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Abstract

Large Language Models (LLMs) face deploy-
ment challenges due to high computational
costs, and while Post-Training Quantization
(PTQ) offers a solution, existing rotation-based
methods struggle at very low bit-widths like
2-bit. We introduce a novel, training-free ap-
proach to construct an improved rotation ma-
trix, addressing the limitations of current meth-
ods. The key contributions include leverag-
ing the Walsh-Hadamard transform with se-
quency ordering, which clusters similar fre-
quency components to reduce quantization er-
ror compared to standard Hadamard matri-
ces, significantly improving performance. Fur-
thermore, we propose a Grouped Sequency-
arranged Rotation (GSR) using block-diagonal
matrices with smaller Walsh blocks, effectively
isolating outlier impacts and achieving per-
formance comparable to optimization-based
methods without requiring any training. Our
method demonstrates robust performance on
reasoning tasks and Perplexity (PPL) score on
WikiText-2. Our method also enhances results
even when applied over existing learned rota-
tion techniques.

1 Introduction

Large Language Models (LLMs), despite their
widespread success, face deployment challenges
due to high computational costs, particularly in
resource-constrained settings. Quantization, which
reduces the numerical precision of model parame-
ters, offers a viable solution by decreasing model
size and accelerating computation with minimal
accuracy loss. Post-Training Quantization (PTQ) is
especially attractive as it avoids costly retraining.
Within PTQ for LLMs, rotation-based meth-
ods like QuaRot (Ashkboos et al., 2024) are com-
mon but suffer severe performance degradation at
low bit-widths, such as 2-bit weight quantization
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(W2), exhibiting high Perplexity (PPL) of 20.29
on WikiText-2 (Merity et al., 2017). Subsequent
methods like SpinQuant (Liu et al., 2025) (PPL of
16.45) and OSTQuant (Hu et al., 2025) (PPL of
10.97) improve accuracy using learnable rotation
or scaling matrices, but require additional optimiza-
tion phases, diminishing the core benefit of PTQ.

To address this, we propose a novel, training-
free approach to construct an improved rotation
matrix for LLM quantization. Our method lever-
ages the Walsh matrix by rearranging the rows
of the Hadamard matrix so that the sequency is
sorted in ascending order. This clusters similar fre-
quency components, reducing intra-group variance
and quantization error compared to the standard
Hadamard matrix used in QuaRot, improving PPL
to 15.38.

Furthermore, inspired by local rotation tech-
niques (Lin et al., 2024; Xiang et al., 2025), we
introduce Grouped Sequency-arranged Rotation
(GSR). The GSR employs a block-diagonal ma-
trix with smaller Walsh matrices, effectively isolat-
ing outlier impacts within each quantization group.
This significantly enhances performance, achieving
a PPL of 11.59 and an average zero-shot tasks accu-
racy of 42.44% — comparable to optimization-based
methods without requiring training. Our approach
also improves when applied to existing learning-
based methods like SpinQuant and OSTQuant.

2 Preliminaries

2.1 Walsh-Hadamard Transform and
Sequency

A Hadamard matrix with a size of a non-negative
power of two is usually constructed by Sylvester’s
method as follows:

I ]1 1
HQ = ﬁ |:1 _1:| and H2’n == H2 X Hanl.
M
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R Grouped Sequency-
i arranged Rotation

Figure 1: Overall diagram of rotation scheme. We ap-
plied Grouped Sequency-arranged Rotation (GSR) on
Ry.

A Walsh matrix is derived by applying the bit-
reversal and the Gray-code permutation to the
Hadamard matrix (Tam and Goulet, 1972).
Sequency is the number of sign flips in a row
of such matrices. The Walsh matrix follows se-
quency ordering where the sign flips of each row
are arranged in ascending order. In contrast, the
Hadamard matrix is in natural ordering, where the
sequency value of the i-th row is defined as follows:

S(i) = bit_count(i & (i >> 1)). (2)

For instance, the rows of a Hadamard matrix of size
8have 0,7,3,4, 1, 6,2, and 5 sequency values.

Such matrices serve as a transform by them-
selves, and we call each row (or column) a se-
quency filter.

