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Abstract

One of the goals of automatic evaluation met-
rics in grammatical error correction (GEC) is
to rank GEC systems such that it matches hu-
man preferences. However, current automatic
evaluations are based on procedures that di-
verge from human evaluation. Specifically, hu-
man evaluation derives rankings by aggregat-
ing sentence-level relative evaluation results,
e.g., pairwise comparisons, using a rating algo-
rithm, whereas automatic evaluation averages
sentence-level absolute scores to obtain corpus-
level scores, which are then sorted to determine
rankings. In this study, we propose an aggre-
gation method for existing automatic evalua-
tion metrics which aligns with human evalua-
tion methods to bridge this gap. We conducted
experiments using various metrics, including
edit-based metrics, n-gram based metrics, and
sentence-level metrics, and show that resolving
the gap improves results for the most of met-
rics on the SEEDA benchmark. We also found
that even BERT-based metrics sometimes out-
perform the metrics of GPT-4. The proposed
ranking method is intergrated GEC-METRICS1.

1 Introduction

Grammatical error correction (GEC) task aims to
automatically correct grammatical errors and sur-
face errors such as spelling and orthographic errors
in text. Various GEC systems have been proposed
based on sequence-to-sequence models (Katsumata
and Komachi, 2020; Rothe et al., 2021), sequence
tagging (Awasthi et al., 2019; Omelianchuk et al.,
2020), and language models (Kaneko and Okazaki,
2023; Loem et al., 2023), and it is crucial to rank
those systems based on automatic evaluation met-
rics to select the best system matching user’s de-
mands. Automatic evaluation is expected to rank
GEC systems aligning with human preference, as

1A library for GEC evaluation proposed by Goto et al.
(2025), https://github.com/gotutiyan/gec-metrics.
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Figure 1: An overview of current human and automatic
evaluation when ranking three GEC systems based on a
dataset containing two sentences. Each system output
represents edits for simplicity.

evidenced by meta-evaluations of automatic met-
rics that assess their agreement with human evalua-
tion (Grundkiewicz et al., 2015; Kobayashi et al.,
2024b). For example, one can compute Spearman’s
rank correlation coefficient between the rankings
produced by automatic and human evaluation, con-
sidering a metric with a higher correlation as a
better metric.

However, despite the clear goal of reproduc-
ing human evaluation, current automatic evalua-
tion is based on procedures that diverge from hu-
man evaluation. Figure 1 illustrates the evaluation
procedure for ranking three GEC systems using a
dataset comprising two sentences. In human evalu-
ation, corrected sentences generated for the same
input sentence are compared relatively across sys-
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tem outputs, i.e., pairwise comparison, and the re-
sults are aggregated as rankings using rating algo-
rithms such as TrueSkill (Herbrich et al., 2006). In
contrast, automatic evaluation estimates sentence-
wise scores, then averages them at the corpus level
and determines rankings by sorting these averaged
scores. As such, current automatic evaluation fol-
lows a procedure that deviates from human evalua-
tion, contradicting the goal of reproducing human
judgment. Intuitively, it would be desirable for au-
tomatic evaluation to follow the same procedure as
human evaluation.

In this study, we hypothesize that resolving this
gap will more closely align automatic evaluation
with human evaluation. Based on this hypothe-
sis, we propose computing rankings in automatic
evaluation using the same procedure as human eval-
uation, e.g., using TrueSkill after deriving pairwise
estimates based on sentence-wise scores when hu-
man evaluation employs TrueSkill. In our exper-
iments, we conducted a meta-evaluation on vari-
ous existing automatic evaluation metrics using the
SEEDA dataset (Kobayashi et al., 2024b), that is
a representative meta-evaluation benchmark. The
results show that bridging the identified gap im-
proves ranking capability for many metrics and that
BERT-based (Devlin et al., 2019) automatic evalu-
ation metrics can even outperform large language
models (LLMs), GPT-4 (OpenAI et al., 2024), in
evaluation. Furthermore, we discuss the use and
development of automatic evaluation metrics in
the future, emphasizing that sentence-level relative
evaluation is particularly important for developing
new evaluation metrics.

