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Abstract

We propose a novel method to integrate a
Conditional Variational Autoencoder (CVAE)
into a span-based Named Entity Recognition
(NER) model. This approach models shared
and unshared information among labels in mul-
tiple datasets, thereby easing training on these
datasets. Experimental results using multi-
ple biomedical datasets demonstrate the effec-
tiveness of the proposed method, showing im-
proved performance on the BioRED dataset.
Our source code for this implementation is pub-
licly available at GitHub1.

1 Introduction

Named Entity Recognition (NER) is a fundamental
Natural Language Processing (NLP) task, serving
as a crucial first step in information extraction. Al-
though Large Language Models (LLMs) with zero-
or few-shot learning have been widely investigated,
supervised learning or full fine-tuning remains es-
sential for achieving high performance (Zhong and
Chen, 2021; Luo et al., 2023; Wang et al., 2023;
Munnangi et al., 2024; Zhou et al., 2024). The
performance of such NER models depends on the
quantity of labeled data, which is often costly to
create manually.

One approach to increase labeled training data is
to combine existing labeled datasets (Luo et al.,
2022; Islamaj et al., 2021a). However, even
datasets targeting the same types of named entities
have different type definitions and annotation crite-
ria, making it challenging to merge them into a uni-
fied training dataset. For instance, in the biomedi-
cal NER datasets NLMChem (Islamaj et al., 2021a)
and BioRED (Luo et al., 2022), which both in-
clude a Chemical entity type, the term “hema-
toxylin” is labeled as Chemical in NLMChem, but
not in BioRED. This discrepancy arises because

1https://github.com/tti-kde/CVAE-NER

BioRED’s annotation guidelines explicitly exclude
staining reagents from the Chemical label.

A common strategy for utilizing multiple
datasets is multi-task learning (MTL) (Wang et al.,
2018; Zuo and Zhang, 2020; Rodriguez et al.,
2022). MTL shares a base model among tasks
while maintaining a separate classification layer
for each dataset, which allows for learning without
explicitly addressing dataset-specific differences.
However, MTL cannot account for relationships
among labels in different datasets. Luo et al. (2023)
tackled this issue by manually editing additional
datasets to align with the target dataset, which im-
proved performance, but the manual editing pro-
cess is costly.

Span-based approaches are widely used for
NER (Sohrab and Miwa, 2018; Ouchi et al., 2020;
Nguyen et al., 2023) due to their simplicity and
effectiveness. Span representations are critical for
these methods, as they directly influence the abil-
ity to accurately identify and classify named en-
tities. Nguyen et al. (2023) explored integrating
Variational Autoencoders (VAE) to enhance span
representations. Inspired by this, we employ a span-
based approach with Conditional VAE (CVAE) to
model spans using label-specific conditions that are
both shared and unshared across multiple datasets.

This study proposes a method that models the
relationships between labels in different datasets
as label-specific conditions using CVAE, thereby
incorporating these conditions to alleviate differ-
ences across datasets. The contributions of this
paper are as follows:

• We propose a span-based NER method to inte-
grate multiple existing datasets, despite their
differing type definitions and annotation crite-
ria.

• We propose integrating CVAE to incorporate
and model the relationships between labels
from multiple datasets.
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Figure 1: Overview of the proposed method, illustrating the integration of CVAE into a span-based NER model.
Within the CVAE component, the prior distribution vector provides information regarding shared and unshared
labels to the model.

• We demonstrate the effectiveness of our
method through experiments on multiple
biomedical datasets, achieving improved per-
formance on the BioRED (Luo et al., 2023)
dataset with either of the two encoders used.

2 Related Work

2.1 Span-based NER model

Span-based models, which directly classify spe-
cific text spans within a document, have recently
gained attention (Zhong and Chen, 2021; Sohrab
and Miwa, 2018) due to their simplicity and abil-
ity to model entity spans directly, unlike sequence
labeling models that process tokens to represent
entities. Zhong and Chen (2021) represent each
target span by concatenating the embeddings of the
first and last tokens from the encoder with the span
length embedding. The span representations are
then passed through a fully-connected layer, fol-
lowed by a Softmax layer for classification. The
model demonstrated high performance in NER and
achieved state-of-the-art performance in end-to-end
entity and relation extraction.

