilner et al., 2024). For model train-
ing and evaluation, a fixed segment of 5 minutes
(300 seconds) was extracted from each partici-
pant. EEG preprocessing steps (Haydock et al.,
2025) included re-referencing to the average ref-
erence, band-pass filtering (1-40Hz), and artefact
removal using Independent Component Analysis
(ICA). These steps were proven to be essential for
microstate analysis in various studies (Haydock
et al., 2025).

4.2 Experimental Settings

The microstates are extracted using the Pycrostate
library (Férat et al., 2022). RNN was config-
ured with 32 units, followed by a dense output
layer with softmax activation for binary classifi-
cation (NC vs. AD). The model was trained us-
ing the Adam optimiser (o« = 0.001) and categor-
ical cross-entropy loss, for up to 300 epochs with
early stopping (patience = 30) and a batch size
of 32. We utilised OpenAl’s text-embedding-3-
small API* to generate fixed-dimensional embed-
dings from symbolic EEG microstate sequences,
enabling consistent input representations. A 5-
fold cross-validation was employed to compre-
hensively evaluate the model’s performance across
different data subsets. Evaluation metrics included
accuracy, Fl-score (Rainio et al., 2024), and the
Brier score (Ovadia et al., 2019), providing a thor-
ough assessment of both classification effective-
ness and confidence calibration—key indicators of
reliability in clinical Al applications.

5 Results

5.1 Model Results

Across all evaluated configurations, text-
embedding-3-small emerged as the best-
performing model, particularly when using an
embedding size of 32 and a chunk size of 12000.
Under this configuration, it achieved an accuracy
of 0.943140.0288, Fl-score of 0.90231+0.0379,
and a Brier score of 0.046440.0192, marking
the highest accurate classification and calibration
among all tested setups. These results indicate
that text-embedding-3-small is not only highly
effective in capturing discriminative patterns
from EEG microstate sequences but also benefits
substantially from longer input chunks while
maintaining compact embedding dimensionality.
Its stable and superior performance across both
evaluation settings makes it a strong candidate for
EEG-based AD detection tasks.

With embedding size fixed at 32 (see Ta-
ble 1, Figure 7a in the Appendix), increas-
ing the chunk size led to notable performance
improvements for text-embedding-3-small, ris-
ing from 0.8701+0.0483 accuracy at 3000 to
0.943140.0288 at 12000. This trend was
not universally observed across all models.
While some models like Solon-embeddings-

*https://platform.openai.com
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Figure 2: Feature distribution of Normal Control (NC) and Alzheimer’s Disease (AD) with raw absolute difference.

large-0.1 maintained relatively stable perfor-
mance across chunk sizes, others like granite-
embedding-278m-multilingual and bge-m3 expe-
rienced declining accuracy and F1 scores with
longer chunks. For instance, granite-embedding-
278m-multilingual dropped in accuracy from
0.7832+£0.0198 to 0.7343+£0.0376 as chunk size
increased. This highlights that while longer se-
quence contexts can enrich temporal patterns for
classification, model-specific architectural design
dictates the extent to which such information can
be effectively utilised.

At a fixed chunk size of 12000 (see Table 2, Fig-
ure 7b in the Appendix), smaller embedding sizes
generally resulted in better performance across
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models. text-embedding-3-small again led with an
accuracy of 0.943140.0288 at embedding size 32,
while its performance gradually decreased at 64
and 128 dimensions. For other models, the per-
formance drop was more noticeable; for example,
Solon-embeddings—large—0.1 saw a de-
crease in F1-score from 0.5721£0.0807 at size 32
to just 0.2879+0.3288 at size 128. These findings
suggest that lower-dimensional embeddings may
more effectively retain task-relevant signal repre-
sentations, potentially mitigating the risk of over-
fitting and reducing the propagation of irrelevant
noise often associated with high-dimensional la-
tent spaces, particularly in EEG microstates.

Compared to prior studies (see Table 4 in the
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Appendix), the proposed method offers greater
generalisability and reliability by supporting di-
verse EEG channel configurations (19/64/128
channels) and a significantly larger participant co-
hort, making it especially suitable for real-world
clinical applications.
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Figure 4: Confidence histograms of five folds with ac-
curately and inaccurately classified sample distribution.

