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Abstract

Emotions manifest through physical experi-
ences and bodily reactions, yet identifying such
embodied emotions in text remains understud-
ied. We present an embodied emotion classi-
fication dataset, CHEER-Ekman,1 extending
the existing binary embodied emotion dataset
with Ekman’s six basic emotion categories. Us-
ing automatic best-worst scaling with large
language models, we achieve performance su-
perior to supervised approaches on our new
dataset. Our investigation reveals that sim-
plified prompting instructions and chain-of-
thought reasoning significantly improve emo-
tion recognition accuracy, enabling smaller
models to achieve competitive performance
with larger ones.

1 Introduction

Emotions are not merely abstract mental states;
they are deeply intertwined with somatic experi-
ences. When we feel joy, our faces light up with
smiles; when we are scared, our hearts race and our
hands tremble. These physical reactions are more
than just side effects—they are part of how we expe-
rience and express emotions. This concept, known
as embodied emotion, suggests that our bodies play
a key role in how we feel, perceive, and under-
stand emotions (Lakoff and Johnson, 1999; Nieden-
thal, 2007). In natural language, these connections
surface as descriptions of physiological reactions
(e.g., “my stomach churned in disgust”) or unin-
tentional physical actions (e.g., “she stomped her
feet in frustration”)—phenomena termed embodied
emotions. Recognizing such expressions is pivotal
for understanding implicit emotional cues in narra-
tives. While recent advances in NLP have focused
more on explicit emotion classification (Moham-
mad et al., 2018) or sentiment analysis (Rosenthal
et al., 2017), the subtler task of identifying em-

1https://github.com/menamerai/cheer-ekman
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Just the thought of public 
speaking makes my heart 
want to pound out of my 
chest.

Seeing the balloon with 
Happy Birthday written on 
it made my heart race.

Figure 1: Illustration of embodied emotions classified
into six categories.

bodied emotions remains less explored, despite its
psychological grounding and practical relevance.

The CHEER dataset (Zhuang et al., 2024) filled
a gap in this field by providing a collection of sen-
tences where body parts are used to express emo-
tions. The dataset includes 7,300 human-annotated
sentences containing body part references, propos-
ing a binary classification task which we will refer
to as “embodied emotion detection.” However, one
limitation of this work is that it does not distinguish
between different types of emotions—for instance,
whether a racing heart signals fear or excitement.
The framework of Ekman’s (1992) basic emotions
offers a potential solution to this limitation. By
linking embodied expressions to these specific emo-
tions, we can build systems that better understand
human emotional experiences.

To achieve this goal, we extend the CHEER
dataset by annotating all its 1,350 positive sam-
ples with six Ekman emotion labels (Joy, Sadness,
Anger, Disgust, Fear, and Surprise), creating a
new dataset, CHEER-Ekman, as illustrated in Fig-
ure 1. For clarity, we refer to the novel classifica-
tion task produced by this dataset as “embodied
emotion classification,” as compared to the binary
task discussed above. We adopt the automatic best-
worst scaling (BWS) technique (Kiritchenko and
Mohammad, 2017; Bagdon et al., 2024) with large
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language models (LLMs) to tackle the task. Our ex-
periments show that using Llama 3.1 8B with BWS
significantly outperforms zero-shot prompting. The
best BWS experiment achieved 50.6 F1-score, sur-
passing supervised BERT (49.6) and beating zero-
shot approaches by around 20 points. Building
on Zhuang et al.’s (2024) investigation of LLMs’
capability for embodied emotion detection, we fur-
ther explore prompting techniques that enhanced
the detection task. Our experimental results reveal
that LLMs can make better recognition when in-
structions are rephrased in plain, easily understood
language, which boosts F1 by nearly 30 points com-
pared to technical definitions. Moreover, chain-of-
thought reasoning enables an 8B parameter model
to nearly match a 70B model, closing the perfor-
mance gap to within 7 F1 points. In summary, our
contributions are three-fold:

1. We present CHEER-Ekman, an extension
of the CHEER dataset that enriches embod-
ied emotion expressions with fine-grained
Ekman emotion labels, addressing a criti-
cal gap in understanding how specific emo-
tions manifest through bodily expressions.
Our dataset is available at: https://github.
com/menamerai/cheer-ekman.

