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Abstract

Hallucination, the generation of factually in-
correct information, remains a significant chal-
lenge for large language models (LLMs), es-
pecially in open-domain long-form generation.
Existing approaches for detecting hallucination
in long-form tasks either focus on limited do-
mains or rely heavily on external fact-checking
tools, which may not always be available.

In this work, we systematically investigate
reference-free hallucination detection in open-
domain long-form responses. Our findings re-
veal that internal states (e.g., model’s output
probability and entropy) alone are insufficient
for reliably (i.e., better than random guessing)
distinguishing between factual and hallucinated
content. To enhance detection, we explore vari-
ous existing approaches, including prompting-
based methods, probing, and fine-tuning, with
fine-tuning proving the most effective. To fur-
ther improve the accuracy, we introduce a new
paradigm, named RATE-FT, that augments fine-
tuning with an auxiliary task for the model to
jointly learn with the main task of hallucina-
tion detection. With extensive experiments and
analysis using a variety of model families &
datasets, we demonstrate the effectiveness and
generalizability of our method, e.g., +3% over
general fine-tuning methods on LongFact.

1 Introduction

With the recent advancements in model scale and
pretraining data, large language models (LLMs)
have demonstrated remarkable capabilities in var-
ious natural language processing (NLP) tasks
(Brown et al., 2020). Despite these successes, hal-
lucination, where models tend to produce content
that conflicts with real-world facts, remains a sig-
nificant challenge (Zhang et al., 2023). Most ex-
isting research on hallucination detection has fo-
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Figure 1: Comparison between Fine-Tuning and RATE-
FT for hallucination detection. RATE-FT improves
Fine-Tuning by incorporating rationales and an auxiliary
task (question answering) into the training process.

Detector

cused on short-form tasks, where the output con-
sists of one or a few tokens. While these meth-
ods are effective for short-form content (Manakul
et al., 2023; Mahaut et al., 2024; Yehuda et al.,
2024; Zhang et al., 2024a), extending them to open-
domain long-form generation presents additional
complexities and new challenges. Unlike short-
form tasks, long-form responses can span hundreds
or even thousands of tokens, requiring models to
generate detailed and nuanced answers to broad
fact-seeking prompts (Wei et al., 2024). This ne-
cessitates that LLMs synthesize information across
multiple knowledge domains, increasing the risk
of generating content that sounds plausible yet is
factually incorrect. For example, when answering
‘What is the significance of Amber Room?’, LLMs
may generate responses that mix accurate historical
information with fabricated details, complicating
the task of distinguishing fact from hallucination.

Recent efforts have sought to address hallucina-
tion detection in long-form tasks. However, they
either focus on limited domains, e.g., biography
generation (Min et al., 2023; Fadeeva et al., 2024)
or rely heavily on external fact-checking tools or
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knowledge bases, e.g., Google Search (Wei et al.,
2024). While these tools offer valuable support,
they are not always available or scalable. This
raises an important question: can we develop hal-
lucination detectors that rely solely on the model
itself, without the need for external fact-checking
resources? So far, little attention has been given
to systematically exploring how the model’s own
mechanisms can be used for detecting hallucina-
tions in open-domain long-form generation.

To address this gap, we start by investigating
hallucination detection in open-domain long-form
responses using the model’s internal states, e.g.,
output probability and entropy. Specifically, we de-
compose long-form responses into atomized claims
using the model and verify each claim’s correctness
using Google Search to construct benchmark data
following Wei et al. (2024). Our analysis reveals
that these internal states alone are insufficient for
reliably (i.e., better than random guessing) distin-
guishing between correct and incorrect claims, indi-
cating that the mechanisms for detecting hallucina-
tions in long-form outputs differ significantly from
those in short-form tasks. To enhance detection, we
explore several existing methods, including prompt-
ing, probing, and fine-tuning LLMs. Our experi-
mental results show that fine-tuning LLMs is the
most effective method to detect hallucinations.

Building on this, we introduce a novel method
Rationale and Auxiliary Task Enhanced Fine-
Tuning (RATE-FT) (Figure 1). Specifically, we
convert the original claims into auxiliary question
answering (QA) examples for augmentation, pro-
viding a complementary learning perspective for
the model, which enables better generalization. Ad-
ditionally, we incorporate collected rationales into
the training process for better reasoning. Extensive
experiments and analysis using different models
demonstrate the effectiveness and generalizability
of our approach. Furthermore, we investigate the
integration of model uncertainty into hallucination
detection in Appendix A.8. In summary, our main
contributions are:

* We are the first to systematically investigate
reference-free hallucination detection in open-
domain long-form generation by analyzing a rep-
resentative set of existing methods.

* We introduce a novel approach that incorporates
rationales and an auxiliary question answering
task into fine-tuning, achieving significant perfor-
mance improvements.