Span representations are crucial in span-based
NER models. Ouchi et al. (2020) enhanced inter-
pretability by learning the similarity between span
representations and assessing this similarity dur-
ing prediction. Nguyen et al. (2023) proposed a
span-based NER model that incorporates span re-
construction and synonym generation using VAE.
Span reconstruction ensures that instance-specific
information is retained in the span representations,
thereby improving extraction performance.

2.2 NER using multiple datasets

MTL (Rodriguez et al., 2022; Zuo and Zhang,
2020) employs a shared encoder and a separate
classification layer for each dataset during train-
ing. Recent approaches leverage the capabilities
of LLMs for MTL (e.g., Zhou et al. (2024)). How-
ever, these approaches do not explicitly account for
shared label information across diverse datasets.

Luo et al. (2023) trained NER on multiple
datasets targeting six types of entities: Disease,
Chemical, Gene, Species, Variant, and Cell line, to
improve performance on the BioRED dataset. Ad-
ditional datasets underwent manual editing to en-
sure each contained only a single label type through
label integration, deletion, and adjustment of la-
bel spans to align annotation criteria. The method
outperformed existing MTL methods but required
costly manual annotations. Our approach uniquely
addresses the label differences through direct mod-
eling with CVAE, which has not been explored in
existing methods.

3 Method

This study proposes integrating CVAE into an NER
model to incorporate a prior distribution that pro-
vides the model with information about shared
and unshared labels among the datasets as a label-
specific condition. We anticipate that this condition
will capture relationships between labels in multi-
ple datasets, enabling the effective use of existing
labeled datasets. An overview of the proposed
model is illustrated in Figure 1.

We follow Zhong and Chen (2021) to model the
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representation of a span x1, . . ., xn. The represen-
tation is constructed by concatenating the represen-
tations of the beginning token and end token from
the encoder, along with the embeddings of the span
length, as shown in Equation (1):

hspan = Linear(Concat(x1,xn,Φ(n))), (1)

where Linear(·) is a fully-connected layer and
Concat(·) is vector concatenation, xi is the output
representation of a token xi from the encoder, and
Φ(n) is the embedding of the span length n. The
dataset name is added as a special token to the in-
put text to ensure the model recognizes inputs from
different datasets. The span representation is clas-
sified using two fully-connected layers, followed
by a Softmax layer. Cross-entropy loss (LCE) is
employed as the loss function.

In CVAE, the span representation is concate-
nated with a prior distribution vector, which func-
tions as the conditional parameter during the recon-
struction phase. The prior distribution vector is de-
rived from the correct label and encodes the shared
and unshared label information across datasets2.
After concatenating with the prior distribution vec-
tor, each span representation is processed through
two fully-connected layers to estimate the mean
(µ) and variance (σ) parameters of the latent dis-
tribution. A vector z, sampled from the estimated
distribution, is further concatenated with the prior
distribution vector and then processed through two
fully-connected layers for reconstruction. The orig-
inal loss function of CVAE LCVAE (Kingma et al.,
2014) is employed, which consists of the recon-
struction error and the Kullback-Leibler (KL) di-
vergence, as follows:

LCVAE =− log p(hspan|z)
+KL[q(z|hspan)||p(z)].

The prior distribution vector is prepared as train-
able parameters. The vector is obtained by con-
catenating two one-hot vectors: one representing
the labels across all datasets, with a “1” at the po-
sition corresponding to each label, and the other
representing the corresponding (shared) label in the
target dataset, including a negative label, with a “1”
for each shared label.