2. We demonstrate that the automatic best-
worst scaling technique enables LLMs to per-
form emotion classification without any task-
specific training, achieving performance that
exceeds supervised approaches.

3. We reveal that counterintuitively, simplified
everyday language in prompts dramatically
outperforms technical definitions for embod-
ied emotion tasks, and that structured rea-
soning through chain-of-thought can allow
smaller language models to perform at a level
closer to larger language models on our task.

2 Related Work

Emotion recognition in natural language process-
ing has been extensively studied, with researchers
focusing more on explicit emotion using datasets
like SemEval (Strapparava and Mihalcea, 2007;
Mohammad et al., 2018) and GoEmotions (Dem-
szky et al., 2020). Recent research has expanded
to explore nuanced aspects of emotion expres-
sion (Li et al., 2021), including emotion intensity
prediction (Mohammad, 2018; Bagdon et al., 2024)
and the detection of subtle emotional cues in dia-

logues (Poria et al., 2019; Ghosal et al., 2020; Li
et al., 2022). The advent of large language models
(LLMs) has catalyzed significant advances in emo-
tion understanding capabilities (Lee et al., 2024;
Sabour et al., 2024; Zhao et al., 2024; Liu et al.,
2024).

While these works contribute to a deeper under-
standing of emotion detection in text, the embodied
nature of emotions—how physical sensations and
actions encode affective states—has received com-
paratively less attention. The concept of embodied
emotion is rooted in cognitive science, particularly
in the works of Lakoff and Johnson (1999) and
Niedenthal (2007), which suggest that emotional
experiences are closely tied to bodily states and
actions. Despite the psychological grounding of
embodied emotions, computational approaches to
capturing them in text remain limited. Zhuang et al.
(2024) introduced the CHEER dataset, which pro-
vides a collection of sentences where body parts
are explicitly used to express emotions. Our work
extends theirs by incorporating Ekman’s six ba-
sic emotions into embodied emotion recognition,
offering a more fine-grained classification system.

Another relevant line of work is the study of
emotion taxonomy. Although recent advances in
psychology have offered newer granular categories
of emotions such as 27 emotions by Cowen and
Keltner (2017), which has been adopted in both
textual emotion datasets (Demszky et al., 2020)
and visual emotion dataset (Kosti et al., 2019),
we follow the vast majority of existing emotion
datasets (Strapparava and Mihalcea, 2007; Moham-
mad et al., 2018; Poria et al., 2019) by utilizing the
six basic emotions (Joy, Sadness, Anger, Disgust,
Fear, and Surprise) proposed by Ekman (1992),
which remain foundational due to their universal-
ity and simplicity. Future research may explore
integrating alternative taxonomies into embodied
emotion classification to enhance both granularity
and coverage.

3 Methods

Our methodological approach comprises three key
components that build upon and extend the work
of Zhuang et al. (2024). First, we explore prompt-
ing strategies to enhance LLMs’ capability to
detect embodied emotions. Second, we intro-
duce CHEER-Ekman, a refinement of the original
CHEER dataset that adds fine-grained emotion la-
bels. Finally, we adopt the BWS framework for
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emotion classification that leverages comparative
judgments to improve classification accuracy.

3.1 Prompting LLMs for Embodied Emotion
Detection

To address the gap in prompt design within the
Zhuang et al.’s (2024) framework, we first sought
to enhance the embodied emotion detection task
using state-of-the-art LLMs and explore the im-
pact of prompt engineering on performance. Our
approach centers on two key strategies: prompt
simplification to mitigate linguistic complexity and
chain-of-thought (CoT) prompting.

Prompt Simplification. We investigated the ef-
fects of linguistic and domain complexity by
conducting experiments with the base Llama-
3.1 (Grattafiori et al., 2024) and the recently re-
leased DeepSeek-R1 distilled version (DeepSeek-
AI et al., 2025). Specifically, we compared two
prompts: the base prompt used in Zhuang et al.
(2024) and a simplified prompt, which reduces syn-
tactic and lexical complexity to minimize potential
comprehension barriers for LLMs.

