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Abstract

We introduce WiCkeD, a simple method to
increase the complexity of existing multiple-
choice benchmarks by randomly replacing a
choice with "None of the above", a method of-
ten used in educational tests. We show that
WiCkeD can be automatically applied to any
existing benchmark, making it more challeng-
ing. We apply WiCkeD to 7 popular bench-
marks and use it to evaluate 18 open-weight
LLMs. The performance of the models drops
12.1 points on average with respect to the origi-
nal versions of the datasets. When using chain-
of-thought on 3 MMLU datasets, the perfor-
mance drop for the WiCkeD variant is similar
to the one observed when using the LLMs di-
rectly, showing that WiCkeD is also challeng-
ing for models with enhanced reasoning abili-
ties. WiCkeD also uncovers that some models
are more sensitive to the extra reasoning re-
quired, providing additional information with
respect to the original benchmarks. We release
our code and data at https://github.com/
ahmedselhady/wicked-benchmarks.

1 Introduction

Multiple choice question (MCQ) benchmarks are
widely used to evaluate Large Language Models
(LLMs). This format consists of a question and a
limited set of options, which include a correct (or
best) answer and several distractors that are either
incorrect or less appropriate (see Figure 1). There
are various MCQ datasets that focus on different ca-
pabilities, including factual knowledge and reason-
ing as in MMLU (Hendrycks et al., 2021) and Arc-
challenge (Clark et al., 2018), common sense as
in Commonsense-QA (Talmor et al., 2019), truth-
fulness as in TruthfulQA (Lin et al., 2022), and
domain-specific knowledge (Alonso et al., 2024;
Hosseini et al., 2024). Unfortunately, most of these
benchmarks got quickly saturated in the recent era
dominated by LLMs, motivating harder datasets to

better gauge the abilities of newer models. How-
ever, developing benchmarks is a laborious and
expensive process.

Motivated by this, several recent works have
explored strategies to make existing benchmarks
harder, which can serve as an alternative to creating
new benchmarks from scratch. For example, Gema
et al. (2024) identified erroneous questions in the
MMLU benchmark, and re-annotated 3k questions
to be harder and more robust. Similarly, Wang et al.
(2024) presented MMLU-Pro, a harder version of
the MMLU benchmark that replaces noisy ques-
tions with harder ones and expands the number
of distractors to include more plausible yet incor-
rect ones. While increasing the number of distrac-
tors reduces the probability of correct guesses by
chance, creating plausible and coherent distractors
is challenging and often requires manual verifica-
tion (McIntosh et al., 2024).

In this work, we propose a simple yet effec-
tive method to make existing benchmarks more
challenging without the need to add distractors.
Namely, we present the Wild-Card Distractor
(WiCkeD) which creates a variant of any exist-
ing MCQ benchmark by keeping the question
unchanged, and randomly replacing one of the
choices with a wild-card distractor, None of the
above (see Figure 1). We create WiCkeD variants
of 7 popular benchmarks, and use them to evalu-
ate 18 open-weight LLMs varying in size, model
family, and training recipe. The WiCkeD datasets
suffer a performance drop of 7.2-19.7 points with
respect to the original datasets, depending on the
model being evaluated. Using chain-of-thought
does not prevent the drop (1.4-14.6), showing that
WiCkeD can be used to assess reasoning capabili-
ties. The large variance across models shows that
WiCkeD is not only challenging, but it also uncov-
ers differences in model capabilities that are not
captured by the original benchmarks.
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Figure 1: Two samples from MMLU-Pro (left) and its WiCkeD variant (right), where Hydrogen and Centrifugal
were removed. Correct answers in bold. Llama-3.1 8B correctly answers both original questions but fails on the
WiCkeD variant for the second question. The probability distribution of the model for each answer is also shown.

2 Related Work

2.1 Challenges in LLMs MCQ Benchmarks

Several works raised concerns about the effective-
ness of MCQ benchmarks in LLM assessment. For
example, Balepur et al. (2024) showed that some
LLMs can answer MCQs using only the answer
choices, without seeing the questions, and perform
well-above baselines. Furthermore, more works
suggested that LLMs are biased towards certain
answer keys (A/B/C/D) due to unbalanced prior
probabilities rather than actual knowledge (Myrza-
khan et al., 2024; Clark et al., 2018).

