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Abstract

Multilingual alignment of sentence represen-
tations has mostly required bitexts to bridge
the gap between languages. We investigate
whether visual information can bridge this gap
instead. Image caption datasets are very easy
to create without requiring multilingual exper-
tise, so this offers a more efficient alternative
for low-resource languages. We find that mul-
tilingual image-caption alignment can implic-
itly align the text representations between lan-
guages, languages unseen by the encoder in pre-
training can be incorporated into this alignment
post-hoc, and these aligned representations are
usable for cross-lingual Natural Language Un-
derstanding (NLU) and bitext retrieval.1

1 Introduction

Encoder language models are very popular and
widely used for extracting semantic information
from text to be used downstream for natural lan-
guage understanding (NLU) tasks. In general,
an encoder language model (LM) is pretrained
on a large corpus using self-supervision and then
a smaller component is fine-tuned on annotated
data using the representations produced by the pre-
trained LM. For widely spoken data-rich languages,
this is no problem and the existence of task-specific,
annotated data is a given (Joshi et al., 2020; Blasi
et al., 2022). For low-resource languages this is
rarely the case, and collecting data for each task in
such languages is expensive and time consuming.
Thus, cross-lingual knowledge transfer is a more
practical direction for low-resource languages than
further data collection.

The internal representations of encoder models
trained on multilingual data tend to be disjoint, so
the representation of a sentence in language A may
not be similar to the representation of its transla-
tion in language B. Most likely, this is the result of

1Data and code will be publicly released at https://
github.com/nkrasner/cl-clip-align.

pretraining data imbalance and domain mismatch
across the languages included in their pretraining.
If these internal representations were aligned such
that representations of translations were similar,
cross-lingual transfer for NLU tasks should be
much easier to achieve, as Hu et al. (2021) showed.
This cross-lingual transfer of task knowledge can
greatly benefit speakers of low-resource languages
by giving them access to NLP tools without the
difficulty of annotating task-specific data in their
language. As an additional benefit, these aligned
representations can be used to mine bitexts from
large scraped corpora to build parallel translation
datasets (Team et al., 2022).

In this work, we explore whether one could en-
courage multilingual representation alignment with-
out any parallel data, by relying instead on images
as shared modality across languages. This is a
worthwhile direction to pursue for two reasons.
First, parallel text curation through expert trans-
lation is time-consuming, expensive, and requires
bilingual annotators. In contrast, it is easy for an an-
notator to describe an image to produce a caption re-
gardless of which language(s) they speak (Madaan
et al., 2020). Second, language documentation ef-
forts often produce media accompanied with mono-
lingual audio or text in the language of interest.
Developing techniques which leverage such mate-
rials could enable the creation of technologies for
these otherwise under-served languages.

To summarize, we (1) show that a multilingual
text-image contrastive learning setup can produce
multilingually aligned text representations; (2) fo-
cus specifically on Quechua, as an example of a
language unseen during pretraining that may ben-
efit from such approaches; and (3) show that the
addition of an unseen language does not degrade
representation quality in other languages.
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2 Related Work

Previous endeavors in multilingual alignment in the
absence of parallel-text supervision have predomi-
nantly concentrated on the alignment of static word-
embeddings through adversarial techniques (Zhang
et al., 2017; Chen and Cardie, 2018). Approaches
that extend multilingual alignment to sentence-
level representations have generally necessitated a
bitext signal (Feng et al., 2022; Escolano et al.,
2021; Artetxe and Schwenk, 2019), with lim-
ited exceptions employing adversarial methodolo-
gies (Aghajanyan et al., 2019; Tien and Steinert-
Threlkeld, 2022). Even though multilingual align-
ment may extend to languages not encountered dur-
ing fine-tuning (Tien and Steinert-Threlkeld, 2022),
we hypothesize that a more direct fine-tuning strat-
egy using some pivot (even if not textual) could po-
tentially produce superior alignment for languages
with limited bitext resources.

Contrastive methods have been used for text-text
(Feng et al., 2022) encoder alignment as well as
text-image encoder alignment in both monolingual
(Radford et al., 2021) and multilingual (Muraoka
et al., 2023; Bianchi et al., 2023) settings. One
such text-image alignment work introduces an im-
age representation into the input sequence of NLU
tasks leading to improved cross-lingual transfer
(Muraoka et al., 2023). This offers additional sup-
port to our hypothesis that visual information can
act as a semantic bridge between languages.

