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Abstract

Graphical User Interface (GUI) automation re-
lies on accurate GUI grounding. However, ob-
taining large-scale, high-quality labeled data
remains a key challenge, particularly in desk-
top environments like Windows Operating Sys-
tem (OS). Existing datasets primarily focus on
structured web-based elements, leaving a gap
in real-world GUI interaction data for non-web
applications. To address this, we introduce a
new framework that leverages LLMs to gener-
ate large-scale GUI grounding data, enabling
automated and scalable labeling across diverse
interfaces. To ensure high accuracy and re-
liability, we manually validated and refined
5,000 GUI coordinate-instruction pairs, creat-
ing WinSpot—the first benchmark specifically
designed for GUI grounding tasks in Windows
environments. WinSpot provides a high-quality
dataset for training and evaluating visual GUI
agents, establishing a foundation for future re-
search in GUI automation across diverse and
unstructured desktop environments1.

1 Introduction

Multimodal Large Language Models (MLLMs)
exhibit impressive visual understanding and rea-
soning (Gandhi et al., 2023; Liu et al., 2024; Li
et al., 2024; Zhang et al., 2025; Li et al., 2025b),
enabling automation in complex real-world scenar-
ios (Ai et al., 2024; Hui et al., 2025b). Among
these, Graphical User Interface (GUI) automation
has emerged as a critical application, where agents
interpret on-screen elements and execute context-
relevant actions for tasks such as software testing
and application management (Yang et al., 2023a;
Li et al., 2020; Wang et al., 2024b).

Despite significant advances in web and mobile
GUI automation (Bavishi et al., 2023; Yang et al.,
2023a; Cheng et al., 2024; Wang et al., 2024a;

1https://github.com/zackhuiiiii/WinSpot.

Figure 1: GUI grounding: locating actionable UI
elements based on instructions.

Hui et al., 2025a), GUI in Windows desktop envi-
ronments remain largely unexplored, despite Win-
dows system widespread use in professional and
enterprise applications. This gap is particularly
challenging because Windows applications lack
a standardized UI representation such as HTML
or DOM structures, requiring GUI grounding to
rely purely on visual perception. Furthermore,
Windows interfaces exhibit highly diverse layouts,
where applications designed using different frame-
works (e.g., Win32, UWP, Electron) follow in-
consistent UI structures. Additionally, overlap-
ping windows introduce ambiguity in detecting
actionable elements, as interactable regions may
be partially or fully obscured. Unlike web applica-
tions, where ARIA (Accessible Rich Internet Appli-
cations) attributes provide accessibility metadata,
many Windows applications lack structured acces-
sibility trees (a11y trees), making it difficult to ex-
tract UI component descriptions programmatically.
Existing screenshot-based methods (Bavishi et al.,
2023; Cheng et al., 2024) show promise but lack
a large-scale, standardized benchmark specifically
designed for Windows GUI automation. Without
such a benchmark, researchers face challenges in
systematically measuring progress, comparing ap-
proaches, and addressing the distinct complexities
of desktop interfaces.

To fill this void, we introduce WinSpot, a large-
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scale benchmark specifically designed for GUI
grounding in Windows environments. Our main
contributions are summarized below:

• Two-Stage Labeling Framework. We pro-
pose a scalable approach that utilizes MLLMs
to generate coordinate-instruction pairs from
diverse Windows screenshots, significantly re-
ducing the initial labeling burden. Importantly,
our method relies exclusively on raw screen-
shots, ensuring seamless adaptation across dif-
ferent Windows applications.

• WinSpot: A First-of-its-Kind Windows
GUI Benchmark. Expanding on our two-
stage framework, we introduce WinSpot—a
comprehensive dataset with over 5,000
human-validated coordinate-instruction pairs,
covering diverse Windows environments, 21
times larger than previous benchmarks.

