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Abstract

State space models (SSMs) achieve efficient
sub-quadratic compute complexity but often
exhibit significant performance drops as con-
text length increases. Recent work attributes
this deterioration to an exponential decay in
hidden state memory. While token filtering has
emerged as a promising remedy, its underlying
rationale and limitations remain largely non-
understood. In this paper, we first investigate
the attention patterns of Mamba to shed light
on why token filtering alleviates long-context
degradation. Motivated by these findings,
we propose LAMB, a training-free, attention-
guided token filtering strategy designed to pre-
serve critical tokens during inference. LAMB
can boost long-context performance for both
pure SSMs and hybrid models, achieving up to
an average improvement of 30.35% over state-
of-the-art techniques on standard long-context
understanding benchmarks. Our analysis and
experiments reveal new insights into the inter-
play between attention, token selection, and
memory retention, and are thus expected to in-
spire broader applications of token filtering in
long-sequence modeling. Our code is available
at https://github.com/GATECH-EIC/LAMB.

1 Introduction

State-space models (SSMs), including Mamba vari-
ants (Gu and Dao, 2024; Dao and Gu, 2024), have
emerged as a sub-quadratic alternative to tradi-
tional transformers, enabling large language mod-
els (LLMs) to process long contexts more effi-
ciently (Bai et al., 2024). However, prior stud-
ies (Waleffe et al., 2024; Azizi et al., 2025) have
shown that vanilla Mamba models struggle with
contexts exceeding their training length, primar-
ily due to the exponential decay of their hidden
states. This shortcoming prevents SSMs from fully
realizing their sub-quadratic efficiency benefits.

*Work done as a part of his internship at Intel.
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Figure 1: Comparison of average performance on
RULER across various context lengths. We evaluate
a Transformer baseline (Llama-3.2-1B (Llama Team,
2024)), the vanilla Mamba2-1.3B (Dao and Gu, 2024),
the LongMamba-enhanced Mamba2-1.3B model (state-
of-the-art baseline for training-free long-context en-
hancement), and the Mamba2-1.3B model enhanced
with the proposed LAMB framework.

Recent works (Ben-Kish et al., 2025; Ye et al.,
2025) have mitigated this issue by introducing to-
ken filtering techniques to extend Mamba mod-
els’ effective context length. For instance, Long-
Mamba (Ye et al., 2025) categorizes the hidden
state channels of SSMs into global and local chan-
nels, capturing global and local information, re-
spectively. It then filters out less important tokens
from the global channels to mitigate information
decay. While these methods have demonstrated
effectiveness across various applications, a compre-
hensive understanding of their underlying mecha-
nisms, strengths, and limitations remains lacking.
In this paper, we make the following contributions:

• We present a new study of token filtering meth-
ods by analyzing the attention 1 patterns of
Mamba. Specifically, we observe that a small
subset of tokens dominates the attention map,
indicating that preserving these key tokens

1Note that the “attention” refers to attention-equivalent
metrics derived from the original Mamba mechanism, as for-
mulated by Ali et al. and detailed in Sec. 2.
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can be sufficient for retaining the major at-
tention pattern. Furthermore, we find that an
attention-guided approach can outperform pre-
vious approaches when it comes to identifying
these key tokens.

• Building on these insights, we introduce
LAMB, a training-free method for Long-
context extension driven by Attention-guided
token filtering in MamBa. LAMB features
a custom attention metric that could iden-
tify important tokens from lengthy input se-
quences. Extensive experiments demonstrate
that LAMB surpasses the state-of-the-art
(SOTA) method on both Mamba models (as
shown in Fig. 1) and hybrid architectures.

2 Preliminary and Related Works

Mamba SSM. The Mamba model (Gu and Dao,
2024; Dao and Gu, 2024) is built by stacking mul-
tiple layers of Mamba blocks, each of which pro-
cesses an input sequence of L tokens while main-
taining its own hidden state h. The hidden state is
updated recurrently within each block as the tokens
are processed sequentially. For a given channel c
and token index t, the update is defined by:

ht;c = Āt;c ht−1;c + B̄t;c xt;c, (1)