Chain-of-Thought Prompting. We further ex-
plored eliciting reasoning from the model by imple-
menting chain-of-thought (CoT) prompting. Based
on Zhuang et al.’s (2024) annotation criteria for
embodied emotion detection, we developed three
CoT variants: a 2-step variant that evaluates emo-
tional causation and purposeless expression, a 3-
step variant that adds body part identification, and
a simplified 2-step variant with reduced linguistic
complexity. These variants allowed us to exam-
ine how explicit causal reasoning affects both the
model’s emotion detection performance and its un-
derstanding of body-emotion relationships.

3.2 Dataset Creation
While embodied emotion detection identifies emo-
tional expressions through bodily movements, un-
derstanding the specific emotions conveyed re-
quires more fine-grained annotation. To address
this need, we propose CHEER-Ekman, a re-
fined dataset extending the original CHEER corpus
(Zhuang et al., 2024) by annotating its 1,350 pos-
itive embodied emotion instances with Ekman’s
(1992) six basic emotions (Joy, Sadness, Anger,
Disgust, Fear, and Surprise). Our adoption of Ek-
man’s basic emotions taxonomy balances granular-
ity with practical considerations, as recent research
by Liu et al. (2024) demonstrates that finer-grained

Figure 2: CHEER-Ekman dataset distribution of emo-
tions.

Emotion Sentence

Joy ... watched the fireflies with a loving look on his face.
Sadness ... frowning and scuffing his feet along the floor.
Fear Marty nervously runs his fingers through his hair...
Anger ... makes me want to hit my head against the wall.
Disgust Dean snorted incredulously, shaking his head in disbelief.
Surprise ... my eyes almost fell out of my head.

Table 1: Examples in our CHEER-Ekman datasets.

emotion taxonomies often face sparsity issues, even
in bigger datasets like GoEmotions (Demszky et al.,
2020).

This approach also maintains consistency with
Zhuang et al.’s (2024) methodology, which utilized
emotion-associated adverbs derived from these ba-
sic emotions for weak supervision. We have also
elected not to include the weakly labeled positive
samples from the CHEER dataset, prioritizing our
final dataset quality and reliability over quantity.

We recruited two annotators to label the 1,350
embodied emotion sentences from the original
CHEER dataset. For each sentence, we provide
the annotators with the sentence, the relevant body
part, and up to three preceding sentences for con-
text. We then ask the annotators to select one of
the six emotions that best match the physical expe-
rience described through the body part. The pair-
wise inter-annotator agreement by Cohen’s Kappa
is 0.64, indicating good agreement. Finally, the
annotators adjudicated their disagreements to pro-
duce the final gold labels. We show some example
sentences with their annotated emotions in Table 1.

Figure 2 illustrates the emotion distribution of
sentences in our newly constructed CHEER-Ekman
dataset. Specifically, Fear is the most preva-
lent emotion (24.7%), followed by Joy (21.2%),
Sadness (19.3%), Surprise (13.3%), and Disgust
(12.5%). Anger appeared last at 9.0%.
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3.3 BWS for Emotion Classification

To address the fine-grained emotion classification
task proposed with CHEER-Ekman, we first tested
zero-shot LLM prompting. However, the model
often fails to adhere to the instructions and is prone
to erroneous behaviors, leading to incorrect out-
puts. Inspired by recent work on automatic emotion
intensity annotation using LLMs (Bagdon et al.,
2024), we adopted the same best-worst scaling tech-
nique. The methodology involves presenting the
LLM with tuples of four different sentences, in-
structing it to identify the body part instances that
most and least represent a specific Ekman emotion.
Then, the equation #Best−#Worst

#Total is used to calcu-
late a score per sentence per emotion. Finally, we
choose the emotion that receives the highest score
to be the prediction for the sentence.

To examine how the number of comparisons af-
fects classification accuracy, we tested a broader
range of tuple counts, from 2N to 72N , increas-
ing by 50% at each step of expansion (where N is
the number of instances to be classified). While
Bagdon et al. (2024) found that more tuples im-
proved accuracy in their experiments up to 12N,
we expanded this investigation to 72N to further
explore performance gain behaviors from scaling
comparative rounds.