2 Gap Between Human and Automatic
Evaluation

2.1 Background

Human evaluation has been conducted by Grund-
kiewicz et al. (2015), who manually evaluated sys-
tems submitted to the CoNLL-2014 shared task (Ng
et al., 2014), and by Kobayashi et al. (2024b),
who included state-of-the-art GEC systems such as
LLMs in their dataset. In both studies, system rank-
ings were derived by applying a rating algorithm to
sentence-level pairwise comparisons. Commonly
used rating algorithms include Expected Wins (Bo-
jar et al., 2013) and TrueSkill (Herbrich et al.,
2006; Sakaguchi et al., 2014). Grundkiewicz et al.
(2015) adopted Expected Wins as their final rank-
ing method, whereas Kobayashi et al. (2024b) used

TrueSkill to determine the final ranking. Kobayashi
et al. (2024b) also pointed out the importance of
aligning the granularity of evaluation between au-
tomatic evaluation and human evaluation, but did
not mention the procedure for converting sentence-
level evaluation into system rankings.

Automatic evaluation is conducted using vari-
ous evaluation metrics, including reference-based
and reference-free approaches, as well as sentence-
level and edit-based metrics. Most of these metrics
follow a procedure in which each sentence is as-
signed an absolute score, which is then aggregated
into a corpus-level evaluation score. For example,
sentence-level metrics such as SOME (Yoshimura
et al., 2020) and IMPARA (Maeda et al., 2022)
aggregate scores by averaging, while edit-based
metrics such as ERRANT (Felice et al., 2016;
Bryant et al., 2017) and GoToScorer (Gotou
et al., 2020), as well as n-gram-based metrics
such as GLEU (Napoles et al., 2015, 2016) and
GREEN (Koyama et al., 2024), aggregate scores by
accumulating the number of edits or n-grams. The
corpus-level scores obtained through these methods
can be converted into system rankings by sorting.

2.2 How to Resolve the Gap?
The gap can be simply addressed by using auto-
matic evaluation metrics in the same manner as
human evaluation. Given that the SEEDA dataset
uses TrueSkill as the aggregation method, we will
close the gap by using TrueSkill for automated
evaluation as well. First, since existing automatic
evaluation metrics compute sentence-wise scores,
we convert these scores into pairwise comparison
results. For example, in the case illustrated in Fig-
ure 1, the evaluation scores of 0.8, 0.7, and 0.9
for corrected sentences corresponding to the first
sentence (“He play a tennis”) can be compared
to produce pairwise comparison results similar to
those in human evaluation. Next, we compute sys-
tem rankings by applying TrueSkill to the trans-
formed pairwise comparison results. In this study,
we consider all combinations of pairwise compar-
isons for system set. That is, given N systems, a
total of N(N − 1) comparisons are performed per
sentence, and system rankings are computed based
on these results including ties.

A similar method was employed by Kobayashi
et al. (2024a), but they did not mention the gap.
Also, their experiments used the TrueSkill aggre-
gation for their proposed LLM-based metrics, but
used conventional aggregation methods, e.g., aver-
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aging, for other metrics. We discuss and organize
the gap between human and automatic evaluation in
detail, and then solve the gap by applying TrueSkill
to all metrics for fair comparison.

Note that our method is explained using
TrueSkill, which is used as the human evaluation
method for SEEDA. If another meta-evaluation
dataset uses a different aggregation method, such
as Expected Wins, we should use that instead. We
emphasize that our claim is the importance of align-
ing the aggregation methods of human and auto-
matic evaluations, as even this simple practice has
been largely overlooked so far.