2 Related Work

Large Language Models (LLMs) often generate
content that appears plausible but is factually un-
supported, a phenomenon commonly known as
hallucination (Zhang et al., 2023). Based on
whether the hallucinated content contradicts real-
world facts or the input context, hallucination can
be categorized into two main groups: factuality hal-
lucination and faithfulness hallucination (Huang
et al., 2023). Extensive research has been con-
ducted on exploring the causes (Onoe et al., 2022;
Kang and Choi, 2023; Wei et al., 2023; Liu et al.,
2024), detection (Min et al., 2023; Zhao et al.,
2023; Chen et al., 2024a; Fadeeva et al., 2024; Wei
et al., 2024), and mitigation (Gao et al., 2023; Ji
et al., 2023; Tian et al., 2024; Zhang et al., 2024b;
Kang et al., 2024; Lin et al., 2024) of hallucination
in LLMs. However, most existing hallucination
detection methods have primarily focused on short-
form tasks, where the output consists of one or
a few tokens. In this work, we shift the focus to
the more challenging problem of reference-free
hallucination detection in open-domain long-form
generation, where outputs are substantially longer
and require a more nuanced evaluation of actuality.

3 Are LLMSs’ Internal States Sufficient for
Open-Domain Long-Form Generation?

The internal states of LLMs, such as output prob-
ability and entropy, have been shown to be ef-
fective in detecting hallucinations in short-form
tasks, where outputs are typically limited to only
a few tokens. By analyzing these signals, models
can often differentiate between factual and hallu-
cinated information. However, their applicability
in open-domain long-form generation remains un-
derexplored. A key question is whether LLMs
can depend solely on their internal states to iden-
tify hallucinations in long-form generation, without
using external fact-checking tools. To answer it,
we conduct some pilot experiments on LongFact
(Wei et al., 2024), a long-form generation dataset
spanning 38 different domains. Specifically, for
each prompt in the sampled subset (200 prompts),
we obtain a long-form response from Llama-3-8B-
Instruct with greedy decoding. Following Wei et al.
(2024), we employ the model to decompose long-
form responses into atomized claims and label them
as ‘factual’ or ‘hallucinated’ together with the rea-
sons (see Appendix A.1 for construction details).
For each claim, we mainly focus on two types
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Figure 2: Detection results based on token probability.

of internal states to estimate factual confidence fol-
lowing SelfCheckGPT (Manakul et al., 2023): the
probability or the entropy (uncertainty) of output
tokens. Specifically, we examine the arithmetic and
geometric ! averages of all tokens, the average of
tokens with the top-K lowest probability or highest
entropy (K = 1,3,5), and the average of tokens
with the top- P% lowest probability or highest en-
tropy (P = 5,10, 15). The results in Figure 2 and
Appendix A.2 suggest that neither internal state
reliably, i.e., better than random guessing, predicts
the correctness of a given claim, which may be due
to the presence of numerous insignificant tokens
within the claim, such as stop words. To address
this, we consider variants that focus only on output
tokens related to entities. The results, shown in Ap-
pendix A.2, reveal similar patterns (see Appendix
A.3 for a detailed comparison with the findings in
Manakul et al. (2023)). We analyze the underly-
ing reasons as follows. In open-domain long-form
generation, claims are not limited to a few tokens,
which introduces multiple sources of uncertainty.
Specifically, the probability or entropy reflects the
model’s confidence in how a claim is expressed, i.e.,
its confidence in the claim as a sequence of output
tokens, rather than in the correctness of the claim.
Different surface forms of the claim yield different
confidence levels, leading to unreliable estimates.

Considering the unreliability of LLMs’ inter-
nal states in hallucination detection, there are sev-
eral promising alternative approaches, including
prompting, probing and fine-tuning LL.Ms, which
we explore in the next section.

4 Prompting, Probing and Fine-Tuning

Based on a review of the research area, we iden-
tify three groups of existing hallucination detection

lCommonly known as perplexity

methods, which we discuss below.

Prompting Prompting-based approaches involve
directly prompting LLMs to assess the correctness
of a given claim without additional training. We
investigate the following three different methods:
(i) Prompting the model to output ‘True’ or ‘False’
for a given claim, referred to as Promptz. The
probability assigned to the token ‘True’ represents
Pracrual, While the probability assigned to ‘False’
represents Phajiucinated- (i) Prompting the model to
output the probability that it considers the given
claim to be correct, referred to as Promptp, . This
number directly represents Pacqua. (iii) SelfCheck-
GPT, which detects hallucinations by sampling ad-
ditional responses from the model and assessing
inconsistencies between each response and the tar-
get claim. The proportion of responses that support
the claim is taken as P,qa. Following Manakul
et al. (2023), we sample 20 responses for detection.

Probing Following Su et al. (2024a), we train a
multilayer perceptron (MLP) on the contextualized
embeddings of LLMs to perform binary classifica-
tion for hallucination detection, while keeping the
base LLM frozen. The trained MLP outputs Prycqual
as an indicator for classification.