5.2 Error Analysis

This section details the error analysis of the
best-performing model (text-embedding-3-small)
as presented in the previous section. The model
demonstrates consistent performance in classify-
ing AD and NC cases across all validation folds
(see Figure 5). True positive counts for AD range
from 45 to 56, while true negatives for NC remain
high at 124 to 146, indicating strong sensitivity
and specificity. Misclassifications are infrequent,

Fold 1 Fold 2
a a
2 56 5 2 50 4
[ [
I~ 2
= =
g 9 131 e 1 145
AD NC AD NC
Predicted Predicted
Fold 3 Fold 4
a a
2 47 5 2 56 13
[ [
I 2
= =
g 4 144 g 7 124
AD NC AD NC
Predicted Predicted
Fold 5
a
2 45 5
[
I~
=
g 4 146
AD NC
Predicted

Figure 5: Confusion matrices across all five folds.

with false positives ranging from 1 to 7 and false
negatives between 4 and 13, reflecting balanced
model behaviour. Notably, even in Fold 4—where
AD misclassification was highest—the model pre-
served a strong detection rate.

This stability is further proven by the model’s
confidence scores (see Figure 4 and Table 5
in the Appendix), which are a vital compo-
nent of a reliable Al model. Correctly clas-
sified NC cases consistently exhibit high confi-
dence (0.953-0.977), and AD cases follow closely
(0.882-0.955), though the latter suggests poten-
tial for improvement. Importantly, across all folds,
confidence scores for correctly predicted samples
are significantly higher than those for incorrect

192



Table 1: Results of text embedding models with embedding size 32 and different chunk sizes.

Text Embedding Model Chunk Accuracy 1 F11 Brier |

Solon-embeddings-large-0.1 3000 | 0.8042+0.0354 | 0.6264+0.1132 | 0.1299+0.0182
Solon-embeddings-large-0.1 6000 | 0.8002+0.0238 | 0.6248+0.0166 | 0.1308+0.0145
Solon-embeddings-large-0.1 12000 | 0.7912+0.0271 | 0.5721+0.0807 | 0.1409+0.0125
bge-m3 3000 | 0.8052+0.0128 | 0.6379+0.0627 | 0.1422+0.0058
bge-m3 6000 | 0.778240.0356 | 0.5052+0.1040 | 0.1550+0.0255
bge-m3 12000 | 0.77524+0.0171 | 0.5038+0.0863 | 0.1598+0.0106
granite-embedding-278m-multilingual | 3000 | 0.7832+0.0198 | 0.57534+0.0619 | 0.1478+0.0104
granite-embedding-278m-multilingual | 6000 | 0.7612+0.0129 | 0.4463+0.1123 | 0.1632+0.0087
granite-embedding-278m-multilingual | 12000 | 0.7343+0.0376 | 0.41224+0.1191 | 0.1685+0.0209
gte-multilingual-base 3000 | 0.8172+0.0344 | 0.6409+0.0631 | 0.132540.0241
gte-multilingual-base 6000 | 0.797240.0406 | 0.5448+0.1002 | 0.1397+0.0188
gte-multilingual-base 12000 | 0.7702+0.0339 | 0.5445+0.0602 | 0.1547+0.0131
multilingual-e5-large-instruct 3000 | 0.7673+0.0410 | 0.5532+0.0620 | 0.1505+0.0179
multilingual-e5-large-instruct 6000 | 0.788240.0268 | 0.5805+0.0558 | 0.1422+0.0201
multilingual-e5-large-instruct 12000 | 0.7772+0.0199 | 0.5350+0.0842 | 0.145540.0080
snowflake-arctic-embed-1-v2.0 3000 | 0.8382+0.0390 | 0.7048+0.0325 | 0.1122+0.0225
snowflake-arctic-embed-1-v2.0 6000 | 0.8002+0.0277 | 0.6100£0.0517 | 0.1410+0.0166
snowflake-arctic-embed-1-v2.0 12000 | 0.7602+0.0310 | 0.3688+0.1957 | 0.159940.0134
text-embedding-3-small 3000 | 0.8701+£0.0483 | 0.7735+0.0432 | 0.092240.0249
text-embedding-3-small 6000 | 0.914140.0224 0.8490£0.0450  0.0595+0.0149
text-embedding-3-small 12000 | 0.9431+£0.0288  0.9023+0.0379  0.0464+0.0192

predictions (p < 0.001), with most misclassified Across five one-minute segments (see Figure