As a simple example, consider the case where
a target corpus tags ChemicalT and ProteinT , and
a source corpus tags DiseaseS and ProteinS , with

2The actual settings for the prior distribution vector will
be shown in §4.2.

Protein being a shared entity type across datasets.
The first component of the prior distribution vector
represents the labels across all datasets. For this ex-
ample, this component would form a 6-dimensional
space including negative labels: [OT , ChemicalT ,
ProteinT , OS , DiseaseS , ProteinS]. The second
component represents the corresponding (shared)
label in the target dataset including a negative label.
For this example, this component would form a
3-dimensional space: [O, ChemicalT , ProteinT ].
Consequently, the entire prior distribution vector is
expressed within a combined 9-dimensional space.
For instance, for an entity labeled ProteinS from the
source corpus, its prior distribution vector would
be [0, 0, 0, 0, 0, 1, 0, 0, 1]. Here, the “1”s are
placed at the dimension corresponding to ProteinS
in the corpus-specific space and at the dimension
corresponding to the shared ProteinT label in the
shared target space.

Finally, the weighted sum of the two losses is
used as the entire loss L for training:

L = LCE + αLCVAE .

It is important to note that CVAE is not used
during inference since it requires correct labels.
Instead, the trained classifier alone is used to recog-
nize named entities. Our method thus requires no
additional computation during inference, making it
suitable for practical applications.

4 Experimental Setup

We describe the datasets and models used in the ex-
periments. Detailed settings and hyperparameters
are provided in Appendix A.

4.1 Datasets
We employed 10 labeled biomedical datasets fol-
lowing Luo et al. (2023). The number of documents
and the named entities labeled in these datasets are
shown in Table 6 of Appendix B. We used the devel-
opment set of BioRED for evaluation during train-
ing, while the development sets of other datasets
were used as training data. Unlike Luo et al. (2023),
which edited the spans and target labels of entities
in additional datasets to follow the BioRED stan-
dards, we utilized the original datasets without any
such edits.

4.2 Prior distribution vector
As explained in §3, the prior distribution vector
provided as a condition to CVAE is constructed

1109



Model Encoder All Disease Chemical Gene Variant Species Cell line
Luo et al. (2023)3

BERT

91.26 88.07 90.98 92.40 88.51 97.50 90.53
Single 87.86 82.33 89.42 89.63 81.38 96.53 80.90
Multi 93.22 90.66 93.41 95.18 86.84 97.96 79.55
Single + CVAE 87.28 81.93 89.76 89.64 77.80 94.74 75.00
Multi + CVAE 94.19 91.88 92.98 96.47 92.80 97.48 81.82
Single

T5

89.89 86.52 87.99 91.19 90.56 97.73 86.67
Multi 93.99 92.82 92.16 95.89 90.07 98.00 82.76
Single + CVAE 89.87 85.81 89.45 90.72 89.18 97.62 91.84
Multi + CVAE 94.36 92.84 92.89 95.77 94.29 98.23 78.57

Table 1: F1 scores [%] on the BioRED test set, serving as the primary metric. The ‘Encoder’ column specifies
T5-3B for ‘T5’ and PubMedBERT for ‘BERT’. The highest F1 score for each entity type is highlightted in bold.

by concatenating two one-hot vectors. The first
vector is a one-hot vector with a dimension of 47,
representing all labels listed in Table 6, including a
negative label for each dataset. The second vector
is a seven-dimensional one-hot vector (six types +
negative) representing the shared labels based on
the BioRED labels. We use the mapping of Luo
et al. (2023), which mapped the labels from the
additional datasets to one of the BioRED labels,
including the negative label (e.g., treating the Gene
and FamilyName labels from NLMGene as equiva-
lent to the Gene label in BioRED). The details of
this correspondence are shown in Appendix C.

4.3 Comparison settings

We employed the encoder part of T5 (Text-To-Text
Transfer Transformer)-3B (Raffel et al., 2020) as
the encoder of our model. We also employed Pub-
MedBERT (Gu et al., 2021) as the encoder for a
fair comparison with Luo et al. (2023). We employ
the F1 score as our primary metric. We compared
the following settings:

• Single
The span-based NER model trained on a sin-
gle target dataset.

