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Abstract

Instruction tuning is crucial for adapting large
language models (LLMs) to align with user
intentions. Numerous studies emphasize the
significance of the quality of instruction tun-
ing (IT) data, revealing a strong correlation
between IT data quality and the alignment per-
formance of LLMs. In these studies, the quality
of IT data is typically assessed by evaluating
the performance of LLMs trained with that data.
However, we identified a prevalent issue in such
practice: hyperparameters for training models
are often selected arbitrarily without adequate
justification. We observed significant varia-
tions in hyperparameters applied across differ-
ent studies, even when training the same model
with the same data. In this study, we demon-
strate the potential problems arising from this
practice and emphasize the need for careful con-
sideration in verifying data quality. Through
our experiments on the quality of LIMA data
and a selected set of 1,000 Alpaca data points,
we demonstrate that arbitrary hyperparameter
decisions can make any arbitrary conclusion.

1 Introduction

Instruction Tuning (IT) is a widely adopted strategy
for enabling a human-interactive use of the knowl-
edge embedded in large language models (LLMs)
(Cao et al., 2023; Wang et al., 2024). By train-
ing with datasets composed of instruction-response
pairs, LLM can attain the ability to generate appro-
priate responses to given instructions (Dubois et al.,
2023; Zheng et al., 2023; Xu et al., 2023; Conover
et al., 2023).

In implementing IT, data quality is considered
a critical factor (Zhou et al., 2023a; Wang et al.,
2024; Zhao et al., 2024b; Lu et al., 2024). Sev-
eral studies have proven that selectively using high-
quality IT data for training leads to better align-
ment performance than using the entire dataset (Liu
et al., 2024b; Chen et al., 2024; Zhao et al., 2024a;
Mekala et al., 2024).

Traditionally, the quality of IT data is measured
by evaluating the performance of models trained
on it (Liu et al., 2024b; Chen et al., 2024; Zhao
et al., 2024a; Xia et al., 2024a). This approach
stems from the consensus that data is deemed good
if it produces a good model. Consequently, most
studies on data quality establish a training configu-
ration for models that represent data quality. Then,
the performance of the trained model is regarded
as the data quality. (Zhou et al., 2023a; Zhao et al.,
2024a; Xia et al., 2024b; Du et al., 2023; Zhou
et al., 2023b).

However, we observed that these studies often
lack justification for the hyperparameter settings
used in model training. Table 1 presents the diverse
hyperparameter configurations utilized in previous
research implementing IT with a sampled 1K gen-
eral domain IT dataset. We discovered that the
configurations may vary across studies, even when
training the same model with identical data sizes.

In this study, we question whether reaching co-
herent conclusions under varying settings is possi-
ble. Specifically, we emphasize that conclusions
regarding data quality can easily be altered based
on arbitrarily chosen hyperparameter settings. For
instance, even if one might report that dataset A is
superior to dataset B, another could claim that B is
better by training models under different settings,
even with the same dataset, model, and test settings.
This variability poses a risk of causing significant
confusion.

As a representative case, we consider two
general-domain IT datasets: LIMA (Zhou et al.,
2023a) and sampled 1K dataset from Alpaca
(Alpaca-longest (Zhao et al., 2024a)). In (Zhao
et al., 2024a), it was reported that a model trained
on Alpaca-longest outperformed a model trained
on LIMA. However, our experiments contrarily
demonstrate that LIMA can also be regarded as bet-
ter than Alpaca-longest, depending on the selected
training setting. Given the current research trend
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Paper Epochs LR LR Scheduler Batch Data Pool

Training Llama-2-7B with sampled 1K general domain IT data

Ghosh et al. (2024) 3 5e-5 - 32 Lima
Raghavendra et al. (2024) 3 1e-5 - 8 Dolly

Yu et al. (2024) 3 1e-5 - 64 Alpaca / WizardLM
Du et al. (2023) 3 2e-5 Cosine 128 Alpaca+HC3+WizardLM+Dolly+Self-Instruct+Lima
Li et al. (2024) 3 2e-5 - 128 Alpaca / WizardLM