3 Method, Experiments, and Results

Our approach strings together a text encoder with a
vision encoder. These two produce representations
for each modality input, which are then used in
a contrastive learning setup. In particular, given
pairs of image representations Ei and caption
representations Ec we use the following, simple
contrastive loss function:

S = Ec · E⊤
i ∗ t

L(Ei, Ec) = CrossEntropy(S, I),

where I is the identity matrix and t is a learned
temperature parameter.

This is similar to what CLIP (Radford et al.,
2021) used for text-image alignment and LaBSE
(Feng et al., 2022) for text-text alignment.

3.1 Experimental Setup
Datasets We work with the MS-COCO
dataset (Lin et al., 2014), which provides 118k

Figure 1: A demonstration of the data sampling meth-
ods. Orange boxes highlight how our multi-modal ap-
proaches sample data. Blue boxes highlight how the
Eng-Pivot approach samples data.

English Image-Caption pairs. Using Google
Translate, we translate the English captions into
Spanish, Japanese, Hindi, and Quechua. From this
5-way parallel image caption dataset, we derive 4
datasets for various experiments:

1. Eng-Pivot: The English captions from MS-
COCO paired with one translation each from
a rotation of Spanish, Japanese, and Hindi.

2. Eng-only: The English MS-COCO dataset
without translations to other languages.

3. Multilingual: The MS-COCO dataset but
each caption is from a rotation of English,
Spanish, Japanese, and Hindi with only one
language paired with each image.

4. Multilingual+Quechua: The same as the
Multilingual dataset but with Quechua
added into the rotation of languages.

While most of these datasets are designed for use
with text-image alignment, the Eng-Pivot dataset
is used for text-text alignment to create a model
similar to LaBSE (Feng et al., 2022) with a compa-
rable data size to our other models. This is the only
dataset which contains parallel text data. Figure 1
gives a visual representation of this distinction.

Training We fine-tune an XLM-Roberta-Large
(XLM-R) (Conneau et al., 2020) text encoder and
a VIT-Base-patch16-224-in21k (Dosovitskiy et al.,
2021) image encoder for 10 epochs with early stop-
ping.

The token-level representations are mean pooled
to create a sentence-level representation. Since the
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hidden dimensions of these encoders do not match,
we add a linear layer to their outputs to adapt them
to a matching dimensionality of 512. Following
existing approaches to text-image alignment under
these circumstances (Bianchi et al., 2023), we allow
these linear layers to warm up for a certain number
of steps before fine-tuning the encoders themselves.
In our case, we chose to begin training the encoders
halfway through the first epoch since the learning
curves had flattened out by that point.

3.2 Experiment 1: Does multilingual
text-image alignment lead to text-text
alignment?

We hypothesize that text-image alignment involv-
ing multiple languages will implicitly align text
representations between languages.

With the exception of the Eng-Pivot encoder
(which is trained on bitext alignment), our encoders
are only fine-tuned to align the text representations
to the image representations, but we evaluate them
on their alignment between text representations.
Specifically, we use the FLoRes-200 dataset (Team
et al., 2022), which contains 1012 204-way parallel
sentences including all of our test languages. We
perform a formal analysis using the task of bitext
retrieval (Heffernan et al., 2022; Duquenne et al.,
2023) as well as a visual analysis via t-SNE.

We compare against a baseline of the off-the-
shelf XLM-R encoder, as well as one fine-tuned
on text-image alignment using the English only
(Eng-Only) dataset, and another trained directly
on contrastive text-text alignment with an English
pivot similarly to LaBSE (Feng et al., 2022).

For each sentence in each language, we search
the English sentences in FLoRes-200 for the mini-
mum cosine distance to find the corresponding En-
glish translation. If the true translation is selected,
we count that sentence as correct. We calculate
the retrieval accuracy over each language and then
aggregate using the mean over all languages to pro-
duce a final score. Since XLM-R has not seen all
of these languages in pretraining, we report the
retrieval accuracy over the disjoint subsets of lan-
guages on which it was pretrained (or not). Table 1
contains the results.