2 Related Work

2.1 UI Screen Understanding Dataset
A variety of datasets (Moran et al., 2018; He et al.,
2021; Wu et al., 2023) have been developed to
support UI modeling, primarily in the mobile do-
main. For instance, the AMP dataset (Zhang et al.,
2021), containing 77k screens from 4,068 iOS apps.
Another significant resource is Rico (Deka et al.,
2017), the largest publicly available dataset for An-
droid apps UI understanding. In the broader web
and OS domain, datasets such as Mind2Web (Deng
et al., 2024) , Visual-WebArena (Koh et al., 2024),
and Windows Arena (Bonatti et al., 2024) offer
simulated environments for various tasks. Existing
GUI Grounding datasets overwhelmingly focus on
mobile and web platforms, leaving desktop environ-
ments underexplored. The closest dataset related to
desktop UI understanding is SeeClick (Cheng et al.,
2024) and Os-atlas (Wu et al., 2024b), though it
predominantly targets cross-platform settings and
lacks a specific focus on Windows. Our work fills
this gap by introducing a dataset tailored to desktop
environments, particularly for Windows OS, which
marks a novel contribution to the field.

3 Method

3.1 Data Construction
Unlike previous work (Cheng et al., 2024) that fo-
cuses on cross-domain tasks and structured data
for training dataset construction, our approach tar-
gets the Windows OS (Figure 2). We propose

Figure 2: (a) Traditional methods rely on HTML or
DOM files to locate icons during data construction. (b)
Our proposed data alignment framework requires only

raw screenshot images.

Instruction-Interactable Region Alignment (Fig-
ure 3), leveraging MLLMs to generate training
data without HTML elements or accessibility trees.
Since Windows applications lack a standardized UI
representation and display diverse layouts across
frameworks (e.g., Win32, UWP, Electron), our
method relies entirely on visual cues for effective
GUI grounding.

We first retrieve and filter images via the Bing
API, then verify quality with Phi3-vision (Abdin
et al., 2024b). Our goal is to collect diverse, repre-
sentative Windows screenshots. We query screen-
shots of 700+ top apps from the Microsoft Store2.
This model verifies resolution and screenshot valid-
ity. Quality-approved images are randomly added
to our data bank. We expand our dataset via Bing
API’s similar image feature. Images failing quality
checks are discarded.

Once filtered, we apply a proprietary Bert model
with ViT encoder to perform icon grounding on
the selected images. The ViT-Bert model generates
bounding boxes around interactable icons in the
images, which we use to create structured data. We
then use GPT-4o for aligning the filtered images
with corresponding icon descriptions. This align-

2https://www.microsoft.com/en-us/store/most-
popular/apps/pc
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Figure 3: Overview of the Data Alignment Process: (a) illustrates the data filtering strategy using the Phi3 vision
model, (b) shows the input and output of icon grounding with the in-house ViT-BERT model, and (c) the use of

LLMs for GUI and description alignment.

ment process serves multiple purposes: 1) By us-
ing expensive models like GPT-4o only in the data
alignment stage, we reduce computational costs
while maintaining accuracy during the reasoning
and inference processes. 2) Previous work (Zheng
et al., 2024) has shown that providing GPT-4V
with screenshots that only include bounding boxes
and IDs can be misleading. The limited ability
of GPT-4V to extract semantic information while
predicting actions poses a challenge. To address
this, our automated labeling pipeline incorporates
semantic cues directly into the images during data
construction, primarily by enhancing the prompts
generated by GPT-4V. 3) By enriching the dataset
with diverse semantic information, we ensure that
the subsequent click agents can handle distributed
tasks more effectively, improving overall perfor-
mance. In addition to the data collected via the
Bing API, we incorporated 500 images from CoVA
dataset(Kumar et al., 2022), 500 images from Web-
Sight dataset(Laurençon et al., 2024) to further en-
hance our training set. Result in a dataset around
60K to train our model. For more examples about
the data construction, please refer to Appendix B.

3.2 WinSpot Benchmark

The WinSpot dataset consists of over 5,000 anno-
tated 3 screenshots from 14 core Windows appli-
cations, each representing unique interaction types
and layout structures. Examples from WinSpot
are shown in Figure 4. The applications and their
respective contributions to the dataset are shown
in Figure 5. Each screenshot in WinSpot con-
tains multiple interactable regions, such as but-
tons, menus, and icons, each annotated with its
corresponding function. These annotations include
bounding boxes around the interactable elements
and their associated semantic descriptions, which
are aligned with natural language instructions for
both grounding and task prediction tasks. This va-
riety ensures that WinSpot provides a challenging
and comprehensive evaluation framework for GUI
agents, enabling robust testing of both interaction
precision and generalization across different appli-
cations.