Liu et al. (2024a) 3 2e-5 Cosine 128 Alpaca-gpt4 / Lima
Mekala et al. (2024) 3 2e-5 Cosine 128 Alpaca / Dolly
Kong et al. (2024) 8 1e-5 Cosine 64 Lima
Zhao et al. (2024a) 15 1e-5 Linear 128 Alpaca / WizardLM / Lima
Zhou et al. (2023a) 15 (ES) 1e-5 Linear 64 Lima

Training Llama-2-13B with 1K general domain IT data

Ghosh et al. (2024) 3 5e-5 - 32 Lima
Zhao et al. (2024b) 10 1e-4 - 16 Alpaca-gpt4
Liu et al. (2024a) 3 2e-5 Cosine 128 Alpaca-GPT4 / Lima

Mekala et al. (2024) 3 2e-5 Cosine 128 Alpaca / Dolly
Zhao et al. (2024a) 15 1e-5 Linear 128 Alpaca / WizardLM / Lima

Training Mistral 7B with 1K general domain IT data

Kong et al. (2024) 4 1e-5 Cosine 64 Lima
Zhao et al. (2024a) 15 2e-6 Linear 128 Alpaca / WizardLM / Lima
Ghosh et al. (2024) 3 5e-5 - 32 Lima

Yu et al. (2024) 3 1e-5 - 64 Alpaca / WizardLM
Yin et al. (2024) 4 4e-6 - 128 WizardLM / UltraChat / ShareGPT

Table 1: Hyperparameters reported by previous studies, adopted to train LLMs with 1K general domain IT data. The
data pool details the sources from which the 1K data samples were drawn. Detailed descriptions of these data pools
are provided in the Table 4. The ’+’ symbol indicates experiments where samples were drawn from a combined data
mix of all mentioned datasets. The ’/’ symbol reports studies that sampled individually from each data pool.

of arbitrarily determining hyperparameters for vali-
dation models, this confusion can be identified as a
severe yet persistent problem.

Through our experiments, we emphasize the ne-
cessity of rigor in reporting data quality. Further-
more, our discussion suggests the importance of
identifying (at least) locally optimal hyperparame-
ters and reporting data quality under these settings.

2 Related Works

Previous research has widely acknowledged the
importance of data quality in performing IT. Chen
et al. (2024) proposed that training LLMs with a
small, carefully selected subset of high-quality data
can significantly improve alignment performance
within the vast IT data pool. Furthermore, Zhou
et al. (2023a) even suggested that carefully curated
high-quality 1,000 data points are sufficient to at-
tain alignment performance for LLMs. Motivated
by these findings, numerous studies are exploring
various methodologies focused on selecting high-
quality instruction tuning data (Wang et al., 2024;
Chen et al., 2024; Zhao et al., 2024a; Xia et al.,
2024b; Lu et al., 2024; Liu et al., 2024b).

However, most studies lack justification for the
selected hyperparameter setting to train verification
models. Consequently, the training setups become
diversified even when using the same LLM and

dataset. We argue that the importance of selecting
appropriate hyperparameters has long been empha-
sized (Yu and Zhu, 2020; McCandlish et al., 2018;
Halfon et al., 2024). The community widely recog-
nizes that optimal hyperparameters are often spe-
cific to particular LLMs and datasets, and reported
performance may vary based on the experimental
setup (Van Rijn and Hutter, 2018; Jin, 2022; Gk-
outi et al., 2024; Bi et al., 2024). However, we
find that research on data quality frequently reports
performance without adequately considering these
factors.

In this study, we highlight the potential confu-
sion that can result from neglecting these consider-
ations and demonstrate the necessity of a rigorous
experimental setup to report data quality.

3 Experimental Setting

3.1 Exam-taker Dataset

In our experiments, we adopt two general domain
IT datasets, each comprising 1,000 samples, as our
exam-taker datasets. By comparing the quality of
these two datasets, we examine how the judgment
on the exam-taker datasets varies with different
arbitrarily chosen hyperparameter settings.