• Multi
The span-based NER model trained on mul-
tiple datasets in a pure MTL setting, where
separate classification layers are prepared for
each dataset while the base encoder layer is
shared.

• Multi+CVAE
The span-based NER model with CVAE that
incorporates the prior distribution vector de-
scribed in §4.2.

• Multi+CVAE (Fixed)
The span-based NER model with CVAE that
fixes the prior distribution vector after initial-
ization.

• Multi+CVAE (Unshared)
The span-based NER model with CVAE that
initializes the prior distribution vector using
only the first one-hot vector (labels in each
dataset) in §4.2.

• Multi+CVAE (Shared label)
The span-based NER model with CVAE that
initializes the prior distribution vector using
only the second one-hot vector (shared label
information) in §4.2.

• Multi+CVAE (Random)
The span-based NER model with CVAE that
initializes the prior distribution vector ran-
domly.

• Multi (Shared label)
The span-based NER model trained on mul-
tiple datasets without CVAE, where shared
labels across datasets are assigned to the same
output layer.

5 Results

The overall performance is summarized in Table 1.
Compared with the state-of-the-art (SOTA) model
by Luo et al. (2023), our model demonstrates en-
hanced performance across all label types when
using multiple datasets, with the exception of Cell
line. This Cell line result can be attributed to
the limited number of instances in the test set, as
shown in Table 5 of Appendix B, which makes

3The score is taken from the original paper.
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Model All
Multi+CVAE 94.36
Multi+CVAE (Fixed) 93.99
Multi+CVAE (Unshared) 94.12
Multi+CVAE (Shared label) 94.20
Multi+CVAE (Random) 94.07
Multi (Shared label) 92.52

Table 2: Ablation study using the T5 encoder.

the evaluation sensitive to variations of individual
cases. When trained on a single dataset with CVAE
(Single+CVAE), the performance slightly degraded
when the BERT encoder was employed. This may
be because the representations of different labels
are not sufficiently distant due to the interaction be-
tween labels caused by the CVAE loss. As for the
performance of our models with multiple datasets,
both the Multi and Multi+CVAE models achieved
better F1 scores regardless of the encoder, com-
pared to the corresponding Single model trained
solely on BioRED. Furthermore, the CVAE model
improved the F1 score for both encoders, suggest-
ing its potential effectiveness in leveraging CVAE
during training. This result indicates that the pro-
posed model could capture some of the shared and
unshared information among the datasets. This is
further supported by the visualizations in Figure 4
of Appendix D, where instances with shared labels
from different datasets have closer embeddings.

The ablation study with modified conditions for
the prior distribution vector is shown in Table 2. All
settings showed inferior performance compared to
the proposed model, demonstrating the effective-
ness of using the shared labels and tuning the prior
distribution vector during training.

6 Conclusion

This study aimed to alleviate the differences in la-
beling criteria among different datasets to increase
the amount of training data. To achieve this, we
proposed a method that incorporates a CVAE-based
loss function into a span-based NER model, which
considers the differences in labeling criteria with-
out the need for manual edits. Our experimental
results showed that our CVAE-based approach can
leverage multiple datasets while accommodating
their labeling discrepancies for either of the two
encoders used.

For future work, we will investigate a fully au-
tomated method by making the prior distribution

vector independent from a specific dataset and elim-
inating the need for manual definition of the shared
vectors, aiming to develop a model that can im-
prove performance on additional datasets as well
and be applied to other datasets. Additionally, to
further demonstrate broader generalizability, we
will evaluate CVAE with other backbone NER mod-
els.
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Limitations

Our model is based on the approach proposed by
Zhong and Chen (2021), where the maximum span
length is set to 10. As a result, our model can-
not extract named entities that exceed this length
constraint. Additionally, as our model primarily
utilizes an encoder-based architecture, it may not
be straightforward to adapt it to LLMs. Although
our method does not require manual annotation, it
still requires manual effort to define the prior dis-
tribution vector. Due to this limitation, we have
evaluated our method only on the BioRED dataset,
and the application to other datasets has not been
investigated.