Āt;c = exp
(
∆t;cAc

)
, B̄t;c = ∆t;cBt;c. (2)

where ht;c ∈ RN denotes the hidden state vector
after processing token t, Ac ∈ RN×N is a con-
stant negative matrix and Bt;c ∈ RN×1 is a token-
dependent matrix. ∆t;c ∈ (0, 1) is a scalar that
modulates the update magnitude: When ∆t;c ≈ 0,
we have Āt;c ≈ 1 and B̄t;c ≈ 0, resulting in little
to no change in the hidden state, whereas larger
values of ∆t;c produce more significant updates.
The output at token t is given by

yt;c = C⊤
t;cht;c, (3)

where Ct;c ∈ RN×1. For brevity, we will omit the
subscript c in the remainder of this work unless
channel-specific behavior is being emphasized.
Attention in Mamba Models. Previous work (Ali
et al., 2024) introduced an attention score to quan-
tify the contribution of jth (xj) to the ith (yi) token
in Mamba. Specifically, unrolling Eq. 3 yields

yi =
i∑

j=1

C⊤
i

( i∏

k=j+1

Āk

)
B̄jxj=

i∑

j=1

αi,jxj , (4)

where αi,j = C⊤
i

(∏i
k=j+1 Āk

)
B̄j represents the

contribution of xj to yi, serving as an analogue to
the attention weights in Transformer-based models.

Long-Context Mamba. Prior studies (Ben-Kish
et al., 2025; Azizi et al., 2025) have shown that
Mamba models struggle to generalize beyond the
sequence lengths encountered during training. This
limitation stems from the hidden state update in
Eq. 1, where each new token multiplies the previ-
ous hidden state ht−1 by a decay factor Āt < 1. As
the sequence length increases, this repeated decay
progressively attenuates earlier information.

The previous method, LongMamba (Ye et al.,
2025), mitigates this effect by first identifying a
subset of hidden state channels Cg, termed “global
channels”, that retain long-range information. A
channel is classified as global if the cumulative de-
cay over a sampled sequence of length S, ΠS

t=1Āt,
falls below a predefined threshold θ:

∏S
t=1 Āt < θ;

such channels decay slowly and thus preserve
global context. LongMamba then discards tokens
whose ∆t is small and would make only negligi-
ble updates in these channels. Concretely, it sets
∆t = 0 for every discarded token, which forces
Āt = 1 and B̄t = 0, so the update rule in Eq. 1
simplifies to ht = ht−1. Hence, the hidden state
remains unchanged for discarded tokens, while re-
tained tokens update it normally.

LAMB employs a similar framework: it identi-
fies the same set of global channels and sets ∆t to
zero for discarded tokens. However, LAMB selects
the tokens to discard using an attention-guided im-
portance score rather than LongMamba’s heuristic
based on the magnitude of ∆t. This principled se-
lection yields stronger long-context performance,
as demonstrated in Sec. 5.

3 Analysis of Token Filtering

In this section, we systematically investigate the
role of token filtering in SSM models by closely
analyzing their attention patterns. Our goal is to
understand why certain tokens are more critical
than others for maintaining performance on long-
context tasks and how to identify these critical to-
kens.

3.1 Attention Patterns in SSMs

Fig. 2 (a) shows the attention map of a randomly
selected global channel in the Mamba2-1.3B model
with 512 input tokens. A pronounced column-wise
pattern emerges, indicating that only a small subset
of tokens (columns) dominates the attention distri-
bution. To quantify this effect, we compute each
token’s cumulative contribution to future generated
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Figure 2: (a) Attention map of a randomly selected
global channel in Mamba2-1.3B for an input sequence
P of 512 tokens followed by 32 generated tokens G. (b)
Attention retention ratio within the generation window
(red box in (a)) as a function of the token retention ratio
under three token filtering strategies: Oracle (upper
bound, requires oracle access to the future attention
map), Attention-Guided (ours), and ∆t-Guided (Ben-
Kish et al., 2025; Ye et al., 2025). W denotes the last
32 tokens of the input prompt P . Strategies are detailed
in Sec. 3.

tokens (highlighted in the red box in Fig. 2 (a)):

αt =
∑

i∈G
αi,t =

∑

i∈G
C⊤
i

( i∏

k=t+1

Āk

)
B̄t, (5)

where G denotes the set of generated tokens. Under
the Oracle setting shown in Fig. 2 (b) (red dashed
curve), we retain tokens with the highest αt and
plot the attention retention ratio against various
token retention budgets. Approximately 20% of
the tokens account for 80% of the total attention,
suggesting that an effective filtering scheme can re-
tain most of the attention signal while discarding a
significant portion of the tokens. Additional results
in Appendix E confirm this sparsity pattern across
different global channels.