Another line of research attributes LLMs hal-
lucinations to being unable to identify when they
lack sufficient knowledge about the subject mat-
ter (Li et al., 2024; Ji et al., 2022). Nonetheless,
current evaluation benchmarks do not assess this
capability effectively. A third line argues that the
overestimation in performances of models is due
to contamination (i.e. the model is trained on the
test sets of the benchmarks), leading to wrong con-
clusions (Golchin and Surdeanu, 2024; Dong et al.,
2024; Sainz et al., 2023). We view our work as an
addition towards efficient evaluation of LLMs to
avoid spurious correlations and account for knowl-
edge and reasoning gaps.

2.2 None of the Above in Educational Tests

Multiple-choice questions (MCQs) are effective as-
sessments when they include plausible distractors,
as they encourage deeper processing to think not
only about why a given choice is correct, but also
why other choices are wrong and improve knowl-
edge recall (Little et al., 2019; Little and Bjork,
2015). The use of None of the above as a distractor

in MCQs is an area of research and debate. It can
provide unique insight into the understanding of the
examinees and potentially differentiate their abil-
ities (David DiBattista and Fortuna, 2014; Dochy
et al., 2001). However, None of the above can af-
fect the confidence of the examinee, leading them
to avoid selecting None of the above as the correct
answer, even when it is true (Little, 2023; Ode-
gard and Koen, 2007). Nevertheless, incorporating
None of the above into practice tests can enhance
the learning process by encouraging deeper en-
gagement with the material (David DiBattista and
Fortuna, 2014; Pezeshkpour and Hruschka, 2024;
Zheng et al., 2024).

3 Methodology

We propose a method to automatically create a
more challenging version of any existing MCQ
benchmark without requiring any manual annota-
tion. The difficulty of MCQ has been linked to
the reasoning necessary to discriminate between
competing options (McIntosh et al., 2024; Wang
et al., 2024). We hypothesize that detecting the
absence of the correct answer within the provided
options is more challenging than selecting the cor-
rect one. To that end, we propose to add a wild-card
choice None of the above. Note that adding None
of the above as an additional option would not
make sense, as the correct answer is always the
correct option, we thus propose to replace one of
the options instead.

3.1 The WiCkeD Algorithm
Given a benchmark that consists of M examples
where each has N choices (one correct answer and
N−1 distractors), we uniformly sample one option
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Figure 2: Applying WiCkeD on a single best answer
(SBA) example (best answer D, second best answer A)
would lead to an incoherent WiCkeD variant (incorrectly
having None of the above as the gold correct answer
instead of A). We thus copy SBA examples verbatim,
see § 3.2 for details.

to be omitted, and append the wildcard option None
of the above. When the correct option is replaced,
the new correct option is None of the above. When
a distractor option is replaced, the correct option
continues to be correct. Figure 1 shows the result
of applying WiCkeD to two examples. The goal
is to produce a variant for each benchmark that
contains the same number of M examples.

3.2 Coherence of WiCkeD Examples

The above algorithm does not always produce co-
herent examples. In some cases, there are more
than one correct candidate, but only one of them is
the most appropriate (see Figure 2, where D is the
best answer and A is the second best answer). With
the above procedure, when the replaced option is
the correct one (e.g. option D in the figure), the
WiCkeD variant would add None of the above and
take this option as the correct one. However, this
would be incoherent, because having removed D,
A becomes the next best option. We call these ex-
amples Single Best Answer (SBA) as opposed to
Single Correct Answer (SCA, where the distractors
are all incorrect). As we want to keep the same
number of examples we avoid adding None of the
above to SBA examples and copy them unchanged
to the WiCkeD variant of the benchmark.1

In order to train an example classifier to de-
tect SBA examples, we selected four representa-
tive benchmarks (MMLU, MMLU-Pro, Truthful-
QA and Commonsense-QA), sampled 4000 exam-
ples, and split them into evaluation (25%) and train
(75%). We used GPT-4o-mini to automatically
label the examples as SBA or SCA, and further
annotated the evaluation split manually. Given the

1Excluding the SBA questions amplifies the impact of
WiCkeD yet adds no other signals about performance, there-
fore, we leave them unchanged.

cost and slow speed of GPT-4o-mini, we used the
synthetic labels to train a classifier based on BERT2

(Devlin et al., 2019).
The recall on SBA examples for the classifier

is over 98.9%, showing that we are able to detect
nearly all SBA examples, and would thus have
1.1% noisy WiCkeD examples (that is, examples in
the benchmark that have None of the above as the
correct option even if a correct option exists). See
Appendix A for more details about the training and
evaluation procedure.