2.2 Rotation for LLM Quantization

Since a Hadamard matrix can be used as a rotation
matrix when scaled and has an efficient algorithm,
recent state-of-the-art methods make extensive use
of the Hadamard transform (Ashkboos et al., 2024,
Xiang et al., 2025; Lin et al., 2024; Liu et al., 2025;
Hu et al., 2025). We followed SpinQuant’s ter-
minology to describe our rotation scheme as Fig.
1. At Fig. 1, R; rotates all hidden activations
between transformer blocks, R» rotates the value
activation, R3 rotates the query and key activations
after RoPE, and R, rotates the input activation of
the down projection. Specifically for R;, a Ran-
domized Hadamard Transform (RHT) is employed
following the proposition in Quip# (Tseng et al.,
2024) for better incoherence processing. This way,
the outliers in the activation distribution are largely
suppressed, achieving deployable W4A4KV4! per-
formance on famous LLM models.

"'We notate x-bit weight, y-bit activation, z-bit KV-cache
into WxAyKVz like W4A4KV4.

3 Methodology

3.1 Grouped Sequency-arranged Rotation

We propose Grouped Sequency-arranged Rotation
(GSR), a training-free rotation technique to im-
prove post-training quantization of LLMs under ex-
treme quantization settings such as W2 and W2A4?2,
We denote the input and output channels of a
weight W € RC*H with C and H. G and N
denote the group size and the number of groups,
respectively, so that C' = NG.

As exhibited in Fig. 1, we design a signal
processing-inspired rotation matrix that can inde-
pendently be plugged into existing rotation-based
PTQ algorithms, as follows:

(Hyw 0 -0 - 0
0 Hwal 0 :
Resp=| o .. 0 = |®
: : 0 . 0
0 o 0 Hygl

, where H,, € {—1,1}9%% is a G x G Walsh
matrix, with G being the quantization group size,
and 0 is a G x G zero matrix.

The proposed Rgsr has several advantages over
the RHT and the SpinQuant matrices: First, like
QuaRot (Ashkboos et al., 2024), it can replace any
rotation matrix in existing PTQ methods without
training for virtually free, as the only additional
operation required is to pre-process a Sylvester-
constructed Hadamard matrix to a Walsh matrix
and apply the Kronecker product with an identity
matrix before going into quantization. Second, it
can systematically reduce weight quantization er-
ror by strategically arranging sequency filters with
similar yet diverse sequency values (Section 3.2).
Third, it can also serve as an enhanced initialization
for training-based methods such as SpinQuant (Liu
et al., 2025) and OSTQuant (Hu et al., 2025) (Sec-
tion 4).

3.2 The Effect of Sequency Arrangement on
Group Quantization

To justify our design, we investigate how the se-
quency ordering in our GSR can improve group
quantization on weights. As shown in Fig. 1, the
weights are rotated twice as follows:

W' = R;lVVRT, 4)

2Since 2-bit per-channel quantization can easily fail to
converge, we assume group quantization in all cases.
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where Ry and R, are rotation matrices applied to
the front and rear side of a weight W, respectively.
For query weight W, as an example, Ry = R; and
R, = I hold. We do not consider local rotation in
this section for brevity.

An (i, j) element of the rotated weight (W[4, j])
can be expressed as follows:

W'li, 5] = (Ry'W)[i, ], R [, ])
= ([(R7 i W 1D, (R iy W 20,

...,(R;l[i,:],W[:,HD} ,RT[:,j]>.
&)
An n-th row group in W' can be expressed as
W'[nG : (n+ 1)G,:], which leads to our observa-
tion #1 by simply substituting i to nG : (n + 1)G
in Eqn. 5.

Observation #1

Under group quantization, each column
group in the front rotation matrix [2; gener-
ates distinct rotated weight groups, and all
columns in the rear rotation matrix R, are
always applied to all rows in the original
weight.

In other words, a group in the rotated weight
W' is the original weight transformed by
the corresponding group of filters in the
front rotation matrix and then by all filters
in the rear rotation matrix.

\

Comparing Hadamard and Walsh Now, we
relate the sequency arrangement to group quan-
tization performance. For R,, the arrangement
has no impact as long as the set of sequency val-
ues is equal, which is the case with comparing the
Hadamard and Walsh matrices. Therefore, we fo-
cus on IZy. The Walsh matrix (with the sequency
ordering) has smaller sequency variance within
each column group than the Hadamard matrix be-
cause the sequency values increase linearly. Since
sequency is analogous to frequency in the conven-
tional frequency-domain filtering, the Walsh matrix
will produce rotated weight groups with fewer mas-
sive outliers. As shown in Table 1, Ry works as R
on many different types of transformer weights in-
cluding Wy, Wy, W, Wy, and Wyge, changing
R; from Hadamard to Walsh helps reduce the quan-
tization error for these weights.