3.2 Token Filtering Metric
In practice, token filtering (Ben-Kish et al., 2025;
Ye et al., 2025) must be performed before genera-
tion begins to mitigate information decay in input
prompts, necessitating proxy metrics for estimat-
ing future token importance. Prior studies have
considered two approaches:
∆t-Guided Filtering. Prior works (Ben-Kish et al.,
2025; Ye et al., 2025) estimate token importance
based on the magnitude of ∆t. The underlying
rationale is that a large ∆t increases B̄t through
Eq. 2, which subsequently amplifies αt via Eq. 5.
Attention-Guided Filtering. For Transformer-
based LLMs, SnapKV (Li et al., 2024) proposes
using historical attention as a importance metric.
We adapt this idea to SSMs: tokens that received
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Figure 3: (a) The original Mamba attention αi,t versus
the proposed debiased attention αD

i,t and contrastive
attention αDC

i,t for a 2048-token prompt. (b) End-to-end
token filtering pipeline of LAMB.

substantial attention from the last few tokens be-
fore generation, referred to as the "observation win-
dow", are presumed influential for future genera-
tion. Formally, we define the importance metric as:
α̂t =

∑
i∈W αi,t, where W denotes the observa-

tion window (last 32 tokens).
As shown in Fig. 2 (b), attention-guided filter-

ing significantly outperforms ∆t-guided filtering
on the 512-token sequence, approaching the Ora-
cle upper bound. At a 20% token retention ratio,
attention-guided filtering retains about four times
more attention in the generation window than ∆t-
guided filtering.

Despite its promise, attention-guided filtering
presents two challenges in longer sequences:
C. 1 Bias Towards the Last Tokens: As illustrated
in the first row of Fig. 3 (a), attention distributions
in longer sequences show a strong bias towards the
last few tokens (i.e., the tokens closer to G), with
attention quickly diminishing for earlier tokens.
C. 2 Noisy Attention Patterns: The second row
of Fig. 3 (a) highlights substantial noise in the at-
tention distributions of longer sequences, making
it difficult to identify truly influential tokens.

4 The Proposed LAMB Method

Motivated by the findings and challenges identified
in Sec. 3, we introduce LAMB, a refined attention-
guided token filtering framework designed to ro-
bustly handle long-context sequences in SSMs. We
address the two challenges via enhanced attention
metrics in Sec. 4.1, and then describe the end-to-
end token filtering pipeline in Sec. 4.2.

4.1 Enhanced Attention Metric
Debiased Attention. To directly address C. 1, we
introduce debiased attention, in which the cumu-
lative decay factor

∏i
k=t+1 Āk responsible for the

bias is replaced with a precomputed constant factor
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∏L0
k=1 Āk based on the training sequence length

length L0, resulting in:

αD
i,t = C⊤

i (

L0∏

k=1

Āk)B̄t. (6)

As shown in Fig. 3 (a), this modification substan-
tially reduces the bias towards recent tokens, yield-
ing a more balanced representation of token impor-
tance.
Contrastive Attention. To address C. 2, we pro-
pose contrastive attention, which enhances the clar-
ity of importance estimation by suppressing minor
fluctuations and highlighting tokens with consis-
tently strong contributions:

αDC
i,t = ReLU(αD

i,t − γ · maxt(αD
i,t)), (7)

where γ < 1 controls the strength of noise sup-
pression, maxtαD

i,t denotes the maximum attention
score received by token i, and ReLU ensures non-
negativity. The third row of Fig. 3 (a) clearly illus-
trates how contrastive attention effectively reduces
noise and highlights the most influential tokens.

