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Abstract

Large language models (LLMs) show potential
in healthcare but often generate hallucinations,
especially when handling unfamiliar informa-
tion. In medication, a systematic benchmark to
evaluate model capabilities is lacking, which
is critical given the high-risk nature of medical
information. This paper introduces a Chinese
benchmark aimed at assessing models in med-
ication tasks, focusing on knowledge and rea-
soning across six datasets: indication, dosage
and administration, contraindicated population,
mechanisms of action, drug recommendation,
and drug interaction. We evaluate eight closed-
source and five open-source models to iden-
tify knowledge boundaries, providing the first
systematic analysis of limitations and risks in
proprietary medical models.

1 Introduction

Large language models (LLMs) have made signifi-
cant strides in various domains, including medica-
tion, where they provide information and recom-
mendations related to medical treatments (Singhal
et al., 2022; Nori et al., 2023). However, a signifi-
cant challenge remains: these models are prone to
generating hallucinations and confidently provid-
ing incorrect or incomplete information, especially
in cases where they lack adequate knowledge (Ste-
fansson and Johansson, 2021; Shukla et al., 2022).
In the context of medication and drug usage, such
hallucinations can lead to critical errors, particu-
larly in high-risk situations like identifying con-
traindicated populations or recommending unsafe
drug combinations. Despite the progress made in
medical AI, a notable gap remains in the devel-
opment of systematic benchmarks to evaluate the
full range of a model’s capabilities in medication
applications.

*Corresponding authors.
Our data and code are available at: https://github.com/
LeoCoder33/ChiDrug-benchmark
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Figure 1: Our benchmark involves four datasets that
directly examine model parametric knowledge and two
datasets that examine model reasoning ability.

Considering that many existing public bench-
marks are constructed by collecting data from
online sources and may be susceptible to data
leakage risks, we construct a Chinese benchmark,
ChiDrug, from scratch, based on authoritative drug
brochures. This benchmark is specifically designed
to evaluate LLMs’ knowledge and reasoning ca-
pabilities in the medication domain. As shown
in Figure 1, our benchmark is structured into two
key subdimensions: parametric knowledge and
reasoning capability. We construct six diverse
datasets that cover crucial aspects of drug infor-
mation, including dosage and administration, in-
dication, contraindicated population, mechanisms
of action, medication recommendation, and drug
interaction.

To evaluate the capabilities of existing models,
we apply our benchmark to eight closed-source
and five open-source models. Our work also ex-
plores various methods for expressing knowledge
boundaries, providing insights into the potential
risks of overconfident but inaccurate AI-generated
responses.

Our contributions include: (1) This benchmark
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serves as the first systematic tool for analyzing the
capabilities of LLMs in the field of medicine across
various dimensions. (2) To the best of our knowl-
edge, this is the first work to systematically conduct
knowledge boundary analysis on medical models
in the medication domain, providing a comprehen-
sive overview of their performance in real-world
medical applications.

2 Related Work

2.1 Chinese Benchmark in Medication

Evaluating the capabilities of Large Language Mod-
els (LLMs) in the medical field necessitates spe-
cialised benchmarks, particularly when addressing
Chinese medical texts. Recent efforts have led to
the development of several Chinese-specific medi-
cal benchmarks, focusing on various domains such
as clinical question answering, knowledge recall,
and medication recommendations (Singhal et al.,
2023; Liu et al., 2024; Wang et al., 2024; Yue et al.,
2024).

MedExpQA (Alonso et al., 2024) proposes
a multilingual benchmark evaluating models on
medical question-answering tasks, including drug-
related and clinical guideline questions. DialMed
(He et al., 2022) focuses on dialogue-based med-
ication recommendations, testing models on han-
dling patient symptom queries and drug interac-
tions. However, existing datasets do not have a
dedicated benchmark built in the field of medica-
tion in Chinese to evaluate the model’s ability in
this area.