Ethical Considerations

This paper utilizes the pre-trained LLM T5 as the
base model, which may contain inherent biases
due to its pre-training processes. However, we
employ only the encoder part of T5 and fine-tune
the model for NER, so such potential biases may
be mitigated. Furthermore, we use public datasets
only for scientific research purposes.
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A Detailed training settings

We listed the number of parameters for the encoder
models used in the experiments in Table 3. In
experiments using the T5 encoder, we employed
Low-Rank Adaptation (LoRA) (Hu et al., 2022)
and model parameter quantization during training.
In addition, the hyperparameters used in the exper-
iments are summarized in Table 4. In the exper-
iments, we took 16 examples from each dataset.
We then performed training with a mini-batch size
of 64, effectively including examples from multi-
ple datasets by weight accumulation and combin-
ing losses from four datasets before updating the
model. The weight of the CVAE loss (i.e., α) was
selected based on the results from Figure 2, which
were obtained from experiments using the T5-base
model. To ensure optimal training, the model was
evaluated on the development set after each epoch,
and training was terminated if no improvement in
validation performance was observed for five con-
secutive epochs. All experiments were conducted
on a computing infrastructure equipped with four
NVIDIA V100 GPUs. All experimental results re-
ported in this paper are based on a single run with
a fixed random seed.

B Dataset statistics

Table 5 presents the statistics of entity counts in
the train, development, and test sets of the BioRED
dataset. The statistics of the datasets and the list
of named entity labels are summarized in Table 6.
Note that all datasets used in this study are in En-
glish.

C Correspondence of labels

The correspondence of the labels of each dataset to
the BioRED labels is summarized in Table 7. This
correspondence is from Luo et al. (2023). For spans
with no correspondence to the BioRED labels, the
second one-hot vectors of their prior distribution
vectors have no active values.

We visualize the prior distribution vectors after
training using t-SNE in Figure 3. The visualization
demonstrates that the labels in Table 7 remain clus-
tered around their corresponding BioRED labels,
and labels with no correspondence remain far from
the BioRED labels. This suggests that the initial-
ization information is mostly preserved throughout
the training process.

Model #Params
T5-3B 876,802,048
T5-base 86,043,264
PubMedBERT 109,482,240

Table 3: Numbers of parameters (#Params) for the en-
coder models used in the experiments.

Parameter Value
Learning rate 7e-4
α 1e-4
Mini-batch size 64
CVAE hidden dim 150
Max span length 10
Span length embedding dim 150
LoRA rank 32

Table 4: Hyperparameter settings

Train Dev Test
Document 400 100 100
All 13,351 3,533 3,535
Disease 3,646 982 917
Chemical 2,853 822 754
Gene 4,430 1,087 1,180
Variant 890 250 241
Species 1,429 370 393
Cell line 103 22 50

Table 5: Detailed statistics of entity counts across train,
development, and test sets of the BioRED dataset (Luo
et al., 2022), categorized by the entity types.

0

Figure 2: F1 scores [%] on the BioRED development
set, plotted against the weight α applied to the CVAE
loss, using the T5-base encoder; α = 0 indicates the F1
score obtained without the CVAE loss.