WinSpot presents a diverse array of tasks, includ-
ing file navigation, system settings adjustment, and
text input, as well as more specialized tasks such

3More annotation detail in Appendix C
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Figure 4: WinSpot examples

as process management in Task Manager and com-
mand execution in Command Prompt. These tasks
encompass a wide range of complexity, from sim-
ple button clicks to more involved interactions that
require an understanding of application-specific
layouts. In addition to supporting GUI grounding
tasks P (y|S, x), WinSpot also be used in reverse
tasks P (x|S, y), where the model must predict the
description of a given GUI element based on its
location in the screenshot. This two-way task for-
mulation enhances the evaluation by testing both
the agent’s understanding of visual cues and its
ability to map interactions to the correct interface
components.

Figure 5: WinSpot Category

4 Experiments and Results

In this section, we evaluate both general-purpose
models and GUI-specific models on our newly in-
troduced WinSpot benchmark.

4.1 Baselines and Evaluation Metric

We compare multiple baselines, including general-
purpose MLLMs (e.g., GPT-4o (OpenAI et al.,
2024), GPT-4V (OpenAI et al., 2024), Phi3-Vision
(Abdin et al., 2024a), MinGPT-v2 (Chen et al.,
2023)) and GUI-focused models (e.g., Fuyu (Bav-
ishi et al., 2023), CogAgent (Wang et al., 2024c),
SeeClick (Cheng et al., 2024), Uground (Gou et al.,
2024)). Consistent with prior studies on GUI
grounding (Li et al., 2022; Yang et al., 2023b;
Cheng et al., 2024), we adopt click accuracy as
our primary metric. A prediction is considered cor-
rect if the model’s predicted click coordinates fall
within the bounding box of the ground-truth.

4.2 Results

Table 1 presents the click accuracy of various
models across the four major subcategories of the
WinSpot benchmark: File Management, System
Settings, Productivity Tools, and MS Store & Web
applications. These categories span a wide range
of GUI interaction patterns allowing us to assess
both generalization and domain sensitivity of each
model. The best-performing model is Uground,
which achieves a remarkable 44.2% overall accu-
racy, significantly outperforming all other baselines.
Its dominance is particularly evident in System
Settings and MS Store & Web, where it reaches
51.4% and 82.4% respectively.

Among the general-purpose MLLMs, GPT-4V
and GPT-4o show relatively higher click accu-
racy (18.3% and 16.5%, respectively), with no-
table strengths in the MS Store & Web cate-
gory—where visual layout conventions tend to be
more standardized and semantically interpretable.
This aligns with prior observations that LLMs pre-
trained on web data tend to generalize better in
semi-structured interfaces but struggle with un-
structured system UIs. However, their low scores in
System Settings and File Management (e.g., GPT-
4V: 6.3%, GPT-4o: 7.5%) reveal key limitations
when navigating system-level layouts, likely due to
the absence of such interfaces in their training data
and the lack of spatial attention mechanisms spe-
cialized for desktop contexts. Phi-3.5 Vision and
MiniGPTv-2, both smaller open-source models,
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Method Size
WinSpot

Total Task
File Management System Productivity Tools MS Store & Web

MiniGPTv-2 7B 0% 0.6% 2.2% 5.8% 1.7%
GPT-4V Unkown 8.0% 6.3% 15.6% 58.1% 18.3%
GPT-4o Unkown 8.8% 7.5% 14.1% 47.7% 16.5%
Phi-3.5 Vision 4.2B 4.7% 5.8% 3.7% 25.5% 7.9%
Fuyu 8B 5.0% 9.2% 7.1% 34.3% 9.4%
CogAgent 18B 6.4% 8.1% 10.5% 60.8% 13.8%
SeeClick 9.6B 8.6% 16.6% 18.9% 70.6% 20.1%
GUIAct-Qwen 7B 10.8% 6.1% 13.6% 78.4% 18.0%
Uground 7B 27.2% 51.4% 45.4% 82.4% 44.2%