LIMA (Zhou et al., 2023a) LIMA is a high-
quality dataset comprising 1,000 IT data points,
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Koala

Setting16 Linear 2e-5 256 3 102 73Setting16 Linear 2e-5 256 3 102 73

Setting15 Linear 2e-5 256 15 79 101Setting15 Linear 2e-5 256 15 79 101
Setting14 Linear 2e-5 64 3 66 111Setting14 Linear 2e-5 64 3 66 111
Setting13 Linear 2e-5 64 15 77 102Setting13 Linear 2e-5 64 15 77 102

Setting12 Linear 1e-5 256 3 47 116Setting12 Linear 1e-5 256 3 47 116
Setting11 Linear 1e-5 256 15 71 107Setting11 Linear 1e-5 256 15 71 107
Setting10 Linear 1e-5 64 3 71 102Setting10 Linear 1e-5 64 3 71 102
Setting9 Linear 1e-5 64 15 86 93Setting9 Linear 1e-5 64 15 86 93

Setting8 Cosine 2e-5 256 3 95 81Setting8 Cosine 2e-5 256 3 95 81

Setting7 Cosine 2e-5 256 15 72 107Setting7 Cosine 2e-5 256 15 72 107
Setting6 Cosine 2e-5 64 3 64 113Setting6 Cosine 2e-5 64 3 64 113
Setting5 Cosine 2e-5 64 15 80 99Setting5 Cosine 2e-5 64 15 80 99

Setting4 Cosine 1e-5 256 3 47 115Setting4 Cosine 1e-5 256 3 47 115
Setting3 Cosine 1e-5 256 15 74 104Setting3 Cosine 1e-5 256 15 74 104
Setting2 Cosine 1e-5 64 3 65 109Setting2 Cosine 1e-5 64 3 65 109

Scheduler LR Batch Epochs

Setting1 Cosine 1e-5 64 15 86 90
Scheduler LR Batch Epochs

Setting1 Cosine 1e-5 64 15 86 90

MT_Bench

52 2152 21

46 3246 32

43 3243 32

33 4333 43

32 3732 37
42 2942 29

30 3930 39
37 3937 39

47 2247 22

47 2747 27

34 4134 41
31 4531 45

36 3136 31

48 2748 27

36 3336 33

37 3937 39

Self-Instruct

75 5875 58

68 7468 74
58 7758 77
65 7565 75

58 7458 74
59 8059 80
54 7854 78
74 6674 66

67 6367 63

69 7369 73
55 8255 82
65 7265 72

57 7457 74
60 8260 82
47 8547 85
74 6474 64

Lima Win Tie Alpaca-Longest Win

Figure 1: The performance comparison between the two models trained with LIMA and Alpaca-Longest. We train
Llama-2-7B model with each dataset, We evaluate the data quality when training each dataset with the Llama-2-7B
model. is depicted on the Y-axis represents the hyperparameter settings used in each experiment. We bolded the
settings that consistently demonstrated conclusive results across all three evaluation datasets.

carefully curated by human efforts with an empha-
sis on quality and diversity.

Alpaca-Longest (Zhao et al., 2024a) Zhao et al.
(2024a) selected the 1,000 entries with the longest
token lengths from the Alpaca dataset (Taori et al.,
2023). This approach proved more effective than
training on the entire Alpaca dataset and signifi-
cantly outperformed other baselines such as Alpa-
gasus (Chen et al., 2024). According to the original
paper, training with this data resulted in higher
alignment performance than LIMA.

3.2 Experimental Model
The quality of the Exam-taker Dataset is deter-
mined by the performance of the experimental
model trained on it. We conduct experiments using
the Llama-2-7B model (Touvron et al., 2023) and
the Mistral-7B-v0.3 model (Jiang et al., 2023). The
main paper reports the results for the Llama-2-7B
model, and Appendix A includes the results for the
Mistral-7B model.

3.3 Experimental Setting
This study focuses on four commonly reported hy-
perparameters: learning rate, learning rate sched-
uler, batch size, and number of epochs. We re-
port the experimental results obtained from varying
these parameters. We conduct comparative experi-
ments for each setting by choosing two prevalent

yet distinct values. While numerous other potential
variations exist, such as weight decay and dropout,
we leave these for future exploration. Apart from
the hyperparameters under investigation, detailed
experimental settings are provided in Appendix C.