3 Experiments

3.1 Automatic Evaluation Metrics
We provide more detailed experimental settings for
each metric in Appendix A.

Edit-based metrics We use ERRANT (Fe-
lice et al., 2016; Bryant et al., 2017) and PT-
ERRANT (Gong et al., 2022). Both are reference-
based evaluation metrics that assess at the edit level.
When multiple references are available, the refer-
ence that yields the highest F0.5 score is selected
for each sentence.

n-gram based metrics We use GLEU+ (Napoles
et al., 2015, 2016) and GREEN (Koyama et al.,
2024). The n-gram overlap is checked among the
input sentence, hypothesis sentence, and reference
sentence. When multiple references are available,
GLEU+ uses the average score across all refer-
ences, and GREEN uses the reference that yields
the highest score is selected for each sentence.

Sentence-level metrics SOME (Yoshimura et al.,
2020), IMPARA (Maeda et al., 2022), and
Scribendi Score (Islam and Magnani, 2021) are
used. All of them are based on small neural mod-
els such as BERTbase (Devlin et al., 2019) and
designed as a reference-free metric that considers
the correction quality estimation score as well as
the meaning preservation score between the input
and corrected sentences.

3.2 Meta-Evaluation Method
We use the SEEDA dataset (Kobayashi et al.,
2024b) for meta-evaluation. Meta-evaluation re-
sults are reported based on human evaluation re-
sults using TrueSkill for both the sentence-level
human-evaluation, SEEDA-S, and the edit-level
human-evaluation, SEEDA-E. Additionally, we

also report results for both the Base configura-
tion, which excludes the fluent reference and GPT-
3.5 outputs that allow for larger rewrites, and the
+Fluency configuration, which includes them.

Furthermore, we evaluate the robustness of
the calculated rankings using window analy-
sis (Kobayashi et al., 2024a). The window analysis
computes correlation coefficients only for consec-
utive N systems, after sorting systems based on
human evaluation results. This allows us to ana-
lyze whether automatic evaluation can correctly
assess a set of systems that appear to have sim-
ilar performance from the human evaluation. In
this study, we perform it with N = 8 for 14 sys-
tems corresponding to the +Fluency configuration,
and report both Pearson and Spearman correlation
coefficients. That is, correlation coefficients are
computed for the rankings 1 to 8, 2 to 9, . . ., and 7
to 14 from human evaluation.

3.3 Experimental Results
Table 1 shows the results of the meta-evaluation.
The upper group presents evaluation results based
on the conventional method of averaging or sum-
ming, and the bottom group presents results evalu-
ated using TrueSkill, which follows the same eval-
uation method as human evaluation. The bottom
group includes the evaluation results based on GPT-
4 reported by Kobayashi et al. (2024a), which cor-
respond to the state-of-the-art metrics.

The overall trend indicates that using TrueSkill-
based evaluation improves the correlation coeffi-
cients for most of metrics. In particular, the results
of IMPARA in the SEEDA-S and +Fluency setting
outperformed those of GPT-4 results. Additionally,
ERRANT showed an improvement of more than
0.2 points in many configurations. These results
show that using automatic evaluation metrics with
the same evaluation procedure as human evaluation
makes the ranking closer to human evaluation. In
other words, the existing automatic evaluation met-
rics were underestimated in the prior reports due to
the gap in the meta-evaluation procedure.

Unlike edit-level or sentence-level metrics, no
effect was observed in n-gram-level metrics such
as GLEU+ and GREEN. This stems from the poor
sentence-level evaluation performance of n-gram
based metrics. The BLEU paper (Papineni et al.,
2002), which is a n-gram-level metric for machine
translation and the basis of the GLEU+, notes that
the brevity penalty can excessively penalize scores
for short sentences, and uses corpus-level lengths
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SEEDA-S SEEDA-E
Base +Fluency Base +Fluency