D Visualization of instance embeddings

Figure 4 visualizes the embeddings of instances
in the development set of the BioRED dataset and
the test sets of the nine additional datasets using
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Datasets Size Labels
BioRED (Luo et al., 2022) 600 Disease, Chemical, Gene, Variant, Species, Cell line
BC5CDR (Li et al., 2016) 1500 Disease, Chemical
BioID (Arighi et al., 2017) 570 full Cell line
GNormPlus (Wei et al., 2015) 694 FamilyName, Gene, DomainMotif
Linnaeus (Gerner et al., 2010) 100 full Species
NCBIdisease (Doğan et al., 2014) 793 DiseaseClass, SpecificDisease, CompositeMention,

Modifier
NLMChem (Islamaj et al., 2021a) 150 full Chemical, NonStandardRef, OTHER
NLMGene (Islamaj et al., 2021b) 550 Gene, FamilyName, Cell, DomainMotif,

ChromosomeLocation
SPECIES800 (Pafilis et al., 2013) 800 Species
tmVar3 (Wei et al., 2022) 500 Gene, Species, Disease, DNAMutation,

ProteinMutation, OtherMutation, Cell line,
AcidChange, SNP, DNAAllele, ProteinAllele

Table 6: Summary of the datasets used. Datasets with “full” in the size column contain full-text data, while the
others contain only abstracts.

Figure 3: Visualization of prior distribution vectors after
training by t-SNE.

t-SNE (van der Maaten and Hinton, 2008). The
instances are taken from 300 sentences for each
dataset. Compared to the two figures on the left
side by the Multi model, the two on the right side
using the proposed Multi+CVAE model show a
tendency for Disease and Species instances from
different datasets to have closer embeddings. This
tendency is particularly pronounced for Species,
which may contribute to improved performance for
Species in BioRED.

E Evaluation on the additional datasets

We evaluated both Multi and Multi+CVAE mod-
els on nine additional datasets, with results shown
in Appendix E. Our proposed method improved
performance over the Multi baseline on only two

of the nine datasets. As discussed in the Conclu-
sion, this limited improvement is attributed to using
prior distribution vectors specifically designed for
BioRED, highlighting an area that requires future
investigation.
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Figure 4: t-SNE Visualization of instance embeddings from the BioRED development set and additional datasets.
Upper left: Disease Multi+CVAE, upper right: Disease Multi, lower left: Species Multi+CVAE, lower right: Species
Multi
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Dataset Label Corresponding label in BioRED
BC5CDR (Li et al., 2016) Disease Disease

Chemical Chemical
BioID (Arighi et al., 2017) Cell line Cell line
GNormPlus (Wei et al., 2015) Gene Gene

FamilyName Gene
Linnaeus (Gerner et al., 2010) Species Species
NCBIdisease (Doğan et al., 2014) DiseaseClass Disease

SpecificDisease Disease
CompositeMention Disease
Modifier Disease

NLMchem (Islamaj et al., 2021a) Chemical Chemical
NLMGene (Islamaj et al., 2021b) Gene Gene

FamilyName Gene
SPECIES800 (Pafilis et al., 2013) Species Species
tmVar3 (Wei et al., 2022) DNAMutation Variant

ProteinMutation Variant
OtherMutation Variant
AcidChange Variant
SNP Variant
DNAAllele Variant
ProteinAllele Variant
Disease Disease
Chemical Chemical
Gene Gene
Species Species
Cell line Cell line

Table 7: Correspondence of labels of the additional datasets to BioRED labels. The labels DomainMotif in
GNormplus, NonStandardRef and OTHER in NLMChem, and Cell, DomainMotif, and ChromosomeLocation in
NLMGene have no correspondence to the BioRED labels.

Dataset Multi Multi+CVAE
BC5CDR (Li et al., 2016) 91.42 91.59
BioID (Arighi et al., 2017) 90.71 90.01
GNormPlus (Wei et al., 2015) 80.97 80.68
Linnaeus (Gerner et al., 2010) 94.69 93.84
NCBIdisease (Doğan et al., 2014) 85.77 84.11
NLMChem (Islamaj et al., 2021a) 82.74 82.12
NLMGene (Islamaj et al., 2021b) 85.12 84.76
SPECIES800 (Pafilis et al., 2013) 81.12 77.64
tmVar3 (Wei et al., 2022) 85.29 91.87

Table 8: F1 scores [%] on test data of the additional datasets.
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