Comparing RHT and Walsh The randomiza-
tion method in Quip# (Tseng et al., 2024) and

Weight Wq Wi W, W, Wup Wgate Waown

Ry R R R Ry R R’ Ry
R, I 1 Ry Ry 1 I Ry

Table 1: Rotation matrix configuration on each weight
type in LLaMA-like transformer architecture. I is the
identity matrix.

QuaRot (Ashkboos et al., 2024) only flips the signs
of diagonal elements in a Hadamard matrix. This
process keeps the overall sequency arrangement
with no significant changes. Therefore, we can
compare the RHT against the Walsh following the
same logic as in the previous section.

3.3 Global vs. Local Rotation
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(a) Global rotation applies a full-matrix transformation across
all dimensions and spreads outlier effects widely.
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(b) Local rotation applies block-diagonal transformations
within groups and confines outlier effects within each block.
For illustration purposes, three blocks are depicted, while the
actual number of blocks is given by N = C/G.

Figure 2: Overview of global and local rotation strate-
gies. Global rotation transforms the entire space and
amplifies outlier effects and local rotation advances con-
trol over outliers within blocks to improve quantization
robustness.

Local rotation (using block-diagonal matrices) is
generally more effective than global rotation (using
a single large matrix) (Lin et al., 2024; Xiang et al.,
2025; Xiang and Zhang, 2024). Global rotation can
struggle to effectively handle outliers, whether in
activations or weights, as it spreads their impact to
the whole input channel. Local rotation, however,
confines the effects of such outliers within their
specific block or group as in Fig. 2 (b). When
used with the Walsh matrix, this containment helps
better reduce errors, which is also beneficial for
low-bit weight quantization.
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Method  Bits R PPL' Oshot' | Method  Bits R, PPL' Oshot' | Method  Bits R PPL' O-shot'
WI16A16 547 6981 | WI16A16 547 6981 | WI16A16 547 6521

QuaRot W2A16 GH 2029 3206 |SpinQuant W2A16 GH 1645 31.04 |OSTQuant W2A16 GH 1097 4552
GW 1538 39.30 GW 1644 34.52 GW 951 4683

LH 1211 4101 LH 13.17 39.84 LH 9.16 49.84

GSR 1159 42.44 GSR 1204 4211 GSR 9.03 50.51

QuaRot W2A4 GH 3133 2787 |SpinQuant W2A4 GH 2294 3177 | OSTQuant W2A4 GH 1616 38.18
GW 2034 3375 GW 1886 32.05 GW 14.68 40.67

LH 1774 36588 LH 1579 3457 LH 1244 43.69

GSR 1523 37.89 GSR 1547 3475 GSR 1177 44.56

Table 2: Comparison of the perplexity score on WikiText-2 and the averaged accuracy on zero-shot common-
sense reasoning tasks. This experiment presents a comparative analysis across different methods to elucidate the
performance differences arising from the types of rotation matrices employed. In the I?; column, the notations "G",
"L", and "H" correspond to global, local, and Hadamard, respectively. For example, ’GH’ indicates that a global

Hadamard rotation is applied to R;.
4 Experimental Results

Baseline We conducted experiments to assess
whether the proposed GSR offers improved per-
formance over previously used rotation matrices.
Comparisons were made across QuaRot, Spin-
Quant, and OSTQuant. To ensure a fair evaluation,
all methods were assessed by applying group quan-
tization to their originally reported quantization
configurations, under W2A16 and W2A4 settings.
Changes in rotation, such as switching to the Walsh
matrix or applying local rotation, were applied only
to Iy, as further analyzed in the Appendix A.2. De-
tails of the quantization configurations are provided
in the Appendix A.1.

Model and Datasets The proposed method was
evaluated on Llama-2-7B (Touvron et al., 2023).
To assess general language modeling capability, we
measured PPL on WikiText-2 (Merity et al., 2017)
with a context length of 2048 tokens. To evaluate
reasoning ability, we conducted common zero-shot
evaluations on a set of reasoning tasks, following
the same datasets used in baseline methods. Specif-
ically, QuaRot and SpinQuant were evaluated on
Arc (Easy and Challenge) (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), LAMBADA (Paperno
et al., 2016), PIQA (Bisk et al., 2020), and Wino-
Grande (Sakaguchi et al., 2021), while OSTQuant
was additionally evaluated on BoolQ (Clark et al.,
2019), OpenBookQA (Mihaylov et al., 2018), and
SIQA (Sap et al., 2019).