2.2 Abstention in LLMs

The ability of Large Language Models (LLMs) to
refrain from providing answers when uncertain—is
crucial for enhancing model reliability and safety.
Studies have explored various methods to improve
this capability (Wen et al., 2024):

Currently, methods to guide models in refusing
to answer include: Calibration-Based Methods:
After the model provides an answer, continue by
asking, "Are you sure about your answer?" to verify
its confidence (Tian et al., 2023). Training-Based
Methods: Construct a training set containing both
questions the model can answer and those it cannot,
training the model to refuse to answer questions
with unfamiliar knowledge (Slobodkin et al., 2023;
Zhang et al., 2023; Stengel-Eskin et al., 2024).
Consistency-Based Methods: Perform multiple
samplings and calculate the consistency score of

the model’s responses to assess reliability (Kuhn
et al., 2022; Feng et al., 2024a). Token Probability
Methods: Ensemble the probability of each token
generated by the model to determine the uncer-
tainty of the response (Liang et al., 2024; Malinin
and Gales, 2021).

3 Dataset

ChiDrug is designed to assess models’ parametric
knowledge and reasoning ability in handling criti-
cal medication-related tasks. Below, we outline the
dataset construction process and the verification
procedures used to ensure the quality and reliabil-
ity of the data. The entire benchmark construction
process is shown in Figure 2.

3.1 Dataset Construction

We began by collecting official drug brochures
for existing medications from the internet1. We
organized this information into a table that in-
cludes details on 8,000 drugs, encompassing their
generic names, ingredients, specifications, indi-
cations, dosages, contraindications, drug interac-
tions, adverse reactions, and mechanisms of ac-
tion. This structured dataset served as the foun-
dation for developing questions that evaluate the
model’s parametric knowledge in four areas: Indi-
cation, Dosage and Administration, Contraindi-
cated Population, and Mechanism of Action.
We extracted the relevant sections from each drug
brochure and utilized Spark2 to generate multiple-
choice question stems and answer options. In con-
structing these questions, we ensured that the incor-
rect options did not overlap with the correct ones
(the left part of Figure 2).

The second step involved constructing questions
for Medication Recommendation (the middle part
of Figure 2). We collected doctor-patient dialogues
from the existing DIALMED dataset (He et al.,
2022), where Spark transformed these dialogues
into question formats, using the doctor’s recom-
mended medication as the correct option. To gener-
ate distractor options that could confuse the model,
we first used Spark to extract the patient’s symp-
toms and demographic information, then searched
the drug brochures for medications that treat the
same symptoms but are not suitable for the pa-
tient’s demographic group, thereby creating incor-
rect options (e.g., “symptom in indication and de-

1https://drugs.dxy.cn
2https://xinghuo.xfyun.cn
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immunosuppressants such as 
cyclosporine, azithromycin, 
clarithromycin, etc., can increase 
the risk of muscle lysis and acute 
renal failure.

Pitavastatin

Azithromycin
Dispersible 

Tablets

What are the risks associated 
with the combination of 
pitavastatin and azithromycin? 
(High/Medium/Low)
Answer: high-risk

Parametric Knowledge Requests

“pregnant” in Contraindicated Population
And

“rhinitis” in Indication
“Azithromycin” in Drug Ingredients

Risk definition:
High risk:
Medium risk:
Low risk:

Reasoning Skill Requests

Figure 2: Overview of our benchmark construction process

mographic in contraindicated population”).
In the third step, we constructed a dataset for

Drug Interaction (the right part of Figure 2). First,
doctors defined three risk levels for drug interaction
(high, medium, and low). We then randomly se-
lected a drug from the brochures and identified its
combination guidelines. From there, we extracted
the ingredients involved in drug interactions and
further searched for medications that contained the
same ingredients. Finally, we input the two drugs
and the interaction documentation into Spark to
generate the appropriate risk level as the correct
answer.