4 Experimental Setup

4.1 Benchmarks

We apply WiCkeD to six popular MCQ bench-
marks that assess the knowledge, language
comprehension, reasoning, and truthfulness of
LLMs: MMLU, MMLU-Pro, MMLU-Redux,
GPQA, CommonsenseQA, Truthful-QA, and Arc-
challenge. To ensure reproducibility, we use Eval-
Harness (Gao et al., 2024). Given that the selection
of the option to be replaced is random, we gener-
ate five WiCkeD variants for each benchmark, and
report mean and standard deviation.

Regarding the amount of SBA examples,
MMLU, MMLU-Redux and MMLU-pro have the
largest amount (∼ 20%), with the rest of the bench-
marks having less than 5% (see Appendix A). SBA
examples are copied verbatim to the WiCkeD vari-
ants, but the fact that at least 80% of the exam-
ples are effectively altered makes the WiCkeD vari-
ants significantly more challenging, as we will see.
Other benchmarks have less than 5% SBAs; we
also leave them unchanged.

4.2 Models

We evaluate WiCkeD on 18 open-weight models
covering different families and sizes. Namely,
we evaluate the base and instruction-tuned mod-
els of Qwen2.5 7B, 14B and 72B (Qwen et al.,
2025), Llama3.1 8B and 70B (Grattafiori et al.,
2024), Gemma2 9B and 27B (Riviere et al., 2024),
and Mistral-7B (Jiang et al., 2023). We also se-
lected two DeepSeek-R1 models for their improved
reasoning capabilities: distill-Lllama3.1-8B and
distill-Qwen7 (DeepSeek-AI et al., 2025).

The LLM models are evaluated on the bench-
marks following the standard multiple-choice
prompting procedure (Robinson et al., 2023), see

2
https://huggingface.co/ahmedselhady/

bert-base-uncased-sba-clf
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Model Size IT Original WiCkeD ∆

DS-R1-Llama 8B - 56.6 48.6 -7.9 ±1.1%

DS-R1-Qwen 7B - 60.8 53.4 -7.3 ±1.6%

Llama-3.1

8B - 61.4 52.2 -9.2 ±1.7%

8B ✓ 66.0 55.0 -11.0 ±0.9%

70B - 76.8 67.0 -9.8 ±2.1%

70B ✓ 77.1 64.5 -12.6 ±1.3%

Mistral 7B - 59.8 46.5 -13.2 ±1.2%

7B ✓ 59.0 47.2 -11.8 ±1.1%

Qwen-2.5

7B - 74.7 54.9 -19.7 ±1.5%

7B ✓ 73.5 59.0 -14.5 ±1.3%

14B - 78.9 66.3 -12.6 ±2.1%

14B ✓ 78.9 66.6 -12.3 ±1.8%

72B - 84.6 72.6 -12.0 ±0.9%

72B ✓ 82.6 69.3 -13.3 ±1.0%

Gemma-2

9B - 67.3 56.3 -10.9 ±1.2%

9B ✓ 73.3 57.6 -15.7 ±1.2%

27B - 68.0 54.6 -13.4 ±2.0%

27B ✓ 74.8 61.9 -12.9 ±2.3%

Average 70.8 58.5 -12.2 ±1.5%

Table 1: Average performance on original and WiCkeD
variants of the six benchmarks. IT: instruction-tuned.
∆: degradation from original performance

Appendix C. We set the number of few-shot exam-
ples to five, in order to ensure that in most cases
there is at least one example where None of the
above is the correct option.

In addition, we also evaluate the LLM models us-
ing zero-shot chain-of-thoughts prompting (CoT)
on the three benchmarks commonly used to as-
sess the reasoning capabilities of LLMs: MMLU,
MMLU-Pro, MMLU-Redux, and GPQA. We also
include 3 state-of-the-art closed-source models:
OpenAI GPT-4o and GPT-4o-mini (OpenAI et al.,
2024) and Gemini Flash 2.0.3 We set the maxi-
mum generation length to 4096, unless limited by
the model itself.