4 Evaluation

We conduct experiments to tackle both the embod-
ied emotion detection and emotion classification
tasks. The embodied emotion detection CHEER
dataset contains 7,300 sentences, and our CHEER-
Ekman dataset contains 1,350 sentences. We ex-
plored various strategies and models, and reported
their F1-scores on both datasets.

4.1 Embodied Emotion Detection

Simple Prompting Analysis. To obtain the bi-
nary classification results, we directly compare the
logit probabilities of “True” and “False” tokens
instead of using text generation. This approach en-
sures deterministic outputs by avoiding the random-
ness inherent in sampling-based decoding methods,
while also preventing potential output format vio-
lations that can occur during free-form generation.
Table 2 shows that simplified prompts led to sub-
stantial performance improvements for the 70B
parameter models. The F1-score increased by 29.5
points for Llama-3.1-70B, and by 41.6 points for
DeepSeek-R1-70B (distilled on Llama), surpassing

Model Macro
F1

EE Neutral

Pre Rec F1 Pre Rec F1

Llamabase 37.2 21.5 99.6 35.3 99.6 24.2 39.0
Llamasimple 66.7 37.5 89.3 52.8 96.9 68.9 80.6

DeepSeekbase 32.6 20.3 99.4 33.7 99.3 18.7 31.5
DeepSeeksimple 74.2 51.2 69.3 58.9 93.1 86.2 89.5

GPT 3.5base 70.2 44.0 68.3 53.5 92.5 81.9 86.9
BERT 83.5 73.2 72.1 72.6 94.2 94.5 94.4

Table 2: Results comparison for Embodied Emotion De-
tection. Llama: Llama-3.1-70B. DeepSeek: DeepSeek-
R1-Distilled-Llama-70B. GPT 3.5 and fine-tuned BERT
numbers are from Zhuang et al. (2024). The base and
simple subscripts indicate the type of prompts, which
can be found in Table 5.

Model Macro
F1

EE Neutral

Pre Rec F1 Pre Rec F1

Llama2-step 53.4 26.2 80.8 39.6 93.0 52.7 67.2
Llama3-step 54.8 24.9 53.4 34.0 87.3 66.5 75.5
Llama2-step-simple 60.1 31.5 44.5 36.9 87.4 79.8 83.4

DeepSeek2-step 52.2 26.4 90.8 40.9 96.1 47.3 63.4
DeepSeek3-step 57.4 27.9 62.0 38.5 89.4 66.7 76.4
DeepSeek2-step-simple 67.5 40.1 65.2 49.7 91.7 79.8 85.3

Table 3: CoT results for Embodied Emotion Detec-
tion. Llama: Llama-3.1-8B. DeepSeek: DeepSeek-R1-
Distilled-Llama-8B. The 2-step, 2-step-simple, and 3-
step subscripts indicate the type of prompt accompany-
ing the model in that run. Prompt details are in Table 6.

GPT 3.5 results reported in Zhuang et al. (2024).

Chain-of-Thought (CoT) Analysis. Table 3
shows that CoT prompting enhanced performance
to competitive levels with larger models in the ex-
periments of Table 2, particularly benefiting dis-
tilled reasoning models like DeepSeek-R1-8B (dis-
tilled on Llama). The DeepSeek 8B model us-
ing simple 2-step prompts (DeepSeek2-step-simple)
achieved results within 6.7 F1-points of its larger
70B counterpart (DeepSeeksimple) and 2.7 F1-
points of GPT 3.5. Deeper reasoning processes
proved more effective, with 3-step CoT consis-
tently outperforming 2-step variants across both
models. Finally, simplified prompting substantially
improved CoT performance, yielding F1-score in-
creases of 6.7 (Llama2-step-simple vs. Llama2-step)
and 15.3 (DeepSeek2-step-simple vs. DeepSeek2-step).