3.2 Verification

Since we automatically generated the questions
for the dataset, we implemented a double-check
process to ensure the questions were reasonable.
Each question was tested by three large models
(GPT-43, Qwen-max4, ERNIE bot5). We gave
these models the question, options, and document
sources and asked them to check the following:
(1) If the question is clear, well-phrased, and free
of ambiguity. (2) If the answer is correct. (3) If
the answer is unique. A question was considered
valid only if all three models agreed it was correct.
During dataset construction, we initially generated
7,100 questions. In the LLM verification stage,
Spark-generated questions had an acceptance rate

3https://chatgpt.com
4https://tongyi.aliyun.com/qianwen
5https://yiyan.baidu.com

of 79.32%, resulting in the removal of 1,468 ques-
tions.

Additionally, we hire doctors with licensed qual-
ifications to examine all the datasets we construct
(Appendix C).

Ultimately, we construct a benchmark dataset
comprising a total of 5,243 samples, encompassing
the following categories: Indication (705), Dosage
and Administration (651), Contraindicated Popu-
lation (659), Mechanism of Action (773), Medica-
tion Recommendation (838), and Drug Interaction
(1,617). More details are provided in Appendix B.

4 Experiment

In this section, we evaluate the performance of
large language models (LLMs) on our benchmark.
We assess both closed-source and open-source mod-
els, using our benchmark to examine their capabil-
ities in handling medication-related queries and
their ability to identify knowledge gaps and over-
confidence. Table 1 presents the results for the
model ability, while the second table focuses on
the methods to express the knowledge boundaries
in seven different methods.

4.1 Model Performance Evaluation
We selected models with strong Chinese language
capabilities, including GPT4o (Hurst et al., 2024),
Claude3.5-Sonnet6, Qwen-max7, Doubao8, GLM4

6https://claude.ai
7https://tongyi.aliyun.com/qianwen
8https://www.doubao.com/chat
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Close-source Models
Dosage and Administration Indication Contraindicated Population Mechanism of Action Medication Recommendation Drug Interaction Avg.

XiaoYi 81.1 77.87 66.71 92.85 65.31 63.27 73.52
GPT4o 66.41 73.65 69.35 92.13 59.79 59.93 70.21
ERNIE 67.64 65.3 57.97 92.76 51.43 38.59 62.28

Qwen-max 69.02 72.13 68.19 93.28 61.22 54.73 69.76
Doubao 71.32 71.24 54.17 92.77 63.25 55.35 68.02
GLM4 71.32 75.71 71.02 94.16 59.79 54.92 71.15

Claude3.5 54.59 74.53 70.29 89.92 54.06 60.73 67.24
Baichuan4 62.14 69.97 69.24 90.35 52.98 52.81 66.25

Open-source Models
Bencao 28.92 19.88 12.2 40.71 16.23 38.28 26.04

MedGLM 38.92 13.21 8.75 44.86 20.17 34.59 26.75
MedicalGPT 33.51 10.14 3.18 49.41 13.84 30.98 23.51
ChiMedical 33.51 16.04 14.32 38.54 24.71 36.05 27.20

HuatuoGPT2 55.83 47.03 18.66 77.16 25.18 25.60 41.58

Table 1: This table presents the performance of 8 closed-source models and 5 open-source models across various
medication-related tasks. Bold indicates the best performance, while underlining denotes the second-best.

Dosage and Administration Indication Contraindicated Population Mechanism of Action Medication Recommendation Drug Interaction Avg.
Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc

Baseline 55.83 55.83 47.03 47.03 18.66 18.66 77.16 77.16 25.18 25.18 25.60 25.60 41.58 41.58
Post-calibration 55.94 57.91 47.01 47.62 18.05 18.17 77.21 77.37 25.23 26.12 24.76 25.67 41.37 42.12

IDK 54.26 54.68 47.18 47.18 17.90 17.30 78.68 80.28 24.47 24.66 24.55 26.64 41.17 41.79
LNS 53.99 50.46 50.78 50.85 18.18 23.03 79.97 71.07 28.22 26.21 24.94 23.58 42.68 40.87