Metrics r (Pearson) ρ (Spearman) r ρ r ρ r ρ

w/o TrueSkill
ERRANT 0.545 0.343 -0.591 -0.156 0.689 0.643 -0.507 0.033
PTERRANT 0.700 0.629 -0.546 0.077 0.788 0.874 -0.470 0.231
GLEU+ 0.886 0.902 0.155 0.543 0.912 0.944 0.232 0.569
GREEN 0.925 0.881 0.185 0.569 0.932 0.965 0.252 0.618
SOME 0.892 0.867 0.931 0.916 0.901 0.951 0.943 0.969
IMPARA 0.916 0.902 0.887 0.938 0.902 0.965 0.900 0.978
Scribendi 0.620 0.636 0.604 0.714 0.825 0.839 0.715 0.842

w/ TrueSkill
ERRANT 0.763 0.706 -0.463 0.095 0.881 0.895 -0.374 0.231
PTERRANT 0.870 0.797 -0.366 0.182 0.924 0.951 -0.288 0.279
GLEU+ 0.863 0.846 0.017 0.393 0.909 0.965 0.102 0.486
GREEN 0.855 0.846 -0.214 0.327 0.912 0.965 -0.135 0.420
SOME 0.932 0.881 0.971 0.925 0.893 0.944 0.965 0.965
IMPARA 0.939 0.923 0.975 0.952 0.901 0.944 0.969 0.965
Scribendi 0.674 0.762 0.745 0.859 0.837 0.888 0.826 0.912

GPT-4-E (fluency) 0.844 0.860 0.793 0.908 0.905 0.986 0.848 0.987
GPT-4-S (fluency) 0.913 0.874 0.952 0.916 0.974 0.979 0.981 0.982
GPT-4-S (meaning) 0.958 0.881 0.952 0.925 0.911 0.960 0.976 0.974

Table 1: Correlation with human evaluation using the SEEDA dataset. w/o TrueSkill refers to the conventional
evaluation procedure, while w/ TrueSkill represents the proposed evaluation procedure. Improvements over the
conventional procedure are underlined, and the highest value in each column is highlighted in bold. The GPT-4
results refer to those reported in Kobayashi et al. (2024b).

to address this issue. Since GLEU+ also employs
a brevity penalty, it cannot accurately calculate
sentence-level scores depending on sentence length.
This is a serious issue for TrueSkill-based aggre-
gation because the quality of sentence-level scores
directly affects the quality of system rankings. Fur-
thermore, while GREEN does not use a brevity
penalty, the score can become unstable as the “n”
for n-gram increases, especially for short sentences.
This has a negative impact on the geometric mean
among n-gram scores, which is the final score. An
ideal metric should provide evaluation results that
better align with human judgments when ranking
systems in the same way humans do. Given this
premise, our results suggest a human alignment
issue of n-gram-level metrics.

Figure 2 shows the results of the window anal-
ysis for IMPARA and ERRANT measured on
SEEDA-S and SEEDA-E, respectively. From Fig-
ure 2a, it can be seen that IMPARA particularly
aligns with human evaluation in the lower ranks.
The Pearson correlation coefficient also showed
an improvement in the evaluation results for the
top systems as well. Since the top systems include
GEC systems that are largely rewritten, such as
GPT-3.5, this characteristic is useful, considering
that LLM-based correction methods will become
popular in the future. Figure 2b shows that ER-
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Figure 2: The results of the window analysis for N = 8
are shown. The x-axis represents the starting rank of
human evaluation. For example, x = 2 shows the results
for the systems ranked 2nd to 10th in human evaluation.

RANT consistently showed improved correlation
coefficients with the proposed method, but still
struggled with evaluating the top systems. For edit-
based evaluation metrics, it is still considered dif-
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ficult to assess such GEC systems even with the
evaluation method aligned with human evaluation2.

4 Conclusion

In this study, we focused on the fact that human
evaluation aggregates sentence-level scores into
system rankings based on TrueSkill, while auto-
matic evaluation uses a different evaluation, and
we proposed to use TrueSkill in automatic evalu-
ation as well. Experimental results with various
existing metrics showed improvements in correla-
tions with human evaluation for many of the met-
rics, indicating that agreement on the aggregation
method is important. Our core statement in this
paper is not about using TrueSkill, but rather the
importance of using the same aggregation method
as human evaluation. For instance, if future meta-
evaluation datasets switch the aggregation method
for human evaluation to averaging sentence-level
scores, then automatic evaluation should likewise
adopt the same approach.