Error Analysis. To investigate model failures in
the zero-shot experiments using the simple prompt
setting with Llama-3.1-70B, we analyzed incorrect
predictions. We found a pronounced false-positive
bias, accounting for 93.3% of all errors. A man-
ual inspection of 100 false-positive cases revealed
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Model F1 F1-J F1-Sa F1-F F1-A F1-D F1-Su

Llama 31.6 39.4 43.6 26.6 32.2 19.1 28.5
DeepSeek 28.4 43.3 35.7 33.1 23.1 14.8 20.2

BWS4N 41.8 62.3 57.7 37.9 28.1 30.1 33.9
BWS12N 44.6 67.1 59.2 44.3 38.6 19.0 39.3
BWS36N 50.6 66.7 64.7 48.0 53.2 22.0 48.9
BWS48N 49.8 68.0 62.8 48.2 51.3 24.8 43.8
BWS72N 49.5 68.5 64.5 46.2 51.6 20.5 45.6

BERT 49.6 68.2 57.5 50.1 30.2 56.1 35.7

Table 4: Results for Emotion Classification. Llama:
Llama-3.1-8B. DeepSeek: DeepSeek-R1-Distilled-
Llama-8B. BWS: Automatic BWS with Llama-3.1-8B.
The first column F1 is the macro-averaged score, fol-
lowed by F1-score F1-x, where J - Joy, Sa - Sad, F -
Fear, A - Anger, D - Disgust, and Su - Surprise.

three main patterns. First, 17% of cases involved
referenced body parts that were present in the ex-
perience or expression without acting, as in “tears
falling down the face.” Second, 42% of errors
stemmed from body parts performing functional or
physiological roles within emotional contexts, such
as eyes closing when “blackness crept across his
eyes,” a natural physiological reaction associated
with the character passing away within the context.
Finally, 41% of errors involved metaphorical or
idiomatic expressions. These included cases where
emotional embodiment was implied but not explic-
itly stated (“I couldn’t believe my eyes,” implying
widened eyes in surprise but not explicitly describ-
ing this action), expressions symbolically referring
to emotional states without literal physical embodi-
ment (“a straw that broke my back”), or purely lo-
cational expressions involving body parts without
any action (“thoughts racing through my head”).
These nuanced distinctions highlight the model’s
challenges in accurately interpreting metaphorical,
symbolic, and non-embodied references.

4.2 Embodied Emotion Classification

Our experimental results demonstrate notable per-
formance disparities across prompting strategies
and model architectures. We use the Llama-3.1-
8B as the LLM interpreter for best-worst scaling
(BWS). In Table 4, the first section shows the per-
formance of zero-shot large language models, in-
cluding Llama-3.1-8B and DeepSeek-R1-8B. The
second section shows BWS results with different
numbers of tuples. And the last section shows a
fine-tuned BERT model for comparison (details in
Appendix C). We see that BWS exhibits superior
performance even with smaller tuple configurations

(4N ), exceeding Llama-3.1-8B by 10.2 points. Per-
formance improves consistently as the number of
tuples increases from 2N to 36N (40.2 to 50.6),
suggesting enhanced classification from expanded
pairwise comparisons. We hypothesize that this
expansion helps the model better weigh emotional
significance in text, improving classification accu-
racy. Notably, the best result comes from the expan-
sion to 36N tuples, with the F1-score beating the
supervised method BERT by 1 point. Our experi-
mental results show that as we keep increasing N ,
the performance will reach a plateau as evidenced
by 48N and 72N (see Appendix B).

Error Analysis. To better understand model lim-
itations, we conducted a qualitative error analysis
on the misclassified cases. We identified several
consistent failure modes, including the model’s dif-
ficulty in interpreting emotionally complex inputs
or making reliable distinctions between closely re-
lated emotional states. In one case, the model pre-
dicted Joy, even though the embodied expression

“Ryan ducks his head down to his notebook” sig-
naled Fear. This misclassification likely resulted
from the influence of nearby positive context, such
as “Brendon waves and smiles”, which distracted
the model from the emotion-relevant phrase. In an-
other case, the vivid scene “the age-old rock tradi-
tion of holding up lighters spread across the 28,000
person deep crowd . . . lighting up the entire audi-
ence . . . the hair on my arms started to raise” was
misclassified as Joy, despite strong physiological
cues such as raised arm hair that more closely re-
flect Surprise. This highlights the model’s tendency
to prioritize surface-level celebratory language over
conflicting embodied cues.