Probing 66.11 43.90 66.11 51.86 22.83 27.43 85.24 80.01 29.82 19.80 31.31 30.54 50.24 42.26
R-tuning 53.90 57.61 53.66 56.00 22.12 31.00 81.35 83.00 19.80 12.45 30.34 31.68 43.53 45.29

Self-Consistency 66.85 46.20 68.03 48.46 15.24 10.67 89.37 78.60 30.15 20.84 20.90 30.00 48.42 39.13
Semantic Entropy 64.79 55.32 70.28 52.71 28.11 26.95 86.24 83.09 29.22 24.95 38.56 31.76 52.87 45.79

Table 2: This table displays the performance of 7 different methods on the models’ ability to detect knowledge
boundaries and manage uncertainty.

(GLM et al., 2024), Baichuan49, XiaoYi10, and
ERNIE Bot11, for evaluation of closed-source mod-
els. For open-source models, we chose Bencao
(Wang et al., 2023), MedGLM (Haochun Wang,
2023), MedicalGPT (Xu, 2023), ChiMedical (Tian
et al., 2024), and HuatuoGPT2 (Chen et al., 2024)
for evaluation.

The results summarised in Table 1 show that the
closed-source models generally outperformed the
open-source models across all dimensions, with
XiaoYi leading in overall performance, followed
closely by GPT4o and ERNIE Bot. In Open-source
models, Bencao and MedicalGPT demonstrated
lower performance, particularly in complex tasks
like Contraindicated Populations and Drug Interac-
tions, while HuatuoGPT2 generally outperformed
other models. We will provide a more detailed
analysis of each model in the Appendix A.

4.2 Methods for Knowledge Boundary
Detection

4.2.1 Task Definition
A formal definition of knowledge boundary detec-
tion can be briefly stated as follows:

Input: A model M and a query q.
Output: A response r where

9https://www.baichuan-ai.com
10https://chatdr.iflyhealth.com
11https://yiyan.baidu.com

r =




M(q), within parametric knowledge

U, beyond parametric knowledge
(1)

where M(q) is the model’s generated answer,
and U is an explicit uncertainty expression or ab-
stention (e.g., “I don’t know”, a confidence score,
or an alternative uncertainty marker).

4.2.2 Methods
In this subsection, we apply seven methods to ex-
plore their impact on expressing uncertainty or ab-
stention, using HuatuoGPT2 as the backbone.

Post-Calibration (Tian et al., 2023): Enhances
model confidence by prompting it to verbalize its
certainty after providing an answer.

IDK (I Don’t Know): Similar to non-of-the-
above (NOTA) in (Feng et al., 2024b), we incor-
porate an additional “I don’t know” option and
instruct the model to abstain from answering.

LNS (Malinin and Gales, 2021): Utilizes proba-
bilistic ensemble-based techniques to assess uncer-
tainty in structured prediction tasks, aiding in more
reliable outputs.

Probing (Slobodkin et al., 2023): Analyzes inter-
nal model representations to understand how they
encode information about answerability, helping
detect overconfidence and hallucinations.
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R-tuning (Zhang et al., 2023): Instructs models
to explicitly state when they lack knowledge, re-
ducing the generation of hallucinated information.

Self-Consistency (Kuhn et al., 2023): Enhances
reasoning by generating multiple reasoning paths
and selecting the most consistent answer, improv-
ing response reliability.

Semantic Entropy (Feng et al., 2024a): Esti-
mates uncertainty in natural language generation by
considering linguistic invariances, allowing models
to assess the reliability of their outputs better.

4.2.3 Evaluation Metrics
Given the definition as follows:
C = the number of correct answers.
A = the number of total answered questions (ex-

cluding abstentions).
Acorrect = the number of correct abstentions, i.e.,

questions the model correctly refused to answer
because the answer was unknown or uncertain.
N = the total number of questions.
In this experiment, two evaluation metrics are

used:
Precision: Measure the proportion of correct

answers out of the total predictions made, without
abstaining.