Table 1: Evaluation of Various Methods on WinSpot Subcategories

perform poorly across all subcategories, with over-
all accuracy below 10%. These results reinforce
the importance of scale, training modality, and data
coverage in grounding tasks. Interestingly, Phi-3.5
Vision performs slightly better in the MS Store
& Web category, suggesting even smaller models
can benefit from interface regularity if provided
with sufficient multimodal alignment. Specialized
GUI models such as CogAgent, Fuyu, SeeClick,
and GUIAct-Qwen fall in an intermediate perfor-
mance range (between 9.4% and 20.1% overall),
with SeeClick standing out as the strongest among
them. Notably, SeeClick attains 70.6% accuracy
on MS Store & Web, highlighting its suitability
for commercial UI tasks, but only 16.6% in Sys-
tem Settings, pointing to challenges in less stan-
dardized environments. Similarly, GUIAct-Qwen
achieves competitive results in web-based domains
but lacks consistency across system-heavy tasks,
suggesting an over-reliance on pretraining priors
that fail to capture the visual intricacies of Win-
dows system utilities.

5 Discussion and Future Work

Our findings highlight a clear performance divide
between general-purpose MLLMs and domain-
specific GUI models. Generalist models such as
GPT-4o and GPT-4V demonstrate only modest pro-
ficiency in GUI grounding, reflecting their limited
pretraining exposure to Windows UI paradigms.
Meanwhile, specialized models like Uground and
SeeClick perform significantly better, particularly
in structured tasks like web and app store interac-
tions. However, even these tailored models strug-
gle with system-level operations—such as task
management, file navigation, or control panel in-
teractions—where contextual reasoning and fine-
grained spatial precision are required. This un-

derscores a broader insight: current models, de-
spite their size and multimodal capacity, lack ro-
bust spatial reasoning and memory mechanisms
necessary for GUI automation in real-world set-
tings. WinSpot helps uncover these limitations
by evaluating not just interaction precision, but
also the ability of models to align natural language
instructions with semantically meaningful UI re-
gions. Furthermore, this work is situated within a
broader movement in NLP and multimodal learn-
ing: applying LLMs to real-world utility tasks be-
yond traditional text benchmarks. With growing
industrial interest in automating workflows, testing
software, and enabling human-in-the-loop systems,
GUI agents will increasingly become critical en-
ablers. Our benchmark and methodology lay the
groundwork for these systems, while also expos-
ing their current gaps. Going forward, we advo-
cate for more research at the intersection of vision-
language grounding, procedural planning (Li et al.,
2025a), and user intent modeling. In particular, in-
corporating temporal dynamics (Jiang et al., 2025),
multi-turn interactions (Liu et al., 2025), and UI
state tracking may bridge the gap between static
grounding and true GUI manipulation. Addition-
ally, as LLM-driven agents are deployed in produc-
tivity tools, safety (Hui et al., 2024a; Zhang et al.,
2024; Wu et al., 2024a) and interpretability will be-
come pressing concerns—especially in high-stakes
domains like healthcare, finance, and enterprise
automation. In summary, WinSpot offers a much-
needed benchmark for evaluating GUI grounding
in Windows environments and serves as a testbed
for the next generation of GUI agent. It pushes
the research community to build models that are
not only linguistically fluent but also visually and
operationally grounded in environments where real
users work.
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6 Limitations

While WinSpot establishes a valuable benchmark
for GUI grounding in Windows environments, sev-
eral limitations remain. First, the dataset is de-
rived mainly from a curated selection of popular
Windows applications and supplemental sources,
which may not capture the full diversity of desktop
interfaces—especially those used in specialized or
enterprise settings. Second, our automated label-
ing pipeline, although designed to reduce manual
effort, relies on MLLMs for generating semantic
cues; any inaccuracies or biases inherent in these
models can propagate into the final annotations.
Third, our evaluation metric, click accuracy, offers
a simplified perspective on interaction performance,
potentially overlooking nuanced aspects of user en-
gagement such as multi-step workflows or gesture
dynamics. Finally, the framework is optimized for
static screenshots and may not generalize well to
dynamic or adaptive interfaces that evolve in real
time.