samples exhibiting scores below 0.80, allowing
the model to effectively signal its uncertainty and
support clinical decision-making. However, oc-
casional overconfidence in misclassified AD sam-
ples (e.g., 0.925 in Fold 2) and limited statistical
significance in error trends (only Fold 4 with p <
0.05) suggest the need for further improvement.
These issues likely stem from the class imbal-
ance—smaller AD sample sizes (50-69 per fold)
compared to NC (131-150), which may hinder
learning and affect confidence calibration. While
the imbalance between NC and AD samples, par-
ticularly the limited representation of AD cases,
likely contributes to variability in confidence cali-
bration, addressing this issue remains challenging
due to the time-intensive nature of collecting clin-
ically validated datasets. Nonetheless, the model’s
current performance demonstrates strong poten-
tial, and the observed trends highlight an impor-
tant area for future refinement through more bal-
anced data collection efforts.

5.3 Pattern Analysis

To investigate group-wise distinctions in embed-
ded representations generated by text-embedding-
3-small (see Figures 6 and 2), we conducted
Mann—-Whitney U tests across 32 embedding fea-
tures, segmented by five minutes and across dif-
ferent distance metrics. The statistical analysis
revealed that a substantial number of embedding
dimensions demonstrated significant distributional
differences between the NC and AD groups.

2 and Table 6 in the Appendix), features such
as 2, 3, 5-8, 10-11, 13-14, and 18-25 consis-
tently yielded p < 0.001, underscoring that these
are feasible to capture group-level divergence over
time. Features such as 1, 4, and 9 exhibited in-
consistent statistical significance across time win-
dows and distance metrics, suggesting that their
discriminative power can be highly dependent on
transient, non-systematic variations in the data,
such as inter-individual variability or momentary
signal fluctuations unrelated to disease status.

Distance-based comparisons using Euclidean,
Cosine, and Manhattan metrics further validated
the discriminative capacity of the embedding
space (see Figure 3 and Table 7). Of the
32 embedding features, over two-thirds (22 fea-
tures) demonstrated statistically significant differ-
ences (at least p < 0.05) between NC and AD
groups under two/three distance measures. A
subset of features (approximately 20% remained
consistently significant (p < 0.001) across all
three metrics, underscoring their ability as class-
discriminative markers in the latent space.

Further, Kruskal-Wallis tests conducted inde-
pendently within the NC and AD groups (see Ta-
ble 8) revealed that more than one-third of the em-
bedding features exhibited significant intra-group
distributional differences (p < 0.01). This obser-
vation suggests that these features not only capture
between-group separability but also reflect inter-
nal heterogeneity within each clinical cohort, po-
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Table 2: Results of text embedding models with chunk size 12000 and different embedding sizes.

Text Embedding Model Embedding Size Accuracy 1 F17 Brier |

Solon-embeddings-large-0.1 32 0.7912+0.0271 | 0.5721+0.0807 | 0.1409+0.0125
Solon-embeddings-large-0.1 64 0.7752+0.0367 | 0.5155+0.1429 | 0.1549+0.0202
Solon-embeddings-large-0.1 128 0.7552+0.0375 | 0.2879+0.3288 | 0.1710+0.0249
bge-m3 32 0.7752+0.0171 | 0.5038+0.0863 | 0.1598+0.0106
bge-m3 64 0.742240.0528 | 0.3500+0.2228 | 0.1781+0.0299
bge-m3 128 0.7233+0.0388 | 0.0917+0.2050 | 0.1940+0.0186
granite-embedding-278m-multilingual 32 0.7343+0.0376 | 0.4122+0.1191 | 0.1685+0.0209
granite-embedding-278m-multilingual 64 0.71534+0.0383 | 0.0182+0.0407 | 0.1946+0.0172
granite-embedding-278m-multilingual 128 0.7143+0.0388 | 0.0000+0.0000 | 0.2004+0.0158
gte-multilingual-base 32 0.77024+0.0339 | 0.5445+0.0602 | 0.1547+0.0131
gte-multilingual-base 64 0.7832+0.0361 | 0.4694+0.2695 | 0.1445+0.0225
gte-multilingual-base 128 0.7903+0.0691 | 0.4739+0.2813 | 0.1522+0.0500
multilingual-e5-large-instruct 32 0.77724+0.0199 | 0.5350+0.0842 | 0.1455-+0.0080
multilingual-e5-large-instruct 64 0.7393+0.0115 | 0.1812+0.2227 | 0.1793+0.0129
multilingual-e5-large-instruct 128 0.73924+0.0591 | 0.1410+0.3152 | 0.1816+0.0336
snowflake-arctic-embed-1-v2.0 32 0.7602+0.0310 | 0.3688+0.1957 | 0.1599+0.0134
snowflake-arctic-embed-1-v2.0 64 0.7992+0.0391 | 0.5507+0.1551 | 0.1337+0.0235
snowflake-arctic-embed-1-v2.0 128 0.7352+0.0525 | 0.1322+0.2956 | 0.1815+0.0273
text-embedding-3-small 32 0.9431+£0.0288  0.9023+0.0379 | 0.0464+0.0192
text-embedding-3-small 64 ©0.9291+0.0135  0.8701+0.0340 | 0.05580.0129
text-embedding-3-small ‘ 128 ‘ 0.8761+£0.0751 ‘ 0.7127+0.2493 | 0.0899-+0.0520