Precision =
C

A
(2)

Abstain Accuracy (Feng et al., 2024a): Evalu-
ates the proportion of correct answers and correct
abstention due to uncertainty.

Abstain-Acc =
C +Acorrect

N
(3)

Results are shown in Table 2. Post-calibration
and IDK cannot achieve good results in Hu-
atuoGPT2 due to its weak instruction capabilities.
Self-Consistency improved accuracy in complex
tasks like Medication Recommendations. Prob-
ing refined uncertainty estimations with varying
effectiveness. R-tuning reduced hallucinations
but sometimes sacrificed performance on complex
tasks, while LNS showed mixed results, improving
Medication Recommendations but hindering per-
formance on Drug Interaction. Overall, Semantic
Entropy has achieved good results in both metrics,
and we further analyze the effectiveness of this
method on multiple models in Appendix D.

5 Conclusion

We present ChiDrug, a benchmark designed to
evaluate LLMs (Large Language Models) in

medication-related tasks, with an emphasis on their
knowledge and reasoning abilities. Both GLM4
and XiaoYi performed exceptionally well; how-
ever, even these advanced models exhibited gaps in
drug knowledge. Our work highlights the need for
effective methods to align the knowledge bound-
aries of LLMs, particularly for high-risk tasks.

6 Limitations

This study primarily focuses on Chinese medical
texts, which may limit its generalizability. The
benchmark doesn’t fully capture the complexities
of real-world medical decision-making. Addition-
ally, model generalization to new knowledge, han-
dling uncertainty, and reliance on high-quality, up-
to-date data are ongoing challenges for AI in health-
care.

7 Ethical considerations

The medication dictionary we constructed is en-
tirely sourced from DingXiangYuan12, a public
medical website. The data on DingXiangYuan was
also collected from the China National Medical
Products Administration, and the website has a
statement allowing non-commercial citations. Doc-
uments within our dictionary do not contain private
information, so there is no risk of privacy leakage.
All the drug information we collect has obtained
the national drug approval certificate and is free
from copyright issues, in accordance with the regu-
lations of the Chinese government.
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A Model Performance Analysis

A.1 Visualization of Model Performance
In this section, we present radar chart visualiza-
tions to highlight the performance of both closed-
source and open-source models across different
medication-related tasks. As shown in Figure 3
and Figure 4, the radar charts provide a clear,
comparative view of how various models handle
tasks such as Indication, Dosage and Administra-
tion, Contraindicated Population, and Mechanisms
of Action. Notably, models such as GLM4 and
XiaoYi stand out for their excellent performance,
with XiaoYi leading the closed-source models and
GLM4 demonstrating remarkable consistency. On
the other hand, HuatuoGPT2 significantly outper-
forms the other open-source models. These find-
ings underscore the importance of model selection
in high-stakes domains like healthcare, where the
quality of responses directly impacts patient safety.

Dosage and 
Administration

IndicationContraindicated 
Population

Mechanism of 
Action

Drug 
Recommendatio

Drug 
Interaction

Figure 3: Radar Chart Representation of Open-Source
Models Performance.

Dosage and 
Administration

IndicationContraindicated 
Population

Mechanism of 
Action

Drug 
Recommendatio

Drug 
Interaction

Figure 4: Radar Chart Representation of Close-Source
Models Performance.

A.2 Knowledge Mastery Assessment of
Common Drugs

To further evaluate model capabilities, we focus on
a subset of 282 commonly used drugs. For each
drug, we constructed questions about Indication,
Dosage and Administration, Contraindicated Pop-
ulation, and Mechanism of Action, drawing from
the benchmark dataset. The knowledge boundary
of the models was then assessed by visualizing
their performance on these tasks, as shown in the
radar charts for GLM4, XiaoYi, and GPT4o, and
the results are presented in Table 3.