While not quite matching the Eng-Pivot text-
text aligned encoder, the Multilingual text-
image aligned encoder is still very capable in the
bi-text retrieval task. The Eng-Only text-image
alignment improves on the abysmal results of the
plain XLM-R model, but does not compare with

All in XLM-R not in XLM-R
Encoder (203 langs) (92 langs) (111 langs) Quechua

XLM-R 0.5 0.6 0.4 0.5
Eng-Pivot 62.2 92.6 37.1 13.1
Eng-Only 18.3 27.5 10.7 7.2

Multilingual 55.7 82.2 33.7 18.0
+ Quechua 50.4 76.6 28.6 29.2

Table 1: Bitext retrieval accuracy on All of FLoRes-
200, on the subset of languages in/not in XLM-R’s
pretraining, and just on Quechua.

the Multilingual alignment. This is likely be-
cause the pretraining of XLM-R does not scale to
sentence level tasks well (Reimers and Gurevych,
2019). The text-image alignment, on its own, may
expand the existing knowledge of XLM-R to the
sentence level.

To further visualize the multilingual alignment
of our encoders, we generate sentence-level rep-
resentations for all sentences in the FLoRes-200
dataset and use t-SNE to project them down to 2
dimensions while preserving relative distances. We
plot these embeddings in Figure 2 for the 4 fine-
tuning languages with lines connecting parallel
cliques of translated sentences. This way we can
visualize whether an encoder produces language-
specific clusters or whether certain sentences are
encoded far from their translations.

Figure 2 shows that the original XLM-R repre-
sentations are not aligned at all. Tuning only on the
English image-caption data leads to better align-
ment than the untuned model, but the languages
still form distinct clusters. Our Multilingual
approach falls just short of the text-text aligned
model in terms of the number of misaligned trans-
lations and adding Quechua into the mix does not
make it that much worse. Interestingly, the text-
image aligned models have tighter inter-sentence
clusters indicating that the image alignment may
have drawn connections between sentences that are
not captured by a text-only semantic space.

Real versus Synthetic Captions To control for
external factors, our experiments rely on synthetic
captions generated by translating the MS-COCO
English captions. To measure the effects of this
synthetic data, we trained two additional models
using the English and German captions from the
Multi30k dataset (Elliott et al., 2016). For the first,
we alternate between these real English and Ger-
man captions in the training data. We will refer to
this approach as Multi30k. For the second, we
replace the german captions from Multi30k with
the translations of their English counterparts. We
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Figure 2: t-SNE embeddings for the outputs of each encoder over FLoRes-200 sentences. Translations are shown as
cliques with lines connecting them. Visible lines, such as those in the XLM-R and Eng-Only panels, indicate that
representations of translated sentences are far from each other, ie., poor alignment. While not as clear as parallel
text alignment (Eng-Pivot), multilingual image-text alignment (two rightmost panels) shows promising results.

will refer to this as Translated-Multi30k.
Using the same bitext retrieval procedure from

before, we find that the retrieval accuracy for
Multi30k across all languages in FLoRes-200
is 40.4% and in German the retrieval accuracy
is 94.6%. Similarly, Translated-Multi30k
scores a retrieval accuracy of 38.7% across all of
FLoRes-200 and 94.1% in German. Using trans-
lated captions does not significantly change the
quality of the alignment.

3.3 Experiment 2: Can a language unseen in
the encoder’s pretraining be added using
only image caption tuning?

Here, we turn to investigating the possibility of
using only image-caption data to obtain good repre-
sentations for a language unseen during pretraining,
without any parallel text data. This approximates
a real setting where we could ask an annotator to
write image captions in a low-resource language
which we want to add to our aligned language en-
coder for use in downstream tasks in a zero-shot
cross-lingual transfer setting (Madaan et al., 2020).

We find that languages not included in the pre-
training or fine-tuning still benefit from some align-
ment. But as one would expect, not to the same
degree as those which have been already included
in the model’s training data.

We retrained the encoder from Experiment 1,
but now with a dataset that also mixes in Quechua
captions. Indigenous Latin American languages,
including Quechua, are not included in the pretrain-
ing data of XLM-R. Quechua is also typologically
distinct from all other pretraining languages.

We calculate the retrieval accuracy on FLoRes-
200 from Quechua to English as well as the over-
all X→English accuracy to determine how well
Quechua has been integrated into the encoder and
aligned with other languages.

When Quechua is added to the image-caption

dataset, the overall performance goes down slightly,
but the performance on Quechua is greatly im-
proved (cf last two rows of Table 1) from 18%
to 29.2%. Importantly, the average accuracy for all
other languages remains largely unaffected – we
attribute the small drop in performance to the fact
that we reduced the data in the other four languages
to ensure experimental data-size comparability; in
practice, this is not a requirement in the real world.