4.2 Aggregated Importance and Token
Filtering Pipeline

While Sec. 4.1 introduces attention metrics for a
single hidden state channel, an SSM typically com-
prises multiple channels. We extend the refined
metrics across all global channels and present a
three-step token filtering pipeline (illustrated in
Fig. 3 (b)):
Step ❶ Importance Aggregation. For each to-
ken t, we aggregate the enhanced attention metric
αDC
i,t across all global channels c ∈ Cg and all to-

kens i in the observation window W:

I raw
t =

∑

c

α̂DC
t,c =

∑

c

∑

i∈W,i>t

αDC
i,t,c. (8)

We then apply average pooling to I raw
t across the

token dimension:

It = mean_pool(I raw
t ), (9)

which preserves local context around the important
tokens and improves long-context comprehension
(see ablation results provided in Sec. 5.4).
Step ❷ Top-K Token Selection. We select the
top-K tokens among P \W based on aggregated
importance scores It, identifying those tokens most
likely to influence future model generations.

Step ❸ Concatenation and Selective State Up-
date. The selected influential tokens from P \W
are concatenated with the tokens from the obser-
vation window W . Hidden states are then updated
exclusively based on this concatenated set, while
the remaining tokens in the input prompt P are ex-
cluded from the state update. This selective update
effectively reduces cumulative decay and preserves
crucial context.

Together, these components enable LAMB to
identify important tokens in SSMs and significantly
improve long-context modeling.

5 Experiments

This section presents the evaluation results of
LAMB: Sec. 5.3 and Sec. 5.2 detail the results on
two long-context benchmarks, HELMET (Hsieh
et al., 2024) and RULER (Yen et al., 2024); Sec. 5.4
presents an ablation study of the denoising and
pooling techniques; finally, Sec. 5.5 measures the
latency overhead of LAMB.

5.1 Experimental Setup

We apply the proposed LAMB method to a repre-
sentative SSM Mamba-2 (Gu and Dao, 2024) and a
hybrid model Zamba-2 (Glorioso et al., 2024b), and
benchmark them against both vanilla models and
LongMamba (Ye et al., 2025), the SOTA method to
enhance the SSMs’ long-context capabilities. Fur-
ther setup details are in Appendix A.

5.2 Benchmark Results on HELMET

Tab. 1 presents the results on HELMET (Yen et al.,
2024). The table shows that the proposed LAMB
consistently achieves the highest average accuracy
across all three context lengths (i.e., 8k, 16k, 32k)
on both Mamba2 and Zamba2. This consistent im-
provement highlights the effectiveness of LAMB at
varying context lengths. The detailed per-task per-
formance on HELMET is provided in Appendix C.

Table 1: Benchmark results on HELMET.

Model Method Sequence Length

8k 16k 32k

M
am

ba
2 Vanilla 3.23 3.08 1.60

LongMamba 7.27 6.31 6.20
LAMB (Ours) 10.63 10.25 7.82

Z
am

ba
2 Vanilla 5.11 6.76 3.70

LongMamba 12.21 11.35 9.17
LAMB (Ours) 13.93 12.35 11.28
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Table 2: Comparison of performance (%) on RULER with a 16k context length. We evaluate vanilla models,
LongMamba, and LAMB on Mamba2 (Dao and Gu, 2024) and Zamba2 (Glorioso et al., 2024a).

Model Method single1 single2 single3 multi1 multi2 multi3 multivalue multiquery vt cwe fwe qa1 qa2 Avg.

Mamba2-780M
Vanilla 0 0 0 0 0 0 0 0 0 0 0 0 2 0.15
LongMamba 0 7 2 7 0 0 1.75 2.5 1.6 0 5 7 7 3.14
LAMB (Ours) 98 88 73 57 3 0 6 34 6 0.7 42.67 9 18 33.49

Mamba2-1.3B
Vanilla 0 0 1 1 0 0 0.5 0 0 0 1 0 1 0.27
LongMamba 100 2 2 5 0 0 0.75 0.75 1.4 0.4 2.33 8 18 10.82
LAMB (Ours) 99 90 78 40 6 0 6.5 24.5 14.6 0.5 47.33 14 21 33.96

Zamba2-1.2B
Vanilla 30 11 7 6 0 0 8 0 0.2 0 13.67 0 1 5.92
LongMamba 79 92 31 23 0 0 58 49.25 0.2 2.3 0.67 1 11 26.72
LAMB (Ours) 83 96 31 26 2 1 49.75 43 0.8 0.5 30.67 4 13 29.29

5.3 Benchmark Results on RULER

Tab. 2 provides the results on RULER (Hsieh
et al., 2024). It can be observed that the proposed
LAMB provides a +30.35%/+23.14%/+2.57% per-
formance improvement compared to LongMamba
on Mamba2-780M/Mamba2-1.3B/Zamba2-1.2B.
Notably, LAMB is consistently better than Long-
Mamba on QA tasks (i.e., qa1 and qa2), demonstrat-
ing the potential of LAMB on related real-world
applications.