5 Conclusion

This work advances embodied emotion recognition
through three main contributions. First, we created
a new dataset called CHEER-Ekman by extending
the CHEER dataset with Ekman emotion labels
to better understand the connection between bod-
ily expressions and emotional states. Second, we
demonstrated that best-worst scaling outperforms
both prompted LLMs and fine-tuned BERT, show-
ing the potential for emotion classification without
task-specific training. Finally, we found that sim-
plified language and chain-of-thought reasoning
significantly improve LLM performance in embod-
ied emotion detection, enabling smaller models to
achieve competitive results.
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Limitations

While our approach demonstrates a promising ad-
vancement in embodied emotion detection using
LLMs and the best-worst scaling technique, several
limitations warrant consideration.

First, a key observation in our embodied emotion
detection task was that simplifying prompts signifi-
cantly improved model performance. While these
findings may suggest enhanced efficiency through
linguistic streamlining, they simultaneously intro-
duce concerns about potential overfitting to these
simplified phrasings. Simplified prompts may in-
advertently prioritize more explicit expressions of
embodied emotion over subtler or more figurative
language, meaning the models might learn to recog-
nize patterns specific to the prompt structure rather
than generalizing to a wide variety of natural lan-
guage expressions.

Second, the CHEER-Ekman dataset is relatively
small, consisting of only 1,350 sentences. This
limited size stems from our decision to annotate
only the sentences already identified as containing
embodied emotions in the original CHEER dataset.
This selective annotation was intended to efficiently
focus our efforts on instances most relevant to em-
bodied emotion, but it may introduce a bias towards
positive examples.

Finally, when addressing emotion classification
via best-worst scaling, the scalability and computa-
tional overhead of this methodology present chal-
lenges: while higher tuple quantities lead to higher
accuracy, they also impose significant computa-
tional costs. Due to time and computational con-
straints, we utilize a smaller model, which may
lead to suboptimal results for higher-order tuples.
Additionally, the limited context window prevents
us from effectively implementing a few-shot set-
ting, further impacting performance in scenarios
requiring extended context understanding.
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A LLM Prompt for Embodied Emotion
Detection & Embodied Emotion
Classification

Table 5-7 presents the complete prompt templates
employed in our experimental methodology. Ta-
ble 5 details the prompts used for zero-shot em-
bodied emotion detection experiments. The Base
prompt closely replicates the methodology of
Zhuang et al. (2024), with the sole modification
being the use of “True” and “False” as decision
tokens rather than “Yes” and “No”. The Simple
prompt maintains the fundamental logic while em-
ploying more straightforward language and struc-
ture to reduce cognitive complexity.

Table 6 presents our chain-of-thought (CoT)
prompt variants. The 2-step implementation in-
corporates the dual criteria from the Base prompt
as explicit reasoning steps. The 3-step variant aug-
ments this with an initial body movement identifi-
cation phase, designed to establish concrete context
and facilitate more comprehensive reasoning. The
2-step simple variant examines the effectiveness of
linguistic simplification within the CoT framework.

Table 7 outlines the large language model (LLM)
prompt utilized for emotion classification experi-
ments with Llama-3.1-8B and DeepSeek-R1-8B
models.

Throughout our prompt templates, we employ
the following placeholder semantics:

• “<sentence|>” denotes the target sentence
containing the body part for evaluation.

• “<bdypart|>” indicates the specific body part
instance within the sentence.

• “<preceed|>” represents up to three preced-
ing context sentences, when available.

This placeholder convention remains consistent
across all experimental tasks presented in this re-
search.

B Best-Worst Scaling

Experiment Setup. Best-worst scaling (BWS) is a
comparative annotation method where annotators
select the best and worst items from a given set,
typically a 4-tuple. This approach efficiently de-
rives pairwise comparisons, as selecting the best
and worst items provides information about most
item relationships within the set. A single anno-
tation with best-worst scaling is equivalent to an

annotation with 6 pairwise comparisons. Hence, us-
ing BWS allows for fewer inferences with the same
result. This is particularly beneficial for identifying
emotion intensity or emotion classification.

These 4-tuples are assembled from the test data
and then are presented to LLMs using the prompt
in Table 8. The model then picks one instance
that most represents and one instance that least
represents some property (in our case, this would
be one of the six Ekman’s (1992) emotions).