Fine-Tuning We fine-tune the base LLM with
LoRA to enhance its ability to output ‘True’ or
‘False’ for a given claim (Kapoor et al., 2024).
Similar to Promptyg, the probabilities assigned to
the tokens ‘True’ and ‘False’ correspond to Praerual
and Phajucinated> respectively. Note that LoRA fine-
tuning allows us to easily use the original model
for general tasks while applying the trained LoRA
specifically for hallucination detection.

Following the data construction process outlined
in Appendix A.1, we conduct experiments on the
full set of LongFact using Llama-3-8B-Instruct.
This process yields 2,711 factual and hallucinated
claims, which are subsequently split into training
(70%), validation (20%), and test (10%) sets. For
all three types of methods, we use Ppca as the
classification indicator. Specifically, a claim is
classified as ‘factual’ if Py, exceeds a prede-
fined threshold; otherwise, it is classified as ‘hal-
lucinated’. The optimal threshold is determined
through a search on the validation set. Consistent
with Tang et al. (2024); Chen et al. (2024b), we em-
ploy balanced accuracy (BAcc) as the evaluation

. _ 1, TP TN
metric: BAcc = + TN+FP), where TP, TN,

2 \ TP+EN ’ )
FP, and FN stand for true/false positives/negatives.

The results of different methods on the test set, as
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Dataset Method

Promptyr  Promptp,  SelfCheckGPT Probing Fine-Tuning

LongFact 69.9 53.4 69.1 744 76.1
Biography 723 56.3 71.9 77.0 78.2

Table 1: BAcc (%) of existing hallucination detection
methods on LongFact and biography generation.

shown in Table 1, indicate that fine-tuning LLMs is
the most effective among all existing methods (see
Appendix A.4 for an analysis of fine-tuning effec-
tiveness in Out-of-Distribution (OOD) scenarios).
While both Promptyr and SelfCheckGPT achieve
decent performance, Probing yields notable im-
provements by incorporating additional training
with labels obtained from external search. Fine-
Tuning further enhances performance by updating
the internal features of LLMs, enabling more ef-
fective learning. In contrast, Promptp,, performs
significantly worse, likely due to LLMs’ tendency
to output high probabilities for hallucinated claims,
leading to overconfidence. Additionally, we extend
the experiments to biography generation (Min et al.,
2023). The results presented in Table 1 demon-
strate that the observations and conclusions can be
generalized to different datasets.

Building on these findings, a natural question
arises: can Fine-Tuning be further improved to
develop more effective hallucination detectors? We
answer this question by incorporating rationales
and an auxiliary task into the training process.

5 Rationale and Auxiliary Task Enhanced
Fine-Tuning (RATE-FT)

While hallucination detection is not regarded as a
reasoning task in the conventional sense, incorpo-
rating Chain-of-Thought (CoT) (Wei et al., 2022)
explaining the judgment can still be beneficial for
distinguishing factual content from hallucinated in-
formation as it enables LLMs to better evaluate the
correctness of claims by systematically analyzing
underlying components. To examine the impact
of rationales, we prompt the model to generate
a reasoning path before making a judgment (i.e.,
‘True’ or ‘False’), referred to as Promptc, .. This
approach improves performance from 69.9 (using
Promptg) to 74.9, highlighting the effectiveness
of incorporating CoT reasoning.

Augmenting Fine-Tuning with Rationales
Building on the above observation, we augment
the fine-tuning dataset with rationales generated
by the model during data construction, explaining

Dataset Method

Promptr  Prompteprgp  Probing  Fine-Tuning RATE-FT

LongFact 69.9 74.9 74.4 76.1 79.6
Biography 72.3 74.8 77.0 78.2 80.9

Table 2: BAcc (%) of RATE-FT and baseline methods.

whether the search results support the claims.
Notably, we adopt the ‘label-rationale’ format to
maintain the same inference cost as the baseline
Fine-Tuning. This allows us to directly derive
Pracrua from the first output token without requiring
the generation of the complete reasoning path.

Consolidating knowledge through repetition in
diverse contexts is a fundamental principle of ef-
fective human learning (Ausubel, 2012). For exam-
ple, medical students deepen their understanding
of anatomy by studying diagrams, practicing in
simulations, and engaging in hands-on dissections,
each offering a unique perspective on the same
foundational knowledge. Drawing inspiration from
this paradigm, we introduce an auxiliary question
answering (QA) task into the fine-tuning process
to further strengthen the model’s understanding
and enhance its generalization capabilities. This
auxiliary QA task serves as a complementary com-
ponent to the primary hallucination detection task,
offering the model an alternative but closely related
perspective on the problem (see Appendix A.5 for
more analysis on the auxiliary task).

Augmenting Fine-Tuning with QA Task Specif-
ically, for each claim, we first prompt the model
to generate a question about the key information
within it. If the claim is factual, we ask the model
to extract the correct answer directly from the claim
and provide an explanation, forming a QA exam-
ple. For hallucinated claims, we leverage the aug-
mented rationale to guide the model in generating
an appropriate correct answer along with an expla-
nation. After constructing these QA examples, they
are combined with the original data for fine-tuning.