3.4 Test Dataset

To evaluate the performance of the trained model,
we use three LLM alignment benchmarks: Koala
(Geng et al., 2023), MT-Bench (Zheng et al., 2023),
and Self-Instruct (Wang et al., 2023). These bench-
marks serve as an instruction-following evaluation
tool, assessing LLMs by evaluating the quality of
text generated in response to given instructions. We
employ GPT-4o (Hurst et al., 2024)1 as a judge to
compare the performance of experimental models
for each benchmark. The judge prompts used in
the experiments are detailed in Appendix D.

4 Experimental Results

4.1 LIMA vs Alpaca-Longest

Figure 1 presents the experimental results based
on hyperparameter variations. Our results show
that if we choose specific settings (e.g., Settings 4,
5, 10, 12, 13), we can report that Alpaca-longest
exhibits superior data quality compared to LIMA.
At the same time, if we choose other configurations

1https://openai.com/index/hello-gpt-4o/
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Dataset LIMA Alpaca-Longest

Comparison
with

Setting 1

Setting 1
Wins Tie Setting x

Wins
Setting 1

Wins Tie Setting x
Wins

vs Setting 2 112 10 58 121 7 52
vs Setting 3 101 7 72 97 10 73
vs Setting 4 142 7 31 144 10 26
vs Setting 5 98 9 73 102 6 72
vs Setting 6 114 6 60 109 7 64
vs Setting 7 83 8 89 73 7 100
vs Setting 8 121 8 51 136 9 35
vs Setting 9 86 10 84 84 14 82
vs Setting 10 116 9 55 130 9 41
vs Setting 11 101 5 74 96 9 75
vs Setting 12 146 7 27 145 9 26
vs Setting 13 96 7 77 102 8 70
vs Setting 14 124 8 48 114 5 61
vs Setting 15 82 7 91 78 6 96
vs Setting 16 109 10 61 145 5 30

Table 2: We report the performance of the Llama-2-7B
model, trained under each setting, as evaluated on the
Koala dataset. Details for each setting are presented in
the Figure 1.

(e.g., Settings 8, 16), we can report that LIMA still
demonstrates higher data quality.

Considering that authors have determined such
hyperparameters arbitrarily, this represents a sig-
nificant concern. We view that the ability to alter
reported conclusions based on subjective decisions
can severely undermine the reliability of scientific
discussions.

4.2 Among the Same Dataset
Then, which setting should we choose to report?
Considering that the primary goal of the IT dataset
is to construct high-performance models, it would
be reasonable and practical to report results based
on the best achievable performance with the given
data (Koehn et al., 2018, 2020; Budach et al., 2022;
Van Rijn and Hutter, 2018).

In this section, we identify the optimal settings
among the configurations tested. We recognize
that other configurations with better performance
may have been overlooked. We focus on local opti-
mality within our considered settings and discuss
its implications. Figure 2 compares model per-
formance across various hyperparameter settings,
using Setting1 as the baseline.

Our experiments reveal that Setting7, 15 (2e-5
LR / 256 Batch / 15 Epochs) maximizes model
performance within our study. Notably, we can
find that such configurations are far beyond the
widely chosen settings in existing research. As our
brief survey in Table 1 indicates, most studies opt
to train Llama-2-7B for only three epochs when
using 1K IT datasets. However, our results show
that this setup yielded significantly lower perfor-
mance than training for 15 epochs under the same

conditions. This finding suggests that the reported
performance in many studies may reflect the under-
trained performance of models, which may fail
to fully represent the potential of the exam-taker
dataset.

5 Discussion

We argue that it is inevitable to evaluate the
downstream model performance. We acknowl-
edge that assessing data quality through the per-
formance of a trained model can be ambiguous.
However, we also argue that the quality of train-
ing data must inevitably be assessed through the
model’s performance after training.

We would like to discuss how the quality of train-
ing data is generally acknowledged. The goal of
constructing the training dataset is to develop a
model that aligns with the intended purpose. Thus,
in terms of training data, "good data" is defined
as data that produces a "good model"(Chen et al.,
2024; Koehn et al., 2020). This fundamentally
differs from constructing benchmark datasets for
evaluation. Since training data’s primary aim is to
build a strong model, data that appear high-quality
to humans (or any frontier LLMs) may offer little
value if the trained model’s performance remains
subpar (Liu et al., 2024b).