5 Results and Discussion

5.1 Main Results

Table 1 shows the mean accuracy of the models on
the original and WiCkeD benchmarks, with a signif-
icant drop in performance. Qwen2.5-7B suffers the
largest degradation (19.73%), while its DeepSeek-
R1 distilled version (DeepSeek-R1-Qwen7B) suf-
fers the least (7.35%). This suggests that models
with better reasoning capabilities, like R1, are bet-
ter equipped to deal with the added complexity.

Prominently, the WiCkeD variants shuffle the
ranking of models. For example, the Qwen2.5-7B
and Qwen2.5-7B-IT models originally performed

3
deepmind.google/technologies/gemini/

flash-lite/

Size Group Original WiCkeD ∆

≤10B 63.4 51.9 -11.5
67.9 54.7 -13.2

10-70B 73.5 60.5 -13.0
76.8 64.2 -12.6

≥70B 80.7 69.8 -10.9
79.8 66.9 -12.9

Table 2: Average performance per size group in original
and WiCkeD variants of the six benchmarks using direct
prompting. The degradation (∆) does not decrease with
model size scaling.

close to the Llama-3.1-70B model. However, on
the WiCkeD variants, they lag behind it by 12.1%
and 8%, respectively. Similar patterns can be seen
in Gemma-2-9B-IT and Gemma-2-27B-IT, which
lag behind Llama-3.1-70B by 9.5% and 5.3%, re-
spectively. Qwen2.5-72B and Llama-3.1-70B are
the models that perform best in WiCkeD. There
is no clear advantage from instruction-tuning, as
results vary depending on the model family. Fur-
thermore, the degradation does not decrease with
model size scaling, as shown in Table 2.

5.2 Chain-of-Thought Results

Table 3 shows the performance of the models4

on the MMLU, MMLU-pro, MMLU-Redux, and
GPQA WiCkeD benchmarks. The drop for these
three benchmarks without CoT (direct columns
in the table) is lower than the other three bench-
marks, but applying CoT does not reduce the drop
in WiCkeD variants, which stays above 5%. This is
remarkable given that CoT is very effective at im-
proving results on MMLU and related benchmarks.
Instruction-tuned models experience significantly
less degradation than their base models, especially
when using CoT (see Appendix B for additional de-
tails). Notably, the DeepSpeed-R1 distilled models,
Qwen7B and Llama3.1-8B, suffer around 2% each.
Similarly, instruction-tuned Qwen2.5 7B and 14B
suffer less than 2%. We hypothesize this is due to
their enhanced reasoning capabilities.

As shown in Table 4, popular closed-source mod-
els also suffer a relatively large drop in the WiCkeD
variants (3.9-8.2%). This suggests that state-of-the-
art commercial models are also susceptible to the
phenomenon studied in our work.

4Due to compute constraints, we could not run CoT for the
∼70B models
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Direct CoT

Model Size IT WiCkeD ∆ WiCkeD ∆

DS-R1-Llama 8B - 30.3 -4.1 80.1 -2.0
DS-R1-Qwen 7B - 30.6 -4.3 74.9 -2.5

Llama-3.1 8B - 39.7 -3.2 53.9 -5.8
8B ✓ 43.6 -2.7 57.2 -3.4

Mistral 7B - 35.9 -3.4 36.3 -11.6
7B ✓ 33.5 -5.7 43.8 -4.9

Qwen-2.5

7B - 45.5 -6.9 43.0 -14.6
7B ✓ 47.1 -5.3 55.4 -1.7

14B - 55.6 -3.6 61.5 -3.97
14B ✓ 56.7 -3.4 64.0 -1.4

Gemma-2

9B - 36.1 -12.2 41.2 -8.9
9B ✓ 44.1 -9.3 56.3 -4.4

27B - 36.1 -10.8 59.2 -4.1
27B ✓ 51.3 -3.8 60.3 -3.8

Avg 41.9 -5.6 56.3 -5.2

Table 3: Performance on WiCkeD variants for MMLU,
MMLU-pro, and MMLU-Redux with and without CoT.
IT: instruction-tuned. ∆: degradation from the original
benchmark.