By integrating these two strategies, we pro-
pose Rationale and Auxiliary Task Enhanced Fine-
Tuning (RATE-FT) (Figure 1). RATE-FT requires
the model to systematically analyze and explain its
judgments and allows the model to benefit from
complementary learning perspectives, reinforcing
its understanding of claims through diverse yet in-
terconnected tasks. Following the experimental
setup described in Section 4, we show the compar-
ison between RATE-FT and baseline approaches
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Method

Dataset

Fine-Tuning w.o. aux RATE-FT
LongFact 76.1 77.5 79.6
Biography 78.2 79.4 80.9

Table 3: Results of different ablations.

in Table 2, which demonstrates the superiority of
RATE-FT across different datasets (see Appendix
A.6 for an analysis of the effect of additional data
augmentation compared to the auxiliary QA task).

5.1 Further Analysis

Ablation Study We analyze the contribution of
different components of RATE-FT by investigating
the variant of RATE-FT without the auxiliary task
(w.o. aux). Table 3 presents the performance of dif-
ferent methods, highlighting that each component
plays an important role in achieving the overall
performance.

Generalization to Different Models Our experi-
ments and analysis so far use Llama-3-8B-Instruct
as the backbone model. To verify whether the per-
formance gain of RATE-FT is consistent across
different backbone models, we extend the exper-
iments to Llama-3.1-70B-Instruct (Dubey et al.,
2024), Mistral-7B-Instruct (Jiang et al., 2023), and
Qwen2.5-7B-Instruct (Yang et al., 2024) on Long-
Fact (see Appendix A.7 for details on data collec-
tion). From the results shown in Table 4, we can
observe that RATE-FT consistently outperforms
baseline approaches across all models, demonstrat-
ing its robustness and generalizability to diverse
model architectures and scales.

In addition, we provide results of incorporating
uncertainty for hallucination detection, all prompts
used in our experiments, and implementation de-
tails in Appendix A.8 ~ A.12, respectively.

6 Conclusion

In this work, we systematically investigate
reference-free hallucination detection in open-
domain long-form generation. Our study begins
with an analysis of the model’s internal states,
demonstrating that these states alone cannot reli-
ably detect hallucinations. We then evaluate several
existing approaches, including prompting, probing,
and fine-tuning, with fine-tuning emerging as the
most effective method. Building on these findings,
we introduce Rationale and Auxiliary Task En-
hanced Fine-Tuning (RATE-FT), a novel approach

Model Method

Prompty:  Prompte . Probing  Fine-Tuning RATE-FT
Llama-3.1-70B-Instruct 732 76.8 794 80.6 83.8
Mistral-7B-Instruct 61.8 64.1 68.4 70.8 734
Qwen2.5-7B-Instruct 72.8 75.5 71.0 784 81.1

Table 4: Results using different models.

that leverages rationales and an auxiliary task to
achieve significant improvements in detection per-
formance across two datasets and various LLMs.

Limitations

One limitation of our work is its focus solely on
improving the performance of the hallucination
detector. A potential improvement could be to ex-
plore leveraging the detector’s feedback as a reward
signal to guide LLMs to generate more factual re-
sponses. Additionally, developing a more compre-
hensive benchmark for hallucination detection in
open-domain long-form generation that covers a
broader range of domains would further enhance
its applicability.

References

David Paul Ausubel. 2012. The acquisition and re-
tention of knowledge: A cognitive view. Springer
Science & Business Media.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett,
and Eunsol Choi. 2024a. Complex claim verification
with evidence retrieved in the wild. In Proceedings
of the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 3569-3587, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Lida Chen, Zujie Liang, Xintao Wang, Jiaqing Liang,
Yanghua Xiao, Feng Wei, Jinglei Chen, Zhenghong
Hao, Bing Han, and Wei Wang. 2024b. Teach-
ing large language models to express knowledge
boundary from their own signals. arXiv preprint
arXiv:2406.10881.

1177


https://books.google.com/books?hl=zh-CN&lr=&id=wfckBAAAQBAJ&oi=fnd&pg=PR9&dq=Consolidating+knowledge+through+repetition+in+diverse+contexts+is+a+fundamental+principle+of+effective+human+learning.&ots=mbZAesQ1GP&sig=K4asgsTJsZOrERmDQBfPw5lYREQ#v=onepage&q&f=false
https://books.google.com/books?hl=zh-CN&lr=&id=wfckBAAAQBAJ&oi=fnd&pg=PR9&dq=Consolidating+knowledge+through+repetition+in+diverse+contexts+is+a+fundamental+principle+of+effective+human+learning.&ots=mbZAesQ1GP&sig=K4asgsTJsZOrERmDQBfPw5lYREQ#v=onepage&q&f=false
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2024.naacl-long.196
https://doi.org/10.18653/v1/2024.naacl-long.196
https://arxiv.org/abs/2406.10881
https://arxiv.org/abs/2406.10881
https://arxiv.org/abs/2406.10881