Implementation Details and Overall Results
We denote the global Hadamard matrix as GH, the
global Walsh matrix as GW, local Hadamard matrix
as LH. All Hadamard matrices are randomized, fol-

lowing common practice in previous rotation-based
algorithms. When constructing Walsh matrices, the
original Hadamard matrix is used. The other details
not mentioned here are listed in the Appendix A.1.

The overall results are summarized in Table 2.
Across all methods, our proposed approach consis-
tently outperforms the GH, achieving lower PPL
and higher accuracy on reasoning tasks. In particu-
lar, applying the GW to QuaRot (i.e., re-ordering
rows of the Hadamard matrix with natural order-
ing) yields approximately 1 point lower PPL com-
pared to SpinQuant, validating the benefit of the
sequency arrangement. Given that SpinQuant typi-
cally consumes much greater computational costs
than QuaRot, this result suggests that adopting
GSR enables QuaRot to achieve superior perfor-
mance and efficiency. While OSTQuant learns both
the rotation matrix and the smooth factor through
optimization and achieves a PPL of 10.97 in the
W2 setting, QuaRot with GSR attains a compa-
rable PPL of 11.59 by simply replacing Rjin a
training-free manner. In the W2A4 setting, QuaRot
with GSR even surpasses OSTQuant, achieving a
lower PPL of 15.23 compared to 16.16, indicating
that better performance can be obtained with fewer
resources. The effectiveness of GSR also holds
when applied to OSTQuant, consistently leading to
further performance gains.

The advantage of the sequency arrangement
is enhanced when paired with the local rotation.
When comparing the LH and GSR on QuaRot,
GSR consistently also delivers better performance
across all cases, similar to the improvements ob-
served in global rotation (GH vs GW). Moreover,
in zero-shot task evaluations, the Walsh matirx con-
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sistently outperforms the Hadamard. Notably, in
the QuaRot W2 setting, the GW achieves approx-
imately 7 points higher accuracy compared to the
GH, again surpassing SpinQuant. Complete in-
dividual scores for each task are provided in Ap-
pendix A.3.

5 Conclusion

In this paper, we proposed a novel training-free
rotation technique, Grouped Sequency-arranged
Rotation (GSR), inspired by signal processing the-
ory on Walsh-Hadamard transform and sequency.
The GSR makes use of the Walsh matrix to place
transformed weights filtered by similar sequency
values closer, and combines the local rotation idea
for constraining possible remaining outliers within
a single quantization group per row. A theoreti-
cal justification is also provided for each compo-
nent. Experimental results verify the effectiveness
of our proposed method on common benchmarks
for LLM quantization, including WikiText-2 and
popular zero-shot common-sense reasoning tasks.

Limitations

Our proposed method has proven effective only
under extremely low-bit weight quantization with
group quantization. On larger bit configurations,
the quantization error becomes much less signifi-
cant, so that the sequency alignment cannot show
visible improvement. In addition, to ensure the
generalizability of our approach, we plan to extend
our experiments to other model architectures and
datasets in future work.
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A Appendix

A.1 Additional Implementation Details

For a fair comparison, only group quantization was
additionally applied, while the primary quantiza-
tion settings originally reported for each method
were preserved. The detailed settings applied to
each method are described below.

GPTQ During weight quantization with
GPTQ (Frantar et al., 2022), the calibration
was performed by sampling 128 contexts, each
consisting of 2048 tokens, from the WikiText2
dataset.

QuaRot For QuaRot (Ashkboos et al., 2024),
GPTQ-based quantization was applied with asym-
metric weight quantization, MSE-based clipping,
and group quantization using a group size of 128.
Activation quantization was performed using sym-
metric round-to-nearest (RTN) quantization with a
clipping ratio of 0.9 and a group size of 128.

SpinQuant For SpinQuant (Liu et al., 2025),
since GPTQ was used during PTQ, weight quanti-
zation was not applied during the rotation matrix
training phase. However, when activation quanti-
zation was included, activation quantization-aware
training was performed using an RTN quantizer,
with symmetric quantization and a group size of
128 applied to activations.

OSTQuant For OSTQuant (Hu et al., 2025),
both the rotation matrix and the smoothing fac-
tor were learned. During weight-only quantization,
weight-quantization-aware training was conducted
using asymmetric quantization, MSE-based clip-
ping, and a group size of 128. When quantizing
both weights and activations, the weights were kept
frozen, and only the effect of activation RTN quan-
tization was considered, with a group size of 128
applied.

A.2 Ablation Study

Method | R: | R4 | PPL | PPLT
LH | GH | 1211 | 17.74
QuaRot LH | LH | 12.65 | 14.64
GSR | GH | 11.59 | 15.23
GSR | LH | 11.22 | 13.83

Table 3: Ablation results on the effect of local rotation
for R, in Llama-2-7B. PPL represents the results for
W2, and PPL represents the results for W2A4.