Figure 5 illustrates the knowledge boundary per-
formance of three models across 282 drugs, where
each drug has 4 different sub-task questions. The
radial score axis (0-4) represents the total number
of correct answers per drug: Since each drug has 4
questions, a score of 4.0 means the model answered
all 4 questions correctly.

Orange regions indicate that the model had only
one chance to answer all 4 questions.

Yellow regions indicate that the model had up
to 5 attempts per drug to answer correctly. If it
answered any question correctly in any of these
attempts, it was awarded 1 point.
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The yellow regions that are not covered by or-
ange represent cases where the model initially gave
incorrect answers but later recovered and answered
correctly within the 5 attempts. These visualiza-
tions emphasize that while some models show ro-
bustness in their knowledge, significant gaps re-
main in certain drug-related tasks.

The results indicate that GLM4 and XiaoYi ex-
hibit stronger consistency in answering these ques-
tions correctly across the four tasks compared to
GPT4o. However, there were cases where even the
most advanced models struggled to demonstrate
comprehensive knowledge across all aspects of
these drugs. This highlights a key issue—despite
their advanced capabilities, large models still fall
short in areas of medication-related knowledge.

Dosage and Administration Indication Contraindicated Population Mechanisms of Action Avg.

XiaoYi 82.27 78.01 63.12 92.20 78.90
GPT4o 67.02 74.11 70.2 92.91 76.24

ERNIE 69.15 64.89 58.51 91.13 70.92

Qwen-max 67.73 74.11 71.63 92.55 76.51

Doubao 75.89 74.47 64.54 92.55 76.86

GLM4 74.11 75.89 71.99 93.97 78.99

Claude3.5 67.09 67.73 54.26 93.46 70.64

Baichuan4 59.93 70.21 51.06 91.49 68.17

Table 3: Performance of various models on Common
Drugs

A.3 Performance on Reasoning Models
While the GPT family is known for its strong rea-
soning capabilities, our results reveal nuanced per-
formance differences, as shown in Table 4. In par-
ticular, OpenAI’s o1 performs worse than GPT-4o,
suggesting that strong reasoning ability alone does
not guarantee superior performance, especially in
knowledge-intensive domains like medicine. We
argue that a model’s performance ceiling in such
domains is also closely tied to its parametric knowl-
edge.

For instance, DeepSeek-R1 excels in tasks such
as Drug Indication and Contraindicated Population,
and this strength naturally extends to better per-
formance in Medication Recommendation, which
relies heavily on knowledge of drug usage con-
straints. In contrast, o1 performs worse in Indica-
tion, which correlates with its weaker performance
in the Medication Recommendation task.

Furthermore, although GPT-4o is not explicitly
trained on complex chain-of-thought (CoT) rea-
soning datasets, it demonstrates competitive rea-
soning ability. However, models like o1 and o3-
mini, which are optimised for reasoning in code
and mathematics, do not show a clear advantage in
our medical reasoning benchmark, highlighting the

limits imposed by insufficient medical knowledge.
To further validate that reasoning ability be-

comes the primary bottleneck when knowledge
is sufficient, we constructed knowledge-complete
prompts for Medication Recommendation and
Drug Interaction tasks. These prompts explicitly
included all necessary domain knowledge required
to answer the questions.

As the results illustrated in Table 5 confirm,
our hypothesis is supported: when provided with
sufficient knowledge, models with strong reason-
ing capabilities, such as o1 and o3-mini, outper-
form GPT-4o, which lacks comparable reasoning-
specific training. This highlights the importance of
not only enriching models with knowledge but also
enhancing their reasoning mechanisms—especially
in professional domains like medicine.

In summary, our benchmark suggests that ad-
vancing domain-specific reasoning is a critical fron-
tier for LLM development, and we hope our work
offers meaningful insight for future research in this
direction.