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Ekaterina Fadeeva, Aleksandr Rubashevskii, Artem
Shelmanov, Sergey Petrakov, Haonan Li, Hamdy
Mubarak, Evgenii Tsymbalov, Gleb Kuzmin, Alexan-
der Panchenko, Timothy Baldwin, Preslav Nakov,
and Maxim Panov. 2024. Fact-checking the output
of large language models via token-level uncertainty
quantification. In Findings of the Association for
Computational Linguistics ACL 2024, pages 9367—
9385, Bangkok, Thailand and virtual meeting. Asso-
ciation for Computational Linguistics.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vincent
Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and
Kelvin Guu. 2023. RARR: Researching and revising
what language models say, using language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 16477-16508, Toronto, Canada.
Association for Computational Linguistics.

Minda Hu, Bowei He, Yufei Wang, Liangyou Li, Chen
Ma, and Irwin King. 2024. Mitigating large language
model hallucination with faithful finetuning. arXiv
preprint arXiv:2406.11267.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
ACM Transactions on Information Systems.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko
Ishii, and Pascale Fung. 2023. Towards mitigating
LLM hallucination via self reflection. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 1827-1843, Singapore. Associ-
ation for Computational Linguistics.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Cheongwoong Kang and Jaesik Choi. 2023. Impact
of co-occurrence on factual knowledge of large lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages
7721-7735, Singapore. Association for Computa-
tional Linguistics.

Katie Kang, Eric Wallace, Claire Tomlin, Aviral Ku-
mar, and Sergey Levine. 2024. Unfamiliar finetuning
examples control how language models hallucinate.
arXiv preprint arXiv:2403.05612.

Sanyam Kapoor, Nate Gruver, Manley Roberts, Kather-
ine Collins, Arka Pal, Umang Bhatt, Adrian Weller,

Samuel Dooley, Micah Goldblum, and Andrew Gor-
don Wilson. 2024. Large language models must be
taught to know what they don’t know. arXiv preprint
arXiv:2406.08391.

Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wenhan
Xiong, Jimmy Lin, Wen-tau Yih, and Xilun Chen.
2024. Flame: Factuality-aware alignment for large
language models. arXiv preprint arXiv:2405.01525.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

Matéo Mahaut, Laura Aina, Paula Czarnowska, Mom-
chil Hardalov, Thomas Miiller, and Lluis Marquez.
2024. Factual confidence of LLMs: on reliability
and robustness of current estimators. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4554-4570, Bangkok, Thailand. Association
for Computational Linguistics.

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023.
SelfCheckGPT: Zero-resource black-box hallucina-
tion detection for generative large language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9004-9017, Singapore. Association for Computa-
tional Linguistics.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2023. FActScore:
Fine-grained atomic evaluation of factual precision
in long form text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 12076—12100, Singa-
pore. Association for Computational Linguistics.

Yasumasa Onoe, Michael Zhang, Eunsol Choi, and Greg
Durrett. 2022. Entity cloze by date: What LMs know
about unseen entities. In Findings of the Associa-
tion for Computational Linguistics: NAACL 2022,
pages 693-702, Seattle, United States. Association
for Computational Linguistics.

Weihang Su, Changyue Wang, Qingyao Ai, Yiran Hu,
Zhijing Wu, Yujia Zhou, and Yiqun Liu. 2024a. Un-
supervised real-time hallucination detection based on
the internal states of large language models. In Find-
ings of the Association for Computational Linguistics
ACL 2024, pages 14379-14391, Bangkok, Thailand
and virtual meeting. Association for Computational
Linguistics.

Weihang Su, Changyue Wang, Qingyao Ai, Yiran Hu,
Zhijing Wu, Yujia Zhou, and Yiqun Liu. 2024b. Un-
supervised real-time hallucination detection based on
the internal states of large language models. arXiv
preprint arXiv:2403.06448.

Liyan Tang, Philippe Laban, and Greg Durrett. 2024.
Minicheck: Efficient fact-checking of 1lms on ground-
ing documents. arXiv preprint arXiv:2404.10774.