Once multiple 4-tuples are annotated, a simple
counting procedure generates numerical scores, al-
lowing items to be ordered according to their rel-
evance to the given property. The score is cal-
culated using the formula #Best−#Worst

#Overall , where
the #Best and #Worst represent the number of
times a sentence is ranked Best or Worst, respec-
tively; and #Overall denotes the number of oc-
currences of the sentence across all 4-tuples. This
approach captures a continuous measure, reflecting
the relative intensity of a sentence within the given
category.

With this method, the LLMs can perform accu-
rate annotations. The results from the annotations
will be calculated to get a BWS intensity score
across 6 Ekman emotions. The emotion with the
highest intensity score will be chosen as the pre-
dicted label. This classification process can be
represented by the following expression:

ê = argmax
ei∈E

S(ei)

where ei corresponds to each emotion, E is the set
of all emotions, and S(ei) is the intensity score
w.r.t. to such emotion. The resulting predictions
are compared with the labels from the CHEER-
Ekman dataset to assess performance using several
metrics, with a particular focus on the F1-score.
The approach of increasing the number of tuples
to enhance performance was proposed by Bagdon
et al. (2024).

Along with the embodied emotion classification
prompt, we also incorporate two additional place-
holder semantics:

• “<textid|>” denotes the unique instance ID
from the dataset. This id helps the model
easily pick out its answer from the sentence
tuple when inferencing.

• “<emo|>” denotes the specific emotion re-
quired for ranking.
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This placeholder convention remains consistent
across all experimental tasks presented in this re-
search.
Performance Plateau. Figure 7 illustrates the re-
lationship between tuple count and F1-score per-
formance in our BWS experiments. The results
demonstrate significant performance improvements
up to 24N tuples, reaching optimal performance at
36N . Beyond this threshold, performance degrada-
tion is observed, with decreased F1-scores at both
48N and 72N tuple configurations. This pattern
suggests a clear upper bound for effective tuple
scaling in BWS implementations.

C BERT Experiment Setup

For the embodied emotion classification task dis-
cussed in Section 3.3, in addition to BWS, we
fine-tuned BERT as a reference benchmark (Devlin
et al., 2019). Inputs were constructed by concate-
nating the preceding context, main text, and refer-
enced body part. We set the maximum sequence
length to 512 and use a batch size of 16. The model
was trained with the AdamW optimizer, a learn-
ing rate of 2e-5, and evaluated over 15 training
epochs. Cross-entropy loss was used as the objec-
tive, with tokenization performed using truncation
and padding. All runs were conducted with 5 seed
values starting from 41 to 45 for reproducibility,
and final results were averaged across these five
runs.

D Data and Results Analysis

Figure 3 - 6 present a more detailed analysis of the
CHEER-Ekman dataset and evaluation of models’
performance. Figure 3 illustrates the frequency of
the top 10 body parts associated with each emo-
tion, where the size of the bubble reflects the co-
occurrence of the body part and emotion pair. No-
tably, the body parts face, eye, head, hand, and
throat appear consistently across the top 10 body
parts across all emotions, with the highest fre-
quency observed in face, eye, and head.

Figure 4 illustrates the classification perfor-
mance of the 10 most frequent body parts,
with their frequency and corresponding accuracy
across the three language models: Llama-3.1-8B,
DeepSeek-R1-8B, and fine-tuned BERT. As ex-
pected, the fine-tuned BERT model consistently
outperforms both Llama and DeepSeek for the
most frequent body parts. Generally, the fine-tuned
BERT model outperforms both zero-shot Llama

and Deepseek, achieving an average accuracy in-
crease of 11.7 over Llama and 14.8 over DeepSeek
across the top 10 frequent body parts.