6 Conclusion

In this paper, we introduced a simple automatic
method to create more challenging variants from an
existing MCQ benchmark. The large drop in the re-
sults shows that WiCkeD challenges the knowledge
and reasoning of LLMs, as they need to identify
the absence of the correct answer, even when using
CoT. We showed that models with better reasoning
capabilities suffer less in WiCkeD, such as the orig-
inal Qwen7B and its distilled version of DS-R1.
We see WiCkeD as an addition towards efficient
evaluation of LLMs to avoid spurious correlations
and challenge reasoning and knowledge gaps. A
deeper look into why some models are more sensi-
tive to WiCkeD than others can provide significant
insights about uncovered limitations. We release
all the code and data under open licenses.

Limitations

We manually confirmed the applicability of
WiCkeD on some popular multiple-choice bench-
marks whose questions can be categorized into
SBAs and SCAs. However, for other benchmarks,
WiCkeD might need further verification.
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Model WiCkeD ∆

GPT-4o 81.4 -3.9
GPT-4o-mini 74.6 -8.2
Gemini Flash 2.0 80.3 -7.8

Avg 78.8 -6.6

Table 4: Performance of closed-source models on
WiCkeD variants for MMLU, MMLU-pro, and MMLU-
Redux using CoT. ∆: degradation from the original
benchmark.
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A Detecting Single Best Answer examples

To ensure the reliability of the automatic identifi-
cation of single-best-answer (SBA) questions, we
uniformly sample 4K questions from the MMLU,
MMLU-Pro, Commonsense-QA, and Truthful-QA
benchmarks, which we divide into 1K and 3K splits.
We then manually annotate the 1K samples and op-
timize GPT-4o-mini prompt on them for best recall.
Table 6 shows the prompt template for GPT-4o-
mini, which we used to annotate the 4K questions.
The 3K split was then used to train our Bert-based
SBA classifier on them. The classifier was trained
for 2 epochs, using a learning rate of 1e-04. The
model was frozen, except for the last layer and the
classification head.

Table 5 shows the percentages of SBA ques-
tions on the 1K split as determined by our manual
annotations, GPT-4o-mini, and the SBA classifier.
The classifier is the preferred one, as it is the most
conservative, that is, it detects the most SBA ex-
amples, which would be copied verbatim to the
WiCkeD variant of the benchmark. The evalua-
tion figures in the table confirm this choice, as the

classifier has higher recall. The small drop in pre-
cision is harmless, as it means that we will not
add None of the above option to those examples,
and will be copied verbatim. In other words, we
can estimate that WiCkeD contains 1% of incoher-
ent examples (where there is a valid option even if
None of the above is recorded as the correct option),
and 5% of examples which do not have a None of
the above option even if we could have added it
if the classifier had 100% precision. These figures
confirm the high quality of the WiCkeD variants.
Table 7 shows the final SBA percentages for each
benchmark as determined by the classifier.

Figure 3: The changes in models’ answers of the origi-
nal benchmarks and the WiCkeD variant using chain-of-
thoughts.

B Instruct vs Base Models on
Chain-of-Thought

Results of CoT suggest the instruct models experi-
ence less degradation than their base models. To
better understand why this happens, we analyze
their answers. Figure 3 shows the change in an-
swers from the original to the WiCkeD variants.
Instruction-tuned models are less prone to reverse
correct answers and can correct original mistakes
in WiCkeD. This suggests that WiCkeD is useful
for better gauging the reasoning capabilities of the
models.

C Multiple Choice Prompting

In multiple choice prompting, the model is
prompted with few-shot demonstrations c and
a question q and the set of choices A ={A,B,C,D}. It generates a probability of the an-
swer label aϵA conditioned on the prefix prompt
given by:

P(a∣c, q) = T

∏
t=1

p(at∣c, q < T ) (1)
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MMLU MMLU-Pro TQA CSQA Recall Precision

Manual 17.3 12.3 3.3 3.8 – –
GPT-4o-mini 18.2 13 4.2 3.9 98.5 97.4

SBA Classifier 19.6 14.2 4.5 4 98.9 95.1

Table 5: The Percentage of Single Best Answer (SBA) questions in 1K questions sampled uniformly from MMLU,
MMLU-Pro, TruthfulQA (TQA), and CommonsenseQA (CSQA) as determined by our manual Annotations, GPT-
4o-mini, and our trained SBA classifier. Recall and precision are computed with respect to the manual annotation.