1178


https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2024.findings-acl.558
https://doi.org/10.18653/v1/2024.findings-acl.558
https://doi.org/10.18653/v1/2024.findings-acl.558
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910
https://arxiv.org/abs/2406.11267
https://arxiv.org/abs/2406.11267
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://doi.org/10.18653/v1/2023.findings-emnlp.123
https://doi.org/10.18653/v1/2023.findings-emnlp.123
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://arxiv.org/abs/2403.05612
https://arxiv.org/abs/2403.05612
https://arxiv.org/abs/2406.08391
https://arxiv.org/abs/2406.08391
https://arxiv.org/pdf/2405.01525
https://arxiv.org/pdf/2405.01525
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.18653/v1/2024.acl-long.250
https://doi.org/10.18653/v1/2024.acl-long.250
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://doi.org/10.18653/v1/2024.findings-acl.854
https://doi.org/10.18653/v1/2024.findings-acl.854
https://doi.org/10.18653/v1/2024.findings-acl.854
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2404.10774
https://arxiv.org/abs/2404.10774

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christo-
pher D Manning, and Chelsea Finn. 2024. Fine-
tuning language models for factuality. In The Tivelfth
International Conference on Learning Representa-
tions.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Jerry Wei, Da Huang, Yifeng Lu, Denny Zhou, and
Quoc V Le. 2023. Simple synthetic data reduces
sycophancy in large language models. arXiv preprint
arXiv:2308.03958.

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu,
Nathan Hu, Dustin Tran, Daiyi Peng, Ruibo Liu,
Da Huang, Cosmo Du, et al. 2024. Long-form fac-
tuality in large language models. arXiv preprint
arXiv:2403.18802.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Yakir Yehuda, Itzik Malkiel, Oren Barkan, Jonathan
Weill, Royi Ronen, and Noam Koenigstein. 2024.
InterrogateLLM: Zero-resource hallucination detec-
tion in LLM-generated answers. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9333-9347, Bangkok, Thailand. Association
for Computational Linguistics.

Xiaokang Zhang, Zijun Yao, Jing Zhang, Kaifeng Yun,
Jifan Yu, Juanzi Li, and Jie Tang. 2024a. Transfer-
able and efficient non-factual content detection via
probe training with offline consistency checking. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 12348—12364, Bangkok, Thai-
land. Association for Computational Linguistics.

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou,
Lifeng Jin, Linfeng Song, Haitao Mi, and Helen
Meng. 2024b. Self-alignment for factuality: Miti-
gating hallucinations in LLMs via self-evaluation. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1946—1965, Bangkok, Thailand.
Association for Computational Linguistics.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023. Siren’s song in the ai ocean:
a survey on hallucination in large language models.
arXiv preprint arXiv:2309.01219.

Yiran Zhao, Jinghan Zhang, I Chern, Siyang Gao,
Pengfei Liu, Junxian He, et al. 2023. Felm: Bench-
marking factuality evaluation of large language mod-
els. Advances in Neural Information Processing Sys-
tems, 36.

Yaowei Zheng, Richong Zhang, Junhao Zhang, YeYan-
han YeYanhan, and Zheyan Luo. 2024. LlamaFac-
tory: Unified efficient fine-tuning of 100+ language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), pages 400—410,
Bangkok, Thailand. Association for Computational
Linguistics.

A Appendix

A.1 Benchmark Construction Details

For each prompt in the sampled subset (200
prompts), we obtain a long-form response from
Llama-3-8B-Instruct with greedy decoding. Fol-
lowing Wei et al. (2024), we employ the model
to decompose long-form responses into atomized
claims and assess whether each claim is relevant to
answering the corresponding prompt. For each rele-
vant claim, we use the model to generate multi-step
Google Search queries and reason about whether
the search results support the claim. Claims sup-
ported by the search results are labeled as “factual”,
while those contradicted by the results are cate-
gorized as “hallucinated”. After construction, we
obtain 2394 factual claims and 223 hallucinated
claims, respectively. We then randomly selected
an equal number (223) of factual and hallucinated
claims for experiments.

A.2 Hallucination Detection Results using
Internal States

We show the hallucination detection results using
different internal states in Figure 3 ~ 5

A.3 Detailed Comparison with Findings in
SelfCheckGPT

(i) While SelfCheckGPT (Manakul et al., 2023)
explores several internal states of LLMs, our work
covers a broader range of variants. As illustrated in
Section 3, we examine the arithmetic and geometric
averages (perplexity) of all tokens, the average of
tokens with the top- K lowest probability or highest
entropy (K = 1,3,5), and the average of tokens
with the top-P% lowest probability or highest en-
tropy (P = 5,10, 15). In contrast, SelfCheckGPT
only examines the arithmetic average of all tokens
and the average of tokens with the top-1 lowest
probability or highest entropy.

(if) Our findings differ significantly from those re-
ported in SelfCheckGPT. While SelfCheckGPT
suggests that LLM probabilities correlate well with
factuality, our experiments demonstrate that nei-
ther internal state reliably, i.e., better than random
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guessing, predicts the correctness of a given claim.
One possible explanation for this is the presence
of many insignificant tokens, such as stop words,
within the claim. To address this, we further in-
vestigate variants that focus only on output tokens
related to entities (Appendix A.2), and the results
exhibit similar patterns. Importantly, our findings
are consistent with those in Kapoor et al. (2024).

A.4 Out-of-Distribution Results

We verify the effectiveness of fine-tuning in Out-
of-Distribution (OOD) scenarios by training the
model on LongFact and evaluating its performance
on Biography. The results reported in Table 5
demonstrate that fine-tuning effectively generalizes
to OOD scenarios.