7 Ethical Considerations

In constructing WinSpot, we took deliberate steps
to safeguard user privacy and ensure ethical data
practices. All screenshots were rigorously re-
viewed and post-processed to remove personal
or sensitive information before inclusion in the
dataset. However, the selection process for source
applications may introduce biases that affect the
representativeness of the dataset. Additionally,
the automated labeling pipeline’s reliance on
MLLMs could inadvertently propagate existing bi-
ases present in these models. We advocate for con-
tinuous audits and transparent documentation of
both dataset composition and model performance,
especially when these systems are applied in real-
world scenarios such as automated testing or user
assistance. As the deployment of GUI automation
technology expands, it is imperative to consider
the impact on user autonomy and employment, en-
suring that such tools are used in a manner that
respects consent, fairness, and accountability.
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A Training Details

To improve WinClick’s (Hui et al., 2025a) capac-
ity for GUI understanding in Windows environ-
ments, we conducted extensive training using both
full fine-tuning and parameter-efficient tuning
via LoRA (Low-Rank Adaptation). This dual ap-
proach allowed us to explore trade-offs between
performance and resource efficiency while main-
taining compatibility with large-scale multimodal
architectures.

For full fine-tuning, we updated the entire model,
including the vision encoder, language decoder,
and cross-modal attention layers. The visual en-
coder was initialized from a pre-trained ViT model
and fine-tuned with an initial learning rate of
2× 10−6. The language backbone, based on Phi-3,
was initialized with a learning rate of 5× 10−6 and
trained using a batch size of 32. A linear learning
rate scheduler was applied with a warmup ratio
of 0.03 to stabilize early training steps and miti-
gate gradient instability. The optimizer used was
AdamW with weight decay set to 0.01.

For LoRA-based tuning, we injected low-rank
matrices into the cross-modal attention layers and
trained only these additional parameters, freezing
the rest of the model. This method provided a
significantly smaller memory footprint and faster
training convergence while still yielding non-trivial
performance improvements in grounding precision.
LoRA ranks were set to 8 across all adapted mod-
ules, and dropout was applied with a probability of
0.1.

All experiments were conducted using 4 ×
NVIDIA H100 GPUs in a distributed setting using
mixed-precision training (fp16). We used Deep-
Speed and HuggingFace Accelerate to handle gra-
dient accumulation, checkpointing, and paralleliza-
tion. Training convergence was achieved within
5 epochs, with early stopping based on validation
click accuracy on a held-out subset of WinSpot.

B More Training Data Construct
Examples

To build a robust and diverse training corpus,
our data pipeline aggregated screenshots from
various sources, including real-world application
states, software demos, and open benchmarks
(e.g., CoVA (Kumar et al., 2022), WebSight (Lau-
rençon et al., 2024)). After visual filtering and
quality assessment using Phi3-Vision, selected im-
ages were passed through a multi-stage annotation

pipeline. Figure 6 illustrates a sample of the train-
ing data. These examples span interaction types
such as: Single-button confirmation dialogs (e.g.,
“Click OK to continue”), Multi-option menus (e.g.,
“Choose ‘Save As’ from the File menu”), Toolbar
item selection (e.g., “Click the printer icon to print
the document”), Search or input field interaction
(e.g., “Type your query in the search box at the
top right”). Each image contains between 5 inter-
actable regions, and both the instruction and bound-
ing box data were validated for semantic alignment
by our human annotators (see Section C).

C Human Annotation

The annotation process follow similar settings as
Hui et al. (2024b). For WinSpot involved a group of
carefully selected annotators, all of whom were un-
dergraduate, master’s, or Ph.D. students, proficient
in GUI operations and familiar with the Windows
operating system. The annotation team consisted
of individuals with diverse academic backgrounds,
ensuring a broad understanding of GUI interactions
across different applications. Each annotator was
tasked with identifying and marking interactable
regions within various Windows applications, fo-
cusing on elements such as buttons, icons, menus,
and other clickable UI components. For the annota-
tion process, annotators were provided with a set of
Windows screenshots. These screenshots were then
annotated using a custom tool that allowed them
to create bounding boxes around each interactable
element. Annotators were also required to provide
corresponding descriptions of the elements, ensur-
ing that both the visual and functional aspects of
each UI component were documented. The entire
annotation process was conducted in English to
maintain consistency across all samples. To ensure
data privacy, all screenshots were reviewed and
post-processed to remove any personal information
or sensitive content. The final dataset includes over
1,000 images and 5,000 instruction-click pairs, rep-
resenting a comprehensive set of interactions across
a variety of Windows applications.
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Figure 6: Examples of GUI grounding data generated during training set construction. Each box is annotated with
the action-relevant region and its aligned instruction.
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