In this context, the quality of training data is
fundamentally linked to the performance of the
model trained on it. While there are various plausi-
ble methods to assess training data, these methods
might remain indirect indicators, without validating
with the performance of the trained model.

Consequently, most studies demonstrate the qual-
ity of the data under evaluation by training it onto
one (possibly several) model and reporting their
performance. We do not consider this approach
erroneous; instead, we view it as a natural and in-
evitable choice. Our stance is that if model-based
verification is unavoidable, a more thorough and
rigorous training configuration would be essential
to verify data quality. Our experiments demonstrate
that hyperparameters can introduce unintended bi-
ases that skew the objective evaluation of the data
quality.

We argue that authors researching data qual-
ity have responsibility for such validation. To
address these ambiguities, we suggest selecting
the hyperparameter setting that yields the highest
performance within a given data and reporting the
model’s performance under this setting. This ap-
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proach seeks to evaluate the model by maximizing
the data’s potential.

Given that hyperparameter search is being per-
formed in relatively small-sized PLMs (e.g., BERT
(Devlin et al., 2019), BART (Lewis et al., 2020))
(Latif and Kim, 2024; Ljubešić et al., 2024; Roele,
2021), we argue that it is challenging to justify its
omission in LLMs other than its high cost. Even
when researchers do not conduct their own hyperpa-
rameter search, there have been multiple attempts
to use existing configurations (Zhou et al., 2023b).
However, as shown in Table 1 with the example of
Mistral, there appears to be no established standard
configuration when tuning relatively recent LLMs.

Reporting the best performance would certainly
require additional costs for experiments, but we be-
lieve this is a necessary sacrifice to strengthen scien-
tific discourse. We argue that arbitrary conclusions
stemming from arbitrary hyperparameter choices
pose a greater risk than incurring additional costs.
While a comprehensive hyperparameter search may
not always be necessary, we claim that authors
should clearly justify their chosen hyperparame-
ters. Even if they do not report peak performance,
employing the best settings from our paper or es-
tablished training configurations (ex. LIMA con-
figuration) would still be a rational approach.

6 Conclusion

In our examination of various studies addressing
data quality, we observed a recurring issue where
researchers often arbitrarily select hyperparameters
when training models to verify data quality. Our
experiments reveal that arbitrary hyperparameter
choices can lead to arbitrary conclusions. More-
over, we found that hyperparameters chosen with-
out justification often fail to achieve optimal per-
formance on the exam-taker datasets, resulting in
unreliable conclusions. To address this, we propose
establishing a local hyperparameter pool and train-
ing models under locally optimal settings within
this pool. While additional costs for hyperparam-
eter validation are inevitable, we consider this a
necessary sacrifice for attaining the reliability of
scientific discourse. To ensure rigorous reporting
and sustainable consensus, we urge careful atten-
tion.

Limitation

The numerous hyperparameter settings we did not
consider may remain a limitation of our study.

Within our budget constraints, we verified as many
possibilities as possible. Fortunately, we found
significant variations in model performance even
within the four factors we examined, allowing us to
draw generalized conclusions. Through our brief
survey, we can also found that various other hyper-
parameter variants, such as weight decay, warmup
steps, are also introduced without justification. Ex-
ploring additional possibilities to identify an op-
timal setup could be a meaningful area for future
research.

In this study, we did not attempt hyperparameter
optimization (HPO), as finding optimal values was
outside the scope of our research. Applying HPO
when reporting on data quality, could serve as an
excellent direction for future research.

Although we conducted experiments using only
two datasets, we do not see this as a limitation. We
believe this setup clearly demonstrates the inher-
ent ambiguity in reporting data quality. Possibly
numerous other datasets can exist where hyperpa-
rameter settings could alter reporting conclusions.
Instead of identifying additional dataset pairs, we
consider it more valuable to focus future research
on strategies to mitigate such ambiguities.
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our pool, Alpaca-Longest can arguably be consid-
ered superior to Lima. This finding aligns with the
results reported in the original paper. In all experi-
ments, we exclusively used artifacts approved for
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A Experimental Results - Mistral

We conducted the same experiments described in
Section 4 using the Mistral-7B model. The results
are reported in Table 3 and Figure 2.