A.5 More Analysis on Auxiliary Task

Comparison with F2 F2 (Hu et al., 2024) also
integrates rationales and auxiliary tasks into the
training process. However, its main goal is to en-
hance the faithfulness of model responses while we
focus on improving the accuracy of hallucination
detection.

Further Clarification on Motivation The un-
derlying motivation for introducing the auxiliary
question answering (QA) task into fine-tuning is
that hallucination detection and mitigation are com-
plementary and closely related tasks. This auxiliary
QA task—where a question about the key informa-
tion in the claim is posed, and the model is trained
to provide the correct answer—helps improve the
factuality of the model’s responses through super-
vised fine-tuning. It acts as a complementary com-
ponent to the primary hallucination detection task,
offering the model an alternative yet closely related
perspective, thereby enhancing its generalization
capabilities.

A.6 Additional Data Augmentation versus
Auxiliary QA Task

To isolate the effect of additional data augmenta-
tion versus the auxiliary QA task, we design two
variants: (i) we paraphrase the original claim us-
ing GPT-4 for data augmentation and fine-tune
the model on the combined data, referred to
as Fine-Tuning, ,, which has roughly the same
amount of training data as RATE-FT; and (if) we
reduce the training data for RATE-FT by half (ap-
proximately the same amount as Fine-Tuning),
referred to as RATE-FTy,,r. We conduct experi-

Counts
Counts
Counts

arithmetic_average ‘geometric_average highest 1 highest 3

Counts

R
Counts
Counts

“highest_5 highest_5% highest. 10% highest_15%

Figure 3: Hallucination detection results based on token
entropy (uncertainty).

Prompt g SelfCheckGPT  Probing  Fine-Tuning
72.3 56.3 71.9 71.1 74.7

Prompthh

Table 5: Results of different methods in OOD scenarios.

ments on LongFact using Llama-3-8B-Instruct and
present the results in Table 6 and 7, which demon-
strate that the performance improvement primarily
comes from our designed auxiliary task, rather than
from additional data augmentation.

A.7 Data Collection Process for Other Models

When conducting experiments using other models,
we follow the exact same settings as those used for
Llama-3-8B-Instruct. Specifically, for each prompt,
we obtain a long-form response from the model un-
der investigation with greedy decoding. Following
Wei et al. (2024), we employ the model to decom-
pose long-form responses into atomized claims and
assess whether each claim is relevant to answering
the corresponding prompt. For each relevant claim,
we use the model to generate multi-step Google
Search queries and reason about whether the search
results support the claim. Claims supported by the
search results are labeled as “factual”, while those
contradicted by the results are categorized as “hal-
lucinated”.

Our constructed benchmarks align well with Su
et al. (2024b), as both include responses and in-
ternal states from various LLMs. The key dif-
ference is that the LLMs we investigate are all
modern models (Llama-3-8B-Instruct, Llama-3.1-
70B-Instruct, Mistral-7B-Instruct, and Qwen2.5-
7B-Instruct), whereas the models used in Su et al.
(2024b) are relatively outdated (such as LLaMA-2
and GPT-)).
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Counts.
Counts
Counts

arithmetic_average geometric_average lowest_1 lowest_3

Counts
Counts
Counts
Counts

" lowest_5 " lowest_5% “lowest_10% “lowest_15%

Figure 4: Hallucination detection results based on
the probability of entity-related tokens.

Fine—Tuningpﬂm RATE-FT
76.8 79.6
Table 6: Comparison between Fine-Tuning,,, and
RATE-FT.
Fine-Tuning RATE-FTy¢
76.1 78.5
Table 7:  Comparison between Fine-Tuning and
RATE-FT}s.

A.8 Incorporating Uncertainty for
Hallucination Detection

To enhance hallucination detection, we propose
incorporating model uncertainty into the detec-
tion process, enabling a hybrid pipeline that com-
bines the strengths of the model and external tools.
Specifically, when the model is uncertain about
whether a claim is factual or hallucinated, we lever-
age external tools to handle ambiguous cases, im-
proving overall performance. The process involves
setting two thresholds, avo,, and gy, for classifi-
cation. A claim is classified as ‘factual’ if Prequa >
apign and ‘hallucinated” if Pyl < Qoq- Claims
falling between these thresholds are classified as
‘unknown’ and delegated to external tools for fur-
ther evaluation. Assuming the external tools’ out-
put is the ground truth, predictions classified as
‘unknown’ are treated as correct. To evaluate the
hybrid pipeline, we define the BAcc-unknown met-
ric as follows:

_ 1 # Correct Factual Predictions
BAcc-unknown = 5( # Total Factual Claims
# Correct Hallucinated Predictions
# Total Hallucinated Claims

(€3]
)

The optimal thresholds, oy, and a;qp, are deter-
mined through a search on the validation set. This

Factual
Hallucinated

Counts
Counts

Counts
Counts

‘arithmetic_average ‘geometric_average highest 1 highest 3

Counts
Counts

Counts
Counts

“highest 5 highest 5% highest_10% highest_15%

Figure 5: Hallucination detection results based on
the entropy of entity-related tokens.