3.4 Experiment 3: Are the downstream
qualities of the representations preserved
and is cross-lingual transfer possible?

Here, we go beyond intrinsic evaluation to test
our embeddings for a downstream task: natural
language inference (NLI). Since images and text
contain different types of semantic information,
we want to ensure that aligning a text encoder to
an image encoder does not overwrite the features
which are useful for downstream NLU tasks.

We train simple feed-forward NLI models on
frozen representations from each of the models
in the previous experiments using the combined
MultiNLI (Williams et al., 2018) training and dev
sets.

We train using the MultiNLI train and dev
datasets which only contain English samples. Any
samples marked by the authors as lacking agree-
ment were discarded. For evaluation of down-
stream NLI quality, we use the XNLI (Conneau
et al., 2018) and AmericasNLI (Ebrahimi et al.,
2022) test sets to measure both English NLI and
cross-lingual transfer performance.

For each encoder, we train identical NLI models
with input features (⊕ stands for concatenation):

xi = e(pi) ⊕ e(hi)⊕ |e(pi)− e(hi)|
⊕ e(pi) ∗ e(hi)

where e is the encoder and pi and hi are a premise
and hypothesis respectively (Conneau et al., 2017).
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XNLI AmericasNLI
Encoder en es hi ar bg de el fr ru sw th tr ur vi zh quy aym bzd cni gn hch nah oto shp tar Avg

XLM-R 50 44 44 45 43 43 43 47 44 37 42 43 42 46 44 34 33 33 35 35 34 35 32 34 33 40
Eng-Only 53 50 46 47 49 49 48 51 50 42 47 47 45 48 48 40 38 35 35 38 39 36 35 37 36 44
Eng-Pivot 67 65 60 61 63 64 63 65 62 52 61 61 58 63 62 39 40 37 41 40 40 42 39 44 39 53

Multilingual 55 52 51 51 53 52 52 53 52 45 51 51 48 52 51 37 35 36 37 37 37 37 37 39 40 46
+ Quechua 56 53 51 51 53 53 53 53 53 45 50 51 49 52 51 41 36 39 41 41 36 40 39 41 40 47

Table 2: Rounded XNLI and AmericasNLI accuracy. Languages seen for alignment fine-tuning are underlined.
NLI models are only trained on English data with frozen encoders; results in other languages require cross-lingual
transfer.

The NLI models are a simple feed-forward ar-
chitecture with 2 hidden layers and a hidden size of
2048. They are trained using the Adam optimizer
and a learning rate of 2 ∗ 10−5 for 100 epochs with
early stopping.

The results in Table 2 show that the alignment
of the text encoder with the space of the image
encoder does not damage the quality of the text
representations for downstream use, but actually
improves them. Comparing the Multilingual
image aligned model before and after adding
Quechua, downstream performance is somewhat
uncoupled from bitext retrieval performance. The
addition of Quechua matched or exceeded the per-
formance without it across nearly all languages,
suggesting that NLI performance benefits from
increased language coverage regardless of indi-
vidual language data size. English represents 1

4
of the Multilingual dataset and 1

5 after adding
Quechua, but the addition of Quechua increased
the NLI score on English! Additionally, fine-tuning
the encoder on the Eng-Only dataset only made a
minimal improvement to the XLM-R performance
even though it saw the largest portion of English
data.

Additionally, the Quechua captions lead to im-
proved results across the AmericasNLI languages
even matching or outperforming the Eng-Pivot
results in many of those languages. Adding a lan-
guage from an unseen family not only improves rep-
resentation quality for that language, but also im-
proves cross-lingual transfer to unseen languages
in that family.

4 Conclusion

The task of multilingual text-image contrastive
alignment implicitly aligns text from multiple lan-
guages into the same space. This alignment carries
over into unseen languages, and performance on
a particular unseen language can be improved by

collecting image-caption pairs in that language.
While this technique does not outperform SOTA

methods, it performs remarkably well considering
the non-reliance on parallel corpora. For low re-
source languages, this method could act as a boot-
strapping step to scrape higher quality bitexts for
use in further alignment.

Limitations

With the addition of Quechua to the training set,
the drop in overall bitext retrieval performance
could be due to the decrease in data for the
other languages to accommodate the Quechua data.
Whether this is the case is not captured by our ex-
periment, but can be taken into account in a follow-
up work.
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