5.4 Ablation Study

Tab. 3 presents an ablation study of the proposed
techniques on the RULER benchmark. Here, De-
noising refers to whether the denoised attention
αDC
i,t is used instead of the noisy αD

i,t, and Pooling
refers to whether mean pooling (Eq. 9) is applied to
the per-token importance. The first row and second
row of Tab. 3 demonstrate that Pooling is crucial for
LAMB, as the average accuracy on RULER drops
from 33.96% to less than 5% without it. The table
shows that Denoising is also necessary to achieve a
high accuracy with LAMB, which brings a 6.74%
improvement in the average accuracy on RULER
(comparing the last two rows of Tab. 3). Ablation
studies on the denoising factor γ and pooling kernel
size are presented in Appendix B.

5.5 Latency Overhead

Tab. 4 reports the prefill latency of LAMB across
a range of prompt lengths. For context lengths
ranging from 32k to 192k tokens, LAMB incurs at
most 12.31% additional latency. The overhead falls

Table 3: Ablation study of the proposed techniques on
RULER with a 16k sequence length.

Model Denoising Pooling Acc. (%)

Mamba2-1.4B

✗ ✗ 3.40
✓ ✗ 4.52
✗ ✓ 27.22
✓ ✓ 33.96

Table 4: Prefill latency (in seconds) for the vanilla
Mamba2-1.3B model (Dao and Gu, 2024) and
its LAMB-enhanced variant on an NVIDIA A100
GPU (Choquette et al., 2021) (batch size = 1). LAMB
adds no overhead during the generation stage.

Prompt Length 32k 64k 96k 128k 160k 192k

Vanilla 0.52 1.05 1.58 2.11 2.63 3.16
LAMB 0.58 1.14 1.69 2.24 2.79 3.34

Overhead (%) 12.31 8.06 6.90 6.21 5.84 5.78

below 7% for contexts of 96k tokens or more, high-
lighting the efficiency and scalability of LAMB.

6 Conclusion

We introduced LAMB, a training-free method for
enhancing the long-context performance of SSMs
and hybrid architectures by selectively filtering out
tokens from the hidden state update. LAMB is the
first attention-guided method for token filtering and
achieves up to an average of 30.35% improvement
over the state-of-the-art (SOTA) method. We antic-
ipate our findings to spark broader applications of
token filtering in long-sequence modeling.

7 Limitations

LAMB presently relies on fixed values for the de-
noising factor γ and the pooling kernel size. Such
rigidity can constrain its effectiveness across var-
ied tasks. Enabling these hyperparameters to adjust
dynamically to the input and the long-context task
might unlock additional gains, which we leave to
future work.
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A Experimental Setup

Models and Benchmarks. We evaluate LAMB
with two open-sourced SSMs (i.e., Mamba2-780M,
Mamba2-1.4B (Gu and Dao, 2024)) and a repre-
sentative hybrid model Zamba2-1.3B (Glorioso
et al., 2024b) on two long-context benchmarks:
HELMET (Yen et al., 2024) and RULER (Hsieh
et al., 2024). Specifically, HELMET encompasses
a diverse range of application-centric long-context
tasks, covering synthetic recall, long-document
question answering, summarization, many-shot in-
context learning, retrieval-augmented generation,
passage re-ranking, and citation-aware generation.
Unlike HELMET, RULER consists exclusively of
synthetic tasks, allowing precise control over se-
quence length and task complexity. Comprehensive
evaluation on both benchmarks provides a robust
assessment of LAMB’s ability to handle diverse
long-context applications.
Baselines. We benchmark our proposed LAMB
against two baselines: vanilla models without to-
ken filtering and LongMamba (Ye et al., 2025), the
SOTA training-free method for enhancing Mamba
models’ long context understanding via token fil-
tering.
Hyperparameters. For all experiments, we use
a denoising factor γ=0.9. When testing Mamba2
models on RULER, the pooling kernel size is 51
and we preserve top 512 tokens in each Mamba
block. On all other experiments, we preserve top
1024 tokens in each Mamba block and set the pool-
ing kernel size to 9 for the Zamba-1.2B model and
18 for the Mamba2 models. We use the same hy-
perparameters in LongMamba (Ye et al., 2025) for
determining the global channels.
Evaluation Protocol. Our evaluation follows the
official implementation and settings of the bench-
marks. More specifically, on the RULER bench-
mark, we generate 100 test sequences for each task
under each sequence length. The metrics used for
HELMET and RULER follow their original papers
(Yen et al., 2024; Hsieh et al., 2024), respectively.