B Dataset Statistics

This section presents key statistics of our bench-
mark dataset across six task categories. As shown
in Table 6, each task varies in terms of average
input length, the number of unique drugs, and the
number of associated diseases. Notably, the Drug
Interaction task contains the longest samples and
the largest set of drugs, reflecting its complexity.
These statistics highlight the diversity and richness
of our dataset, which is crucial for evaluating both
the parametric knowledge and reasoning capabili-
ties of LLMs in the medication domain.

C Expert Review of Datasets

During the manual verification phase, we hire 10
doctors with licensed qualifications to examine all
the datasets we construct. We divided the 10 doc-
tors into two groups, each consisting of five doc-
tors. One group was responsible for reviewing the
questions related to Drug Indication, Dosage and
Administration, Contraindicated Population, and
Mechanisms of Action, while the other group re-
viewed the questions for Medication Recommenda-
tion and Drug Interaction. After the initial review,
the groups conducted a cross-check to ensure accu-
racy.

For data points that the doctors identified as prob-
lematic, we directly archived them and excluded
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XiaoYi GLM4 GPT4o

Figure 5: Knowledge boundary chart for GLM4, XiaoYi, and GPT4o across 282 common drugs. The orange area
indicates that the model answered correctly once, while the yellow area indicates 5 times opportunities to answer
correctly. The orange areas in the yellow-covered region represent cases where a model made an error in a single
attempt but was able to recover after multiple tries.

Task Dosage and Administration Indication Contraindicated Population Mechanism of Action Medication Recommendation Drug Interaction Average
DeepSeek-R1 70.81 77.06 75.69 91.98 61.59 62.75 73.31

OpenAI o1 56.69 74.80 58.31 92.93 61.53 45.10 64.89
OpenAI o3-mini 68.52 70.69 72.57 94.15 51.77 64.79 70.42

GPT-4o 66.41 73.65 69.35 92.13 59.79 59.93 70.21

Table 4: Zero-shot accuracy of reasoning models across medical knowledge tasks.

Model Medication Recommendation Drug Interaction
OpenAI o1 84.73 92.02

OpenAI o3-mini 80.79 91.34
GPT-4o 79.83 88.62

Table 5: Accuracy on reasoning tasks with knowledge-
complete prompts.

Task Average Length Drugs Involved Diseases Involved
Drug Indication 86.21 605 1061

Dosage and Administration 108.36 581 188
Contraindicated Population 94.45 607 636

Mechanisms of Action 108.25 791 224
Medication Recommendation 114.61 940 830

Drug Interaction 479.97 1293 None

Table 6: Task-wise statistics of the ChiDrug benchmark.

them from the final dataset. As a result, the accept
rate of quesiton is 93.09%. The cost of hiring an
doctor to label a single sample was 2 RMB (ap-
proximately 0.26 USD).

D Semantic Entropy (SE) Method for
Knowledge Boundary Expression

In this section, we explore the Semantic Entropy
(SE) method used to detect knowledge boundaries,
as introduced in Section 4.2. The SE method is
particularly noteworthy for its effectiveness in ex-
pressing model uncertainty and improving response
reliability, as demonstrated in our experiments. We
applied this method to HuatuoGPT2 and XiaoYi,
observing that it significantly enhanced the models’
performance on challenging tasks, such as Medica-
tion Recommendations and Drug Interactions.

As shown in Table 7, the SE method proved to
be robust and consistent across different model ar-
chitectures and sizes. It improved both Precision
and Abstain Accuracy, regardless of the model’s
scale. This reinforces the notion that SE is an ef-
fective tool for managing uncertainty, making it an
essential method for enhancing the reliability of
models in real-world medical applications.