tentially encoding subtle variations in cognitive-
linguistic patterns or disease stage progression.

3D t-SNE

Figure 6: t-SNE of embedded vectors of Normal Con-
trol (NC) and Alzheimer’s Disease (AD).

6 Conclusion and Discussion

This study presents a high-performing and scal-
able approach for AD detection using EEG data.
Leveraging a large-scale dataset of 1001 partic-
ipants, the proposed method achieves an accu-
racy of 0.9431 and a well-calibrated Brier score
of 0.0464. The method is beneficial for broader
community use, as it leverages the affordability of
EEG and adapts to varying channel configurations,
enabling scalable and cost-effective deployment in
resource-limited settings for early AD detection.
For RQ1, we demonstrate that text embed-
ding models can effectively extract meaningful

and discriminative representations from EEG data.
The proposed method utilises EEG microstate
sequences as text-like symbolic inputs and ap-
plies a deep learning architecture with the text-
embedding-3-small model and RNN as key com-
ponents. Furthermore, in response to RQ2, this
approach enables standardisation across varying
EEG channel configurations by transforming het-
erogeneous microstate sequences into a unified
embedding space. This allows for the develop-
ment of an adaptive Al model having high perfor-
mance across different EEG setups, enhancing its
generalisability and clinical applicability.

For RQ3, statistical analyses revealed that over
two-thirds of the embedding features exhibited
significant differences (p < 0.05) between NC
and AD groups across multiple time segments and
distance metrics. Notably, a consistent subset of
features remained highly significant (p < 0.001),
indicating that the vector representations derived
from EEG microstates effectively capture mean-
ingful and discriminative patterns associated with
AD.

Future work will focus on addressing cur-
rent limitations by expanding evaluation across
larger and more diverse populations, assessing
fairness across demographic groups, improving
model explainability, and optimising performance
for shorter EEG recordings to support real-world
use. Additionally, efforts will be made to reduce
dependency on third-party APIs to enhance trans-
parency, reproducibility, and facilitate local de-
ployment.
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A Additional Dataset Information

Table 3 summarises the datasets used in this study,
comprising a total of 1001 individuals collected
from multiple countries: Republic of Korea (Kim
et al., 2023), Poland (Dzianok and Kublik, 2024),
Greece (Miltiadous et al., 2023b), Cuba (Valdes-
Sosa, 2021), Argentina, Chile, Colombia, Mexico,
and Peru (Pavel et al., 2023), and the USA (Kiess-
ner et al., 2023). All included datasets in this paper
are publicly available, and ethical approvals were
obtained by the respective original data providers
following proper regulations and institutional re-
view boards. All data were fully anonymised be-
fore public release, ensuring no personally iden-
tifiable information was accessible. The reuse of
these datasets complies with open science policies
and legal data-sharing frameworks. Furthermore,
no sensitive information was transmitted through
external APIs used for model inference, as only
preprocessed, anonymised features were utilised.

B Additional Model Results

Figure 7 illustrates the performance of the pro-
posed method across various text embedding mod-
els, embedding sizes, and chunk sizes. Table 4
summarises prominent existing studies on Al-
based EEG approaches for AD detection.
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Figure 7: Visualisation of results of text embedding models for Alzheimer’s Disease (AD) detection using EEG

microstates.

Table 3: Summary of included EEG datasets. NC:
Number of Normal Control individuals. AD: Number
of Alzheimer’s Disease individuals.