Given the discussion so far, at least in the cur-
rent situation of GEC evaluation, we recommend
transitioning the aggregation method from averag-
ing or summing to using a rating algorithm, such
as TrueSkill. We also recommend that evaluation
metrics should be developed that allow for accurate
sentence-wise comparisons. This is evidenced by
the fact that IMAPARA achieves a higher corre-
lation coefficient than SOME in Table 1. In fact,
IMAPARA is trained to assess the pairwise compar-
ison results, whereas SOME is trained to evaluate
sentences absolutely.

Limitations

Use for Purposes Other Than System Ranking
The proposed method is designed for system rank-
ing and cannot be used for other types of evaluation,
such as analyzing the strengths and weaknesses of
a specific system. For instance, when analyzing
whether a model excels in precision or recall, it
is more useful to accumulate the number of edits
at the corpus level, as done in existing evaluation
methods.

Reproducing the Outputs of Compared GEC
Systems Since the proposed ranking method re-
quires inputting all GEC outputs being compared, it
is necessary to reproduce their models. This point

2Using a larger number of references may solve this issue.

is different from existing absolute evaluation meth-
ods, where previously reported scores can be cited.
While this may seem burdensome for researchers,
it can also be seen as an important step toward
promoting the publication of reproducible research
results.

Ethical Considerations

When the metric contains social biases, the pro-
posed method cannot eliminate that bias and may
reflect that bias in the rankings. However, we argue
that this problem should be resolved as a metric
problem.
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A Detailed Experimental Settings for
Evaluation Metrics

We used GEC-METRICS (Goto et al., 2025) for the
implementation. The detailed experimental settings
are as follows:

ERRANT Evaluations were conducted using the
Python module errant==3.0.0 with the span-
based correction setting. Although the edits in
the CoNLL-2014 references were manually an-
notated, they were re-extracted using ERRANT.
This is important for an evaluation based on con-
sistent edits.

PT-ERRANT We employed the F1 score of
BERTScore for the weighting. The baseline
rescaling was adopted, and IDF adjustment was
not performed. We used bert-base-uncased
for the BERT model. These settings are consis-
tent with those of the official implementation 3.
Similar to ERRANT, we re-extracted reference
edits via errant module.

GLEU+ We used GLEU+ with n-grams up to 4-
grams and 500 iterations during reference sam-
pling.

GREEN Similarly, we used GREEN with n-
grams up to 4-grams, utilizing the F2.0 score, fol-
lowing those employed by Koyama et al. (2024).

SOME We used the official models for grammati-
cality, fluency, and meaning preservation, with
respective weights of 0.55, 0.43, and 0.02. These
weights correspond to those tuned by Yoshimura
et al. (2020) for sentence-level evaluation perfor-
mance.

IMAPARA As a pre-trained quality estimation
model was not publicly available, we newly con-
structed it through reimplementation and exper-
imentation. Following Maeda et al. (2022), the
CoNLL-2013 dataset (Ng et al., 2013) was used
as a seed corpus and was split into training, devel-
opment, and evaluation sets with an 8:1:1 ratio.
We fine-tuned bert-base-cased, and followed
BertForSequenceClassification from the
Transformers library 4 (Wolf et al., 2020) for
the classifier architecture. This corresponds to
transforming the CLS representation of the BERT
model into a real value via a single projection
layer. During inference, bert-base-cased was

3https://github.com/pygongnlp/PT-M2
4https://github.com/huggingface/transformers
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used for the similarity estimation model, with a
threshold set to 0.9.

Scribendi Score GPT-2 (Radford et al., 2019)5

was utilized as the language model, and the
threshold for the maximum of the Levenshtein-
distance ratio and token sort ratio was set to 0.8.

5https://huggingface.co/openai-community/gpt2
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