Promptcyr.rr  Probing Fine-Tuning RATE-FT
80.4 81.1 824 85.0

Table 8: BAcc-unknown (%) of different methods on
Longfact with Llama-3-8B-Instruct.

resented with an original response and a claim,

1o the given claim from
s exactly t sed in \boxed().

nding
Jour response is exactly the same

Claim: {claim}

Figure 6: Prompt for extracting the original output given
an atomized claim.

process ensures that BAcc on the validation set ex-
ceeds 70%, while also maximizing BAcc-unknown.
The goal is to strike a balance between performance
and efficiency by achieving high BAcc-unknown
without generating an excessive number of ‘un-
known’ predictions, which could substantially in-
crease detection costs. We conduct experiments
on LongFact using Llama-3-8B-Instruct and report
the results in Table 8, which demonstrate that in-
corporating model uncertainty greatly enhances
hallucination detection, as evidenced by the BAcc-
unknown metric’s superior performance compared
to standard BAcc in resolving ambiguous cases.
Moreover, RATE-FT continues to outperform all
other methods with respect to the BAcc-unknown
metric, highlighting its robustness and effective-
ness.

A.9 Prompt for Output Extraction

After decomposition, the atomized claims may dif-
fer from the original expression in the response. To
address this, we use the prompt shown in Figure 6
to retrieve the original output corresponding to a
given atomized claim.
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Promptre

Your task f the given claim. When pr

det aclaim, reply with True' or False'. Make sure that your response is
exactly True' or False' without any extra commentary whatsoever.

Claim: {claim}
Response:

Promptecerr

of the given claim. When pr a claim, first explain the solution and then enclose the ultimate answer

Your task is to d
(True or False!) in \boxed().

Glaim: (i)
Response:
Promptoes
Your task is to provide the probability that the given claim is correct. aclaim, reply with a numt 0.0 and 1.0. Make sure that
s exacty’a 0 without any

‘Claim: The sun fises in the east and sets in the west.
Response: 1.0

‘Claim: Humans have four arms and three heads.
Response: 0.

Claim: The human nose can dstect over 1 triion different scents.
Response: 0.82

Claim: The next president of South Korea will be a woman.
sponse: 0

Claim: {claim}

SelfCheckGPT
Context: {context}
Sentence: {sentence}
15 he sentence supported by the context above? Answer Yes or No,

Answer:

Figure 7: Prompts for different prompting methods.

Prompt for 'label-rationale' Format

Yourtask s to determine f When pr
Make sure that your response starts with True' or False

a claim, first reply with True" or False' and then explain the solution.

Claim: {claim}
Response: {Trus/False). {explanation)
Prompt for Question Answering
Answer the folowing question and provide the explanation.
Question: {question}
Answer: {answer}
Explanation: {explanation}
Prompt for Question Generation (Correct Claim)
Given a corret laim and why ti corret,fist dentit the key nformaton in the clam, then transform nto a queston and a correc answer (keep the

answer as concise as possible) about the key information, finally give the explanation (keep it different from the given reason). Make sure that your
response follows the format ‘Qt ‘

Correct claim: {correct claim}
Reason: {reason)
Response:

Prompt for Question Generation (Wrong Claim)
Given a wrong claim and why itis wrong,first identity the key information in the claim, then transform it into a question and a correct answer (keep the

answer as concise as possible) about the key information, finally give the explanation (keep it different from the given reason). Make sure that your
response follows the format t ;.

Wrong claim: (wrong claim}
Reason: {reason}
Response:

Figure 8: Prompts for different components of RATE-
FT.

A.10 Prompts for Baseline Approaches

Figure 7 illustrates the prompts used for different
prompting methods. The prompt used for construct-
ing training data in Probing and Fine-Tuning is the
same as the prompt employed by the Prompt
method.

A.11 Prompts Used in RATE-FT
Figure 8 presents all the prompts used in RATE-FT.

A.12 Implementation Details

For Promptyp and Promptp,,, we obtain the re-
sponse from the model with greedy decoding. Fol-
lowing Manakul et al. (2023), we set the tempera-
ture to 1.0 and generate 20 additional responses for
SelfCheckGPT.

We evaluate 4 different types of contextualized
embeddings for Probing: (1) the final token from
the last layer (type,), (2) the average of all tokens
in the last layer (type,), (3) the average of the final
token across all layers (types), and (4) the average
of type; and type, (type,). The optimal embed-

ding type, along with other hyperparameters, e.g.,
learning rate, is selected through a search on the
validation set. For Fine-Tuning and RATE-FT, we
leverage the LLaMA-Factory library (Zheng et al.,
2024) and perform a search on the validation set
for important hyperparameters.
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