Dataset Channels | NC | AD
CAUEEG (Kim et al., 2023) 19 0 | 230
PEARL-Neuro (Dzianok and Kublik, 2024) 128 69 0
DS004504 (Miltiadous et al., 2023b) 19 29 | 29
CHBMP (Valdes-Sosa, 2021) 64 19 0
BrainLat (Pavel et al., 2023) 128 30 | 27
TUAB (Kiessner et al., 2023) 23 568 | 0

C Details of Pattern Analysis

As the best-performing model was achieved us-
ing embeddings from text-embedding-3-small, the
corresponding data with an embedding size of 32
was selected for all subsequent analyses. Figure 2
illustrates the feature distribution of NC and AD
groups based on raw absolute differences, while
Figure 3 presents the feature-wise distances be-
tween their embedded vector representations.

To evaluate the statistical significance of fea-
ture differences between NC and AD groups,

we employed two non-parametric tests (Ikegawa
et al., 2024): the Mann—Whitney U test and the
Kruskal-Wallis test. These tests were selected
because they do not assume normal distribution
of the data, an important consideration given the
complex and potentially non-Gaussian nature of
EEG-derived features. The Mann—Whitney U test
assesses whether the distributions of a single fea-
ture differ significantly between two independent
groups (NC vs. AD) without assuming normal-
ity. It was applied across each embedding fea-
ture and time segment, as well as across differ-
ent distance metrics, to detect fine-grained inter-
group differences (see Tables 6 and 7). In par-
allel, the Kruskal-Wallis test, a generalisation of
the Mann—Whitney test for comparing more than
two groups, was used to examine intra-group vari-
ability across the five one-minute EEG segments
within each class (NC and AD) (see Table 8).
These tests enabled robust identification of em-
bedding features that consistently exhibit statisti-
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Table 4: Performance comparison between the proposed method and prominent research on Al-based EEG ap-
proaches for Alzheimer’s Disease (AD) detection. NC: Normal Control.

Method Channel Participant (NC/AD) | Accuracy
Ours 19, 23, 64, 128 7157286 0.9431
MNet (Hata et al., 2023) 19 55/101 0.8170
LCOWFBs-6 (Puri et al., 2023) 16 11/12 0.9860
k-NN (Yifan et al., 2019) 19 20/20 0.9000
CNN (Stefanou et al., 2025) 128 291736 0.7945
DEL (Nour et al., 2024) 19 36/104 0.9790
DICE-Net (Miltiadous et al., 2023a) 19 29/36 0.8328
GNN (Klepl et al., 2022) 128 20/20 0.9200
GNB (Si et al., 2023) 128 19/36 0.8100
DSL-GN (Cao et al., 2024) 23 20/20 0.9400
LEADNet (Puri, 2024) 16 11/12 0.9924
LSTM (Alessandrini et al., 2022) 16 15720 0.9790
k-NN (Lal et al., 2024) 19 291736 0.9300
CNN (Sen et al., 2023) 19 11/15 0.9860

Table 5: Confidence summary by folds between Normal Control (NC) and Alzheimer’s Disease (AD) groups with
p-values of the Mann-Whitney U test. v': Accurately classified, X: Inaccurately classified.

Fold Total Sample | v Sample Confidence Score (v) Confidence Score (X)
NC AD NC | AD NC AD p-value NC AD p-value
1 140 61 131 | 56 | 0.957 £0.082 | 0.882 +0.122 | <0.001 | 0.759 £0.119 | 0.788 = 0.178 | 0.699
2 146 54 145 | 50 | 0.971 +0.080 | 0.938 +£0.095 | <0.001 | 0.743 £ 0.115 | 0.925 £ 0.063 | 0.400
3 148 52 144 | 47 | 0.977 £0.069 | 0.955 +0.080 | <0.001 | 0.796 £+ 0.196 | 0.814 = 0.136 | 0.904
4 131 69 124 | 56 | 0.953 +£0.095 | 0.916 £ 0.089 | <0.001 | 0.707 +0.121 | 0.832 £ 0.158 | <0.05
5 150 50 146 | 45 | 0.958 £0.096 | 0.898 &= 0.115 | <0.001 | 0.699 + 0.086 | 0.718 = 0.063 | 0.904

cally significant discriminative power, both across
groups and within temporal dynamics.
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Table 6: Results with p-values of Mann—Whitney U test by raw feature values and time step between Normal
Control (NC) and Alzheimer’s Disease (AD).