Figure 5 and 6 present confusion matrices com-
paring the models’ predicted emotions against the
ground truth emotion for Llama and DeepSeek,
respectively. When comparing the two figures, a
notable pattern emerges. In Figure 5, strong activa-
tions across the diagonal indicate Llama’s attempt
to predict emotions accurately without bias towards
any one emotion. In Figure 6, however, we observe
a prominent concentration in Joy in the DeepSeek
model.
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Task Prompt Template

Base Please determine if a body part is involved in any embodied emotion. Specifically, a body part is
involved in some embodied emotion if both conditions below are satisfied:
1) The physical movement or physiological arousal involving the body part is evoked by emotion.
2) The physical movement, if there is any, has no other purpose than emotion expression.
Answer "True" if the body part is involved in any embodied emotion, and "False" otherwise.

Preceding Context: <preceed|>
Sentence: <sentence|>
Body part: <bdypart|>
Answer:

Simple Decide if a body part is used purely to express emotion. Ask:
- Did emotion cause the body part’s movement/response?
- Was the movement ONLY for expressing emotion (no other reason)?
If both are true, say "True." Else, say "False."

Preceding Context: <preceed|>
Sentence: <sentence|>
Body part: <bdypart|>
Answer:

Table 5: Zero-shot templates for different tasks.

Setting Prompt Template

2-Step Please determine if a body part is involved in any embodied emotion.

First, answer Condition 1: Is the body part’s movement/arousal caused by emotion?
Then, answer Condition 2: Does the movement lack non-emotional purposes?

If both of those conditions are true, answer "True." Otherwise, answer "False." Please reason
step-by-step for your answer.
Here is the question:

Preceding Context: <preceed|>
Sentence: <sentence|>
Body part: <bdypart|>

3-Step Please determine if a body part is involved in any embodied emotion. Specifically, a body part
is involved in some embodied emotion if both conditions below are satisfied: Before answering,
reasoning step-by-step

1. Identify the body part mentioned.
2. Check if emotion directly caused its movement/arousal.
3. Verify if the movement has no functional purpose.

Only if all of the above are true, answer "True." Otherwise, answer "False."
Here is the question:

Preceding Context: <preceed|>
Sentence: <sentence|>
Body part: <bdypart|>

2-Step Simple Decide if a body part is used purely to express emotion. Ask:

- Did emotion cause the body part’s movement/response?
- Was the movement ONLY for expressing emotion (no other reason)?
If both are true, say "True." Else, say "False." Before answering, give your reasoning step-by-step.

Preceding Context: <preceed|>
Sentence: <sentence|>
Body part: <bdypart|>

Table 6: Chain of Thought (CoT) prompt templates for different settings.
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Prompt Template

Classify the emotion expressed by the body part in a sentence into one of six categories: "Joy", "Sadness", "Anger", "Fear",
"Surprise", or "Disgust".

Preceding Context: <preceed|>
Sentence: <sentence|>
Body part: <bdypart|>
Answer:

Table 7: Emotion classification prompt template.

Prompt Template

You are an expert annotator specializing in emotion recognition. Rank the following examples based on how much <emo|>
the specified body part exudes in the text.

Instructions:
- Use only the Preceding Text for context.
- Identify which example conveys the MOST <emo|> and which conveys the LEAST <emo|> based on the body part mentioned.
- Do not repeat the text. Only provide the Example numbers in the specified format.

Example: <textid|>
Preceding Context: <preceed|>
Sentence: <sentence|>
Body part: <bdypart|>

Example: <textid|>
Preceding Context: <preceed|>
Sentence: <sentence|>
Body part: <bdypart|>

Example: <textid|>
Preceding Context: <preceed|>
Sentence: <sentence|>
Body part: <bdypart|>

Example: <textid|>
Preceding Context: <preceed|>
Sentence: <sentence|>
Body part: <bdypart|>

Format your response as:
Most <emo|> Example:
Least <emo|> Example:

Table 8: BWS-Emotion classification prompt template.
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Figure 3: Frequency of top 10 body parts for each emotion.
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Figure 4: Embodied emotion classification of top 10 frequent body parts with frequency (left) and accuracy (right)
comparing zeroshot with Llama, DeepSeek and finetuned BERT.

Figure 5: Confusion matrix of Llama predictions.
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Figure 6: Confusion matrix of DeepSeek predictions.

Figure 7: F1-score trends for BWS when increasing the number of tuples from 2N to 72N (where N is the total
number of instances to be classified). BERT’s performance is shown as a reference baseline.
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