"A single correct answer question is a question that can have exactly one correct answer from a given set of choices.
A single best answer question can have a most appropriate answer (for example, if this answer is omitted, another answer will be correct).
Classify the following questions into SBA and non-SBA questions. Assign a label of 1 if the question is a SBA question and a label of 0 otherwise.
Question: {question} Class:"

Table 6: SBA Annotation Prompt Template

MMLU MMLU-Pro MMLU-Redux TruthfulQA Commonsense QA Arc Challenge

20.3% 16.8% 14.7% 3.2% 3.7% 5.2%

Table 7: The Percentage of Single Best Answer (SBA) questions in the benchmarks as determined by our SBA
classifier. We do not apply WiCkeD to SBA questions as it can break their coherence.

The model answer is set to:

argmax
aϵA

(P (a∣c, q)) (2)

Figure 4: Examples from the MMLU computer science
task using WiCkeD. We show 3-shot for brevity, but
5-shot was actually used in the experiments for the main
results.

Figures 4, 5, 6, and 7 show example prompts
for the MMLU college computer science, Arc Chal-
lenge, Common-sense QA, and MMLU-Redux
benchmarks, respectively.

Figure 5: Examples from the AllenAi Arc challenge
using WiCkeD. We show 3-shot for brevity, but 5-shot
was actually used in the experiments for the main results.
The first few-shot example does not include None of the
above option because it was classified as SBA question.

D Detailed Wicked Results

Tables 8 and 9 show the detailed performances of
open-weight models using direct and CoT prompt-
ing, respectively. Since Wicked selects a ran-
dom choice to be replaced every time, results may
slightly vary. The reported results use a random
seed of 5331. Table 10 shows the detailed perfor-
mances of Closed-source models.
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Model Size IT MMLU MMLU Pro MMLU Redux Arc Challenge TruthfulQA CSQA Average
Org. Wcd. Org. Wcd. Org. Wcd. Org. Wcd. Org. Wcd. Org. Wcd. Org. Wcd.

Qwen-2.5

7B - 74.0 48.3 54.3 45.6 67.6 43.7 89.3 71. 79.3 65.8 85.1 70.3 74.9 57.5
7B ✓ 74.4 48.8 53.8 47.8 68.2 60.2 90.1 78.1 71.7 62.17 84.5 73.7 73.9 61.8

14B - 79.8 70.9 58.4 55.3 73.6 64.1 94.1 68.7 82.2 71.8 84.6 74.5 78.8 67.6
14B ✓ 79.9 72.7 60.2 55.6 75.2 66.7 94.4 75.1 80.1 73.1 83.4 74.2 78.9 69.6
72B - 86.0 78.2 67.1 62.0 81.2 64.5 95.7 74.5 88.9 73.4 89.3 77.3 84.7 71.6
72B ✓ 87.3 80.1 68.4 60.5 81.7 67.8 95.1 80.1 90.1 74.6 89.1 79.4 85.3 73.8

Gemma-2

9B - 70.9 57.1 48.5 37.9 65.7 57.9 88.9 75.1 62.9 54.9 76.5 64.6 68.9 57.9
9B ✓ 72.2 51.4 51.2 47.1 66.1 52.8 90.1 77.1 72.3 62.4 81.9 68.4 72.3 59.9

27B - 70.9 57.1 48.1 35.3 67.2 52.3 89.9 69.6 78.9 59.9 81.1 70.5 72.7 57.5
27B ✓ 76.0 64.4 53.2 42.6 70.1 57.4 91.8 73.3 81.5 70.8 83.7 69.8 76.1 63.0

Llama 3.1

8B - 64.7 56.7 42.5 39.7 58.1 51.3 79.7 58.2 58.0 49.6 73.6 64.3 62.8 53.3
8B ✓ 67.7 60.1 46.8 43.8 62.2 53.2 82.5 59.1 63.2 53.6 78.1 66.9 66.8 56.1

70B - 77.9 70.1 56.4 52.8 78.4 69.8 90.6 76.6 81.7 66.5 81.8 69.8 77.8 67.6
70B ✓ 82.1 68.9 58.7 44.6 79.6 67.2 91.2 79.4 80.3 69.8 82.3 69.2 79.0 66.5