B Ablation Study on Hyperparameters

B.1 Ablation study on the Denoising Factor
Tab. 5 shows the impact of varying the denoising
factor γ on LAMB’s performance across tasks in
the RULER benchmark. As γ increases from 0 to
0.9, we observe a consistent improvement in most
metrics. We also find that the average performance
differs by less than 2% for γ values between 0.8

and 0.95, indicating that LAMB is robust to the
exact choice of γ in this range.

B.2 Ablation study on Pooling Kernel Size

Tab. 6 presents the performance impact of differ-
ent pooling kernel sizes on the RULER benchmark.
Without pooling (kernel size = 1), performance
is notably poor. Increasing the kernel size to 51
yields steady improvements, whereas using a size
of 71 causes a drop in average accuracy. These
results suggest that (1) pooling with a sufficiently
large kernel is crucial for enhancing LAMB’s per-
formance, and (2) an oversized kernel can degrade
effectiveness.

C Detailed Experimental Results

Tab. 7 presents the detailed per-task performance
on HELMET. We evaluated the vanilla models,
LongMamba, and HELMET using both Zamba2-
1.2B and Mamba2-1.3B.

D Extended Related Works

State Space Models. The quadratic space and
time complexity of attention mechanisms (Vaswani,
2017) has posed significant challenges in train-
ing and inference with long input sequences. To
address these issues, a new class of models that
replaces attention with convolution-based archi-
tectures has recently gained traction, offering a
more computationally feasible alternative (Gu et al.,
2021). Among these alternatives, state space mod-
els (SSMs) have emerged as a powerful frame-
work. SSMs, extensively used in control theory,
describe the evolution of dynamic systems through
latent states that encapsulate system behavior over
time (Kalman, 1960). Several models, including
S4 (Gu et al., 2021), S4D (Gu et al., 2022), and
LRU (Orvieto et al., 2023), leverage this approach.
Notably, Mamba models (Gu and Dao, 2024; Dao
and Gu, 2024) have gained attention for its depar-
ture from traditional time-invariant formulations by
introducing a time-dependent state update mech-
anism, thereby enhancing expressivity and adapt-
ability in sequence modeling tasks.
Long Context Mamba. While Mamba models
have demonstrated strong performance under short
context, prior studies (Waleffe et al., 2024; Ben-
Kish et al., 2025) have shown that their effective-
ness diminishes on long-context tasks due to expo-
nential hidden state decay, which limits their ability
to retain information over extended sequences. To
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Table 5: LAMB’s performance (%) on RULER (16k context length) with different γ values.

γ single1 single2 single3 multi1 multi2 multi3 multivalue multiquery vt cwe fwe qa1 qa2 Avg.

0 95 72 34 25 0 0 5.50 11.50 28.4 0.2 47.33 15 20 27.23
0.5 91 89 78 33 8 0 6.75 12.00 17.2 0.4 31.33 12 16 30.36
0.8 97 94 77 37 6 0 7.25 25.50 10.4 0.6 39.00 10 21 32.67
0.9 99 90 78 40 6 0 6.50 24.50 14.6 0.5 47.33 14 21 33.96
0.95 100 91 74 41 2 0 7.75 27.25 15.8 0.5 44.33 11 21 33.51

Table 6: LAMB’s performance (%) on RULER (16k context length) with different pooling kernel sizes.

Kernel single1 single2 single3 multi1 multi2 multi3 multivalue multiquery vt cwe fwe qa1 qa2 Avg.