Dataset LIMA Alpaca-Longest

Comparison
with

Setting 1

Setting 1
Wins Tie Setting x

Wins
Setting 1

Wins Tie Setting x
Wins

vs Setting 2 79 12 89 58 11 111
vs Setting 3 75 12 93 50 14 116
vs Setting 4 100 8 72 107 14 59
vs Setting 5 116 13 51 126 13 41
vs Setting 6 97 17 66 95 15 70
vs Setting 7 93 12 75 70 14 96
vs Setting 8 125 8 47 130 12 38
vs Setting 9 87 16 77 82 18 80
vs Setting 10 83 14 83 58 15 107
vs Setting 11 81 7 92 45 6 129
vs Setting 12 102 10 68 96 9 75
vs Setting 13 124 13 43 129 18 33
vs Setting 14 96 22 62 87 16 77
vs Setting 15 88 14 78 78 14 88
vs Setting 16 109 9 62 118 10 52

Table 3: We report the performance of the Mistral-7B
model, trained under each setting, as evaluated on the
Koala dataset. Details for each setting are presented in
the Figure 1.

As shown in Table 3, models trained for 15
epochs generally outperformed those trained for
only 3 epochs, even within the same settings. This
finding suggests that commonly adopted hyperpa-
rameter settings in prior research may not be opti-
mal and that reported performance might not fully
exploit the data’s potential.

Figure 2 illustrates the potential conclusions we
can draw from various settings using Mistral. There
is still significant diversity between settings, sup-
porting our earlier conclusions in Section 4. We
demonstrate that merely using multiple models is
insufficient to enhance robustness in data quality
validation, emphasizing the necessity of hyperpa-
rameter generalization.

B Dataset Details

Dataset Paper / Description Data Size

Alpaca Taori et al. (2023) 52K
Alpaca-GPT4 Peng et al. (2023) 52K

Dolly Conover et al. (2023) 15K
HC3 Guo et al. (2023) 24.3K

ShareGPT Chiang et al. (2023) 52K
UltraChat Ding et al. (2023) 200K
WizardLM Xu et al. (2023) 700K

Table 4: We report only the data aimed at performing
IT in a general domain, which are adopted to previous
studies. Each dataset consists of a pair, featuring a
human instruction and an appropriate response.

C Experimental Details

We conducted experiments with a weight decay
of 0.0, a warmup of 0.0, and a maximum length
of 2,048, utilizing the HuggingFace trainer (Wolf
et al., 2020). To enhance learning efficiency, we
applied bf16 (Kalamkar et al., 2019) and tf32
(Stosic and Micikevicius, 2021) strategy. All train-
ing was performed using FlashAttention-2 (Dao
et al., 2022) and DeepSpeed Stage 2 (Smith et al.,
2022). For inference, we employed vllm (Kwon
et al., 2023). Our setup included four RTX-A6000
GPUs with 48GB each for model training and infer-
ence. The original batch size per GPU was set to 2,
and we used gradient accumulation to increase the
batch size. Other settings followed the default con-
figurations provided by the HuggingFace trainer.

D LLM-as-a-Judge

## System Prompt
Please act as an impartial judge and evaluate the quality
of the responses provided by two AI assistants to the
user question displayed below.
You should choose the assistant that follows the user’s
instructions and answers the user’s question better.
Your evaluation should consider factors such as the
helpfulness, relevance, accuracy, depth, creativity,
and level of detail of their responses.
Begin your evaluation by comparing the two responses
and provide a short explanation. Avoid any position
biases and ensure that the order in which the responses
were presented does not influence your decision.
Do not allow the length of the responses to influence
your evaluation. Do not favor certain names of the
assistants. Be as objective as possible.
After providing your explanation, output your final
verdict by strictly following this format: "[[A]]"
if assistant A is better, "[[B]]" if assistant B is
better, and "[[C]]" for a tie.
## Input Statements
You are a helpful and precise assistant for
checking the quality of the answer.
[Question]
{question}
[The Start of Assistant 1’s Answer]
{Response From Assistant 1}
[The End of Assistant 1’s Answer]
[The Start of Assistant 2’s Answer]
{Response From Assistant 2}
[The End of Assistant 2’s Answer]

Table 5: Prompt used for training the LLM: For models
not supporting system prompts, we combined the system
prompt and user prompt into a single input statement.