Mistral 7B - 61.5 50.4 38.1 32.7 54.1 40.8 77.7 65.8 55.8 41.7 70.7 56.4 59.6 47.9
7B ✓ 58.7 51.9 35.6 32.8 53.7 40.4 75.6 63.3 60.9 44.9 70.4 56.6 59.2 48.3

DS-R1- Distill Llama 8B - 55.5 48.6 34.6 30.5 51.2 43.0 71.3 61.7 62.7 47.9 64.8 59.8 56.7 48.6
DS-R1- Distill Qwen 7B - 54.1 48.4 32.2 30.9 53.8 43.2 73.8 65.7 88.4 72.5 61.9 55.7 60.7 52.7

Average 71.9 60.2 50.5 44.3 67.1 55.4 86.8 70.7 74.4 61.9 79.0 67.9 71.6 60.1

Table 8: Detailed results for benchmarks: Original (Org.) and WiCkeD (Wcd.) variants using direct prompting.

Model Size IT MMLU MMLU Pro MMLU Redux GPQA Average
Org. Wcd. Org. Wcd. Org. Wcd. Org. Wcd. Org. Wcd.

Qwen-2.5

7B - 75.3 50.3 54.3 45.6 67.6 43.7 30.2 22.2 56.9 40.5
7B ✓ 76.4 53.8 56.8 47.8 68.2 60.2 32.1 23.3 58.4 46.3

14B - 79.8 70.9 58.4 55.3 70.6 62.1 32.8 27.8 60.4 54.0
14B ✓ 79.9 72.7 60.2 55.6 75.2 66.7 34.78 26.7 62.5 55.4

Gemma-2

9B - 70.4 61.1 48.5 40.9 58.7 45.9 32.4 24 52.5 42.9
9B ✓ 72.2 68.4 51.2 47.1 63.1 52.8 33.8 24.9 55.1 48.3

27B - 74.9 70.5 48.1 42.3 67.2 61.3 31.7 25.3 55.5 49.9
27B ✓ 77.4 72.6 53.2 46.6 70.1 64.8 32.4 27.8 58.3 52.9

Mistral 7B - 58.7 47.8 35.6 32.7 53.7 40.8 24.7 17.8 43.2 34.8
7B ✓ 61.5 51.9 38.1 32.8 54.1 42.4 28.9 20.2 45.7 36.8

Llama 3.1 8B - 69.8 62.7 45.7 42.5 62.1 56.1 28.9 21.4 51.6 45.7
8B ✓ 71.2 66.3 47.6 44.8 64.2 60.2 31.9 24.6 53.7 48.9

DS-R1- Distill Llama 8B - 85.9 84.6 75.1 76.1 84.5 78.5 35.8 28.6 70.3 66.9
DS-R1- Distill Qwen 7B - 80.4 78.1 73.2 70.4 74.3 72.8 36.7 29 66.2 62.6

Average 73.8 65.1 53.3 48.6 66.7 57.7 31.9 24.5 56.4 49.0

Table 9: Detailed results for the MMLU, MMLU-pro, MMLU-redux, and GPQA benchmarks’ Original (Org.) and
WiCkeD (Wcd.) variants using chain-of-thought prompting.

Model MMLU MMLU Pro MMLU Redux Average
Org. Wcd. Org. Wcd. Org. Wcd. Org. Wcd.

GPT-4o 81.3 75.9 63.7 55.6 78.9 67.9 74.6 66.5
GPT-4o-mini 89.6 84.0 70.5 67.3 84.3 81.3 81.5 77.5
Gemini Flash 2.0 82.8 77.4 75.9 64.2 82.2 75.9 80.3 72.5

Average 84.6 79.1 70.0 62.4 81.8 75.0 78.8 72.2

Table 10: Detailed results of closed-source models in the MMLU, MMLU-pro, and MMLU-redux benchmarks’
Original (Org.) and WiCkeD (Wcd.) variants using chain-of-thought prompting.
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Figure 6: Examples from the Common-sense QA using
WiCkeD. We show 3-shot for brevity, but 5-shot was
actually used in the experiments for the main results.
The first few-shot example does not include None of the
above option because it was classified as SBA question.

Figure 7: Examples from the MMLU-Redux using
WiCkeD. We show 3-shot for brevity, but 5-shot was
actually used in the experiments for the main results.
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