1 2 2 1 0 0 0 0.50 0.50 4.2 0.6 18.00 11 19 4.52
31 99 96 10 40 3 0 10.00 34.75 8.4 0.3 38.67 13 26 29.16
51 99 90 78 40 6 0 6.50 24.50 14.6 0.5 47.33 14 21 33.96
71 100 91 82 43 5 0 7.00 28.25 16.0 0.5 42.00 8 18 33.90

address this limitation, several methods have been
proposed. For instance, DeciMamba (Ben-Kish
et al., 2025) mitigates hidden state decay by pro-
gressively filtering out tokens across layers based
on the magnitude of ∆t. LongMamba (Ye et al.,
2025), on the other hand, introduces the concept of
global channels—channels with a wide receptive
field that capture long-range dependencies across
tokens—and selectively applies token filtering to
these channels. Despite these advancements, the
underlying principles behind the effectiveness of
token filtering and its potential for further optimiza-
tion remain unclear, which is a key focus of this
study.

Hybrid Transformer-SSM Models. To comple-
ment the long-range precision of self-attention with
the efficiency of SSM blocks, recent work has pro-
posed hybrid architectures that employs both in
a single network. For instance, Hymba (Dong
et al., 2024) mixes attention and SSM heads
in parallel within each layer, while a second
line of work, exemplified by Jamba (Lieber
et al., 2024), Samba (Ren et al., 2024), and
Zamba (Glorioso et al., 2024b,a), alternates atten-
tion and Mamba layers throughout the network
depth. Both approaches achieve compelling accu-
racy–efficiency trade-offs compared with purely
Transformer- or Mamba-based models. In parallel,
Taipan (Van Nguyen et al., 2024) augments Mamba
with a lightweight selective-attention module that
focuses on long-range dependencies among salient
tokens. Orthogonal to these efforts, our proposed
LAMB serves as a plug-and-play enhancement
for pretrained SSM or hybrid models, boosting
long-context performance without further training.

E Additional Visualization

Visualizations of attention maps and the attention
retention ratios under different approaches for ad-
ditional global channels are provided in Fig.4 and
Fig.5. In this section, we follow the same exper-
imental setups as in Fig. 2 and randomly sample
eight additional global channels from the Mamba2-
1.3B model for visualization.
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Table 7: Detailed benchmark results on HELMET.

Methods Recall RAG Cite Re-rank LongQA Summ ICL Avg

8k 16k 32k 8k 16k 32k 8k 16k 32k 8k 16k 32k 8k 16k 32k 8k 16k 32k 8k 16k 32k 8k 16k 32k

M
am

ba
2 vanilla 0 0 0 11.9 10.2 5.2 0.0 0.1 0.0 0.2 0.0 0.0 5.3 4.2 3.2 1.9 1.3 0.8 11.8 5.8 2.1 3.2 3.1 1.6

LongMamba 2.1 1.2 3.0 13.1 14.3 15.4 0.0 0.3 0.2 3.9 1.3 0.0 15.3 16.2 15.4 6.3 4.6 4.3 10.2 6.3 5.1 7.3 6.3 6.2
LAMB 4.1 5.4 4.2 25.6 24.9 20.8 1.4 0.6 0.7 0.1 0 0 11.7 11.1 11.1 7.2 6.4 6.2 24.2 23.4 11.7 10.6 10.3 7.8

Z
am

ba
2 vanilla 0.3 1.2 0.0 12.7 14.2 4.9 0.6 1.0 0.3 0.1 0.7 0.5 4.7 4.6 5.0 3.6 2.1 4.4 13.8 23.6 10.8 5.1 6.8 3.7

LongMamba 13.8 7.9 4.1 29.6 28.8 22.3 0.4 0.8 1.0 9.2 4.2 0.7 5.7 6.6 7.0 4.7 5.5 1.8 22.0 25.6 27.2 12.2 11.4 9.2
LAMB 12.4 6.8 5.5 26.3 24.0 20.0 1.1 1.1 0.7 16.0 2.3 3.8 10.6 10.5 9.3 7.1 6.8 5.8 24.0 35.2 33.2 13.9 12.4 11.3
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Figure 4: Visualization of attention maps from eight randomly sampled global channels, covering 512 input tokens
(denoted as P) and 32 generated tokens (denoted as G). W denotes the last 32 tokens of P .
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Figure 5: Attention retention ratio within the generation window under varying token retention budgets. Here we
evaluate three token filtering strategies: Oracle (upper bound, requires oracle access to future attention maps),
Attention-Guided (ours), and ∆t-Guided (Ben-Kish et al., 2025; Ye et al., 2025).
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