The prompt we used is presented in Table 5. In
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Koala

Setting16 Linear 2e-5 256 3 85 87Setting16 Linear 2e-5 256 3 85 87
Setting15 Linear 2e-5 256 15 85 91Setting15 Linear 2e-5 256 15 85 91
Setting14 Linear 2e-5 64 3 83 95Setting14 Linear 2e-5 64 3 83 95
Setting13 Linear 2e-5 64 15 98 79Setting13 Linear 2e-5 64 15 98 79

Setting12 Linear 1e-5 256 3 92 85Setting12 Linear 1e-5 256 3 92 85

Setting11 Linear 1e-5 256 15 63 114Setting11 Linear 1e-5 256 15 63 114
Setting10 Linear 1e-5 64 3 82 96Setting10 Linear 1e-5 64 3 82 96
Setting9 Linear 1e-5 64 15 95 83Setting9 Linear 1e-5 64 15 95 83

Setting8 Cosine 2e-5 256 3 80 95Setting8 Cosine 2e-5 256 3 80 95
Setting7 Cosine 2e-5 256 15 79 98Setting7 Cosine 2e-5 256 15 79 98
Setting6 Cosine 2e-5 64 3 74 105Setting6 Cosine 2e-5 64 3 74 105
Setting5 Cosine 2e-5 64 15 101 76Setting5 Cosine 2e-5 64 15 101 76

Setting4 Cosine 1e-5 256 3 91 83Setting4 Cosine 1e-5 256 3 91 83

Setting3 Cosine 1e-5 256 15 80 99Setting3 Cosine 1e-5 256 15 80 99
Setting2 Cosine 1e-5 64 3 85 92Setting2 Cosine 1e-5 64 3 85 92

Scheduler LR Batch Epochs

Setting1 Cosine 1e-5 64 15 90 89

Scheduler LR Batch Epochs

Setting1 Cosine 1e-5 64 15 90 89

MT_Bench

55 2155 21

44 3444 34

38 3938 39
44 3344 33

58 2158 21

29 4929 49
34 4434 44
45 3545 35

49 3049 30

36 4236 42
41 3941 39

44 3144 31

51 2751 27

27 5127 51
36 4336 43
50 2850 28

Self-Instruct

81 6581 65

54 9354 93
66 8166 81
80 6880 68

89 5689 56

59 8859 88
57 9157 91
72 7472 74

82 6182 61

51 9751 97
73 7373 73
83 6583 65

80 6780 67

55 9255 92
65 8365 83
83 6383 63

Lima Win Tie Alpaca-Longest Win

Figure 2: The performance comparison between the two models trained with LIMA and Alpaca-Longest. We train
Mistral-7B model with each dataset, We evaluate the data quality when training each dataset with the Mistral-7B
model. is depicted on the Y-axis represents the hyperparameter settings used in each experiment. We bolded the
settings that consistently demonstrated conclusive results across all three evaluation datasets.

all our experiments, we randomize the order of pre-
sented responses to relieve any unintended effects
driven by the positional bias. We conducted our
experiments with GPT-4o (gpt-4o-2024-08-06),
setting the temperature to 0 and top-p to 1.0. The
API usage cost for the experiments detailed in Ta-
ble 2 was $11.25. Conducting a similar hyperpa-
rameter search using GPT4o-mini incurred a cost
of $1.44. While using GPT4o-mini presents a cost-
effective option, the Pearson-r correlation score
between GPT4o and GPT4o-mini was 0.559 in our
experiments. Although this score might be con-
sidered reasonably high, we argue using GPT-4o
is more effective for establishing a more precise
and rigorous setting. We leave experiments with
alternative judges for future research.
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