Embedding Feature | Minute 1 | Minute 2 | Minute 3 | Minute 4 | Minute 5 All
1 <0.05 0.233 <0.01 0.162 0.713 <0.001
2 <0.001 <0.001 <0.001 <0.001 0.809 <0.001
3 <0.01 <0.01 <0.001 <0.05 <0.001 <0.001

4 0.051 0.665 0.096 <0.05 <0.001 0.15
5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
6 <0.05 <0.001 <0.001 <0.001 <0.001 <0.001
7 <0.001 <0.01 <0.01 <0.05 <0.001 <0.001
8 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

9 0.450 0.732 0.063 0.374 0.213 0.97
10 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001
11 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
12 0.279 0.119 <0.05 0.150 <0.001 <0.01
13 <0.05 <0.001 <0.001 <0.01 <0.001 <0.001
14 <0.001 <0.01 <0.001 <0.01 <0.001 <0.001
15 <0.01 0.297 0.484 0.165 <0.001 <0.001
16 0.068 0.648 <0.05 0.654 <0.001 <0.001
17 0.140 0.649 0.058 0.765 <0.001 <0.001
18 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
19 0.740 0.108 <0.05 <0.01 <0.001 <0.001
20 <0.01 <0.01 <0.01 <0.001 <0.01 <0.001
21 <0.001 <0.001 <0.001 <0.01 <0.001 <0.001
22 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
23 <0.001 <0.01 <0.001 <0.001 <0.001 <0.001
24 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
25 <0.001 <0.05 <0.01 0.098 <0.001 <0.001
26 <0.001 0.506 0.080 0.691 <0.001 <0.001
27 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
28 0.192 0.104 <0.05 0.237 <0.001 <0.001
29 <0.01 <0.05 0.300 0.566 <0.001 <0.001
30 <0.001 <0.01 <0.001 <0.001 <0.001 <0.001
31 <0.05 0.849 0.995 0.078 <0.001 <0.05
32 0.225 <0.01 <0.001 0.051 <0.01 <0.01
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Table 7: Results with p-values of Mann—-Whitney Utest ~ Table 8: Results with p-values of Kruskal-Wallis by
by raw feature values with types of distance for each  raw feature values across all five minutes between Nor-
feature between Normal Control (NC) and Alzheimer’s ~ mal Control (NC) and Alzheimer’s Disease (AD).

Disease (AD).

Embedding Feature NC AD

Embedding Feature | Euclidean | Cosine | Manhattan 1 0.190 0.961
1 <0.001 0.39 <0.001 2 <0.001 | 0251
2 <0.001 0.71 <0.001 3 <0.001 | 0.150
3 <0.001 | <0.001 <0.001 4 <0.001 | 0.284
4 <0.05 0.83 <0.01 5 <0.001 | <0.01
5 0.38 <0.001 0.31 6 <0.001 | <001
6 <0.001 <0.01 <0.001 7 <0.001 <0.01
7 <0.01 <0.05 <0.05 8 0.265 <0.001
8 <0.001 <0.001 <0.001 9 0.332 0.051
9 <0.001 0.43 <0.001 10 <0.001 0.796
11 <0.001 0.05 <0.001 B 20,001 | <0001
12 <0.001 0.87 <0.001 3 <0001 | <0.001
13 <0.001 | <0.001 | <0.001 13 0117 | <0001
[ on Lo | o s cow om
16 <0001 | <0.001 | <0001 16 <0.001 | 0.266
e 062 007 0.80 17 <0.001 | <0.001
13 <005 | <0001 | <001 18 UL | B0
19 <0.001 | <0.001 | <0.001 19 <001 | 0248
20 <0001 | 0.12 <0.001 20 0.587 | <0.05
21 <0.001 | <0001 | <0.001 21 <0.05 | <0.001
2 <0.001 | <0.001 | <0.001 22 <0.001 | <0.05
23 <0.001 | <001 <0.001 23 <0.001 | <0.001
24 <0.001 <0.01 <0.001 24 <0.001 | 0.079
25 <0.001 | <0.001 <0.001 25 <0.001 | 0.319
26 0.25 <0.001 0.15 26 <0.001 | 0314
27 <0.05 <0.01 <0.01 27 <0.001 | <0.01
28 <0.001 0.62 <0.001 28 <0.001 | <0.01
29 <0.001 | <001 <0.001 29 <0.001 | <0.001
30 0.43 <0.05 0.36 30 0.188 | <0.001
31 <0.001 | <0.001 <0.001 31 <0.001 | <0.001
32 <0.001 0.29 <0.001 32 <0.001 | <0.001
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