Global and Local Rotation on R; As part of
the ablation study, we applied local rotation to R,
originally using global rotation. Table 3 shows
that local rotation consistently improves perfor-
mance under activation quantization (W2A4), but
has negligible impact under weight-only quantiza-
tion (W2).

Given the role and placement of Ry, it primarily
rotates activation outliers through an online rota-
tion mechanism before input activations enter the
down-projection of the FFN layer. From the weight
perspective, since R; and Ry are fused into the
weights during inference, the benefit of local rota-
tion is realized only once. Thus, the performance
gains observed from modifications to R4 can be
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attributed mainly to the activation quantization pro-
cess.

Nonetheless, applying local rotation to the on-
line rotation introduces practical challenges. In
particular, it disables the use of the fast-hadamard-
transform, requiring the entire FP32 matrix tensor
to be stored in memory during inference, which is
impractical. We left addressing this limitation for
future work.

A.3 Complete Reasoning Tasks Results

In this section, Table 4 and Table 5 present evalua-
tion results for each zero-shot task.
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Configuration

#Bits ARC-c ARC-¢ Hella. lambada lambada-o lambada-s PIQA Wino. Avg.
Method  R; |

16-16 | 4625 7458 7599 7112 73.92 6833  79.11 69.14 69.81

GH | 23.04 4327 3551 1333 14.48 1219 59.14 5549 32.06

216 QuaRor GV | 2594 4449 4207 2788 30.53 2523 6126 5699 39.30

LH | 2722 4891 46.12  27.56 30.18 2494 6638 5675 41.01

GSR | 2679 4971 47.86  30.90 35.46 2635 6485 57.62 42.44

GH | 21.67 3531 3300 864 9.72 755 5713 49.96 27.87

14 QuRer OW | 2278 3834 3656 1975 22.49 1700 5881 5430 33.75

LH | 2577 4394 4120 22.52 23.95 2109 6262 5391 36.88

GSR | 2722 4520 4346 23.83 26.92 2075  61.64 5414 37.89

GH | 2270 4129 3437  12.65 14.26 11.04  57.83 54.14 31.04

216 SpinQuant GV | 2270 4082 3657 2098 21.41 2055 59.19 5391 34.52

P LH | 2543 4558 4243  28.58 31.34 2581 63.17 5635 39.84

GSR | 2534 4646 4490 3273 34.95 3051 6431 5770 42.11

GH | 2423 3897 3468 1436 15.74 1298  57.13 5604 31.77

24 SpinQuam OW | 2278 3704 3375 17.70 20.32 1508  57.13 5257 32.05

P LH | 23.89 4028 39.80  19.25 21.08 1743 60.61 5422 34.57

GSR | 25.17 4158 36.54  20.68 2321 18.14 5974 5296 34.75

Table 4: Complete comparison of accuracy on Zero-shot Common Sense Reasoning tasks for Llama2-7B with
QuaRot and SpinQuant. lambada-o and lambada-s represent lambada-openai and lambada-standard, respec-
tively.

. Configuration
#Bits ARC-c ARC-e boolq Hella. lambada-o openbook-qa PIQA Social-IQA Wino. Avg.
Method R: ‘

16-16 ‘ 4642 7433 7171 7594 73.69 44.20 79.16 4591 69.53  65.21
GH | 23.63 5038 62.87 3475 40.19 19.60 63.44 36.85 59.04 4552

216 OSTQuant GW | 25.00 5379 63.15 36.16 39.14 19.80 65.61 38.33 59.43 46.83
ua LH | 2756 57.53 63.30 39.47 50.96 20.00 66.76 39.36 59.98 49.84

GSR | 26.62 60.56 6529 38.69 56.20 22.40 66.54 38.08 61.09 50.51

GH | 19.37 39.14 50.98 31.48 18.38 15.20 60.39 36.08 53.28 38.18

24 OSTQuant GW | 19.88 4508 61.83 32.00 22.61 15.00 60.23 36.34 52.09 40.67
LH | 2466 50.25 6321 34.82 26.61 18.60 63.93 36.80 5533 43.69

GSR | 2321 51.89 6281 35.05 33.75 18.40 63.28 37.72 56.59 44.56

Table 5: Complete comparison of accuracy on Zero-shot Common Sense Reasoning tasks for Llama2-7B with
OSTQuant. lambada-o represents lambada-openai.
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