E Case Study

In Figure 6, we present a case to illustrate the prac-
tical section of the ChiDrug.
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Model Method Dosage and Administration Indication Contraindicated Population Mechanisms of Action Medication Recommendation Drug Interaction
Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc

HuatuoGPT2 w/o SE 55.83 55.83 47.03 47.03 18.66 18.66 77.16 77.16 25.18 25.18 25.60 25.60
SE 64.79 55.32 70.28 52.71 28.11 26.95 86.24 83.09 29.22 24.95 38.56 31.72

XiaoYi w/o SE 81.1 81.1 77.87 77.87 66.71 66.71 92.85 92.85 59.31 59.31 63.27 3.27
SE 83.42 84.46 94.01 94.15 80.14 83.28 91.71 92.1 67.71 75.71 63.85 69.02

Table 7: Application of the SE method on HuatuoGPT2 and XiaoYi models, showcasing the performance improve-
ments achieved through the SE method. This method enhances precision and uncertainty handling, effectively
reducing hallucinations.

AnswerQuestionTasks

B
用法用量：
口服。3～5岁儿童，一次半包；6～14岁儿童，一
次1包；成人，一次2包，一日3次。

复方锌布颗粒剂的推荐服用方式为多少包，多少次一天？
(A)儿童5岁以下一次2包，一天3次
(B)成人一次2包，一天3次
(C)成人一次1包，一天3次
(D)6～14岁儿童一次1包，一天2次
(E)6～14岁儿童一次1包，一天3次

Dosage and Administration

ACD
适应症：

用于缓解普通感冒或流行性感冒引起的发热、头痛、
四肢酸痛、鼻塞、流涕、打喷嚏等症状。

复方锌布颗粒剂主要用于缓解以下哪些症状？
(A)普通感冒引起的发热
(B)急性肠胃炎
(C)普通感冒引起的四肢酸痛
(D)普通感冒引起的打喷嚏

Indication

BC
禁忌：
1.对其他非甾体抗炎药过敏者禁用。2.孕妇及哺乳
期妇女禁用。3.对阿司匹林过敏的哮喘患者禁用。

复方锌布颗粒剂不适用于以下哪些人群？
(A)心脏病患者
(B)哺乳期妇女
(C)对阿司匹林过敏的哮喘患者
(D)高血压患者

Contraindicated Population

D
作用机制：
布洛芬能抑制前列腺素合成，具有解热镇痛作用；
葡萄糖酸锌中锌离子能参与多种酶的合成与激活，
有增强吞噬细胞的吞噬能力的作用；马来酸氯苯那
敏为抗组胺药，能减轻由感冒或流感引起的鼻塞、
流涕、打喷嚏等症状。

关于复方锌布颗粒剂各组分的主要药理作用是：
(A)布洛芬具有抗炎作用，葡萄糖酸锌促进蛋白质合成，马来酸氯苯那敏
为解热镇痛药
(B)布洛芬具有解热镇痛作用，葡萄糖酸锌能增强免疫功能，马来酸氯苯
那敏为抗组胺药
(C)布洛芬为抗组胺药，葡萄糖酸锌具有解热功能，马来酸氯苯那敏具
有镇痛作用
(D)布洛芬为解热镇痛药，葡萄糖酸锌参与多种酶的合成与激活，马来
酸氯苯那敏为抗组胺药

Mechanism of Action

A
双黄连口服液的适应症：

疏风解表，清热解毒。用于外感风热所致的感冒，
症见发热、咳嗽、咽痛。

回答以下不定项选择题（可能包含1个或多个正确选项）：
一位孕晚期患者因为感冒出现咳嗽、喉咙里有异物感以及扁桃体发炎，
可以考虑推荐的药物是：
(A)双黄连口服液
(B)热毒宁注射液
(C)贝美前列素滴眼液
(D)银芩胶囊

Drug Recommendation

高风险
注射用降纤酶

使用本品应避免与水杨酸类药物（如：阿司匹林）
合用。抗凝血药可加强本品作用，引起意外出血；
抗纤溶药可抵消本品作用，禁止联用。

注射用降纤酶与抗纤溶药联用的风险等级是？
Drug Interaction

Figure 6: Partial cases of ChiDrug on 6 sub datasets.
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