
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 1073–1085
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

TREECUT: A Synthetic Unanswerable Math Word Problem Dataset for
LLM Hallucination Evaluation

Jialin Ouyang
Columbia University

jo2559@columbia.edu

Abstract
Large language models (LLMs) now achieve
near-human performance on standard math
word problem benchmarks (e.g., GSM8K), yet
their true reasoning ability remains disputed.
A key concern is that models often produce
confident, yet unfounded, answers to unanswer-
able problems. We introduce TREECUT, a syn-
thetic dataset that systematically generates in-
finite unanswerable math word problems and
their answerable counterparts, by representing
each question as a tree and removing chosen
necessary conditions. Experiments show TREE-
CUT effectively induce hallucinations in large
language models, including GPT-4o and o3-
mini, with rates of 64% and 44% in their re-
spective worst-case scenarios under zero-shot
setting. Further analysis highlights that deeper
or more complex trees, composite item names,
and removing necessary condition near the
middle of a path all increase the likelihood
of hallucinations, underscoring the persistent
challenges LLMs face in identifying unanswer-
able math problems. The dataset generation
code and sample data are available at https:
//github.com/j-bagel/treecut-math.

1 Introduction

Mathematical reasoning is a crucial part of human
intelligence. Recent years have witnessed remark-
able advancements in the mathematical reason-
ing capabilities of large language models (LLMs).
By leveraging techniques such as chain-of-thought
prompting (Wei et al., 2022), state-of-the-art LLMs
(e.g., Achiam et al. (2023); Team et al. (2024);
Dubey et al. (2024)) achieved human-level perfor-
mance on benchmarks like GSM8K (Cobbe et al.,
2021). However, it remains controversial whether
this performance implies reasoning capability be-
yond pattern matching.

A substantial body of research highlights the
capability of Large Language Models in mathemat-
ical reasoning. Achiam et al. (2023); Team et al.

(2024); Dubey et al. (2024); Yang et al. (2024),
among others, achieved over 90% accuracy on
GSM8K (Cobbe et al., 2021), a dataset consists of
8K grade school math word problems. Yang et al.
(2024); Zhou et al. (2023), among others, achieved
over 80% accuracy on the more difficult MATH
dataset (Hendrycks et al., 2021), which consists of
12.5K high school math competition problems.

Meanwhile, there is a line of research question-
ing the reasoning ability of LLMs by showing their
vulnerability under superficial changes of the input
that do not alter the underlying logic. Works like
Shi et al. (2023); Jiang et al. (2024) find that LLMs
are easily distracted by irrelevant context or token
level perturbation that does not change the under-
lying logic of the reasoning task. Mirzadeh et al.
(2024) further demonstrate that the performance of
LLMs declines when numerical values are altered
in the questions from the GSM8K dataset.

There is yet another line of research that chal-
lenges the ability of LLMs to refrain from answer-
ing unanswerable problems. Ma et al. (2024); Li
et al. (2024); Sun et al. (2024); Zhou et al. (2024a);
Saadat et al. (2024) introduce minor modifications
to existing math word problems to create unanswer-
able variants, and find that LLMs often generate
hallucinatory answers for these unanswerable ques-
tions, even when they perform well on the original
answerable datasets. However, these efforts rely on
pre-existing math word problem sources, making
them susceptible to training data contamination,
limited in scope, and lacking rich structures for
extended research.

To address these shortcomings, we propose
TREECUT, a synthetic dataset capable of systemat-
ically generating an infinite number of unanswer-
able math word problems and their answerable
counterparts. TREECUT considers problem repre-
sented by a tree, with nodes representing variables
and edges representing formulas. Unanswerable
problems are generated by removing an edge along

1073

https://github.com/j-bagel/treecut-math
https://github.com/j-bagel/treecut-math

root

X1

X2X4

X3

X1=14

3X1-3X4=12 -2X1+3X4=-4

3X2-X3=13

root

X1

X2X4

X3

X1=14

3X1-3X4=12

3X2-X3=13

CUT

Question:
A burger costs 14 dollars. 3 scrambled eggs cost 4 dollars less than 2
burgers. 3 pies cost 12 dollars less than 3 burgers. A BLT sandwich costs
13 dollars less than 3 scrambled eggs. Question: how much does a BLT
sandwich cost?

Solution to the answerable problem:
It is given as a fact that a burger costs 14 dollars. Combine with the fact that
3 scrambled eggs cost 4 dollars less than 2 burgers, we get a scrambled egg
costs 8 dollars. Combine with the fact that a BLT sandwich costs 13 dollars
less than 3 scrambled eggs, we get a BLT sandwich costs 11 dollars.

Solution to the unanswerable problem:
All we know about the prices of BLT sandwich and scrambled egg is: a
BLT sandwich costs 13 dollars less than 3 scrambled eggs. There are 2
variables but only 1 linear formula, so we cannot calculate the price of a
BLT sandwich.

Figure 1: The left and middle panels depict the tree structures corresponding to the answerable and unanswerable
questions, respectively. In the right panel, the strike-through sentence represents the formula removed by the cut.
The variable mappings to items are as follows: x1 represents a burger, x2 represents a scrambled egg, x3 represents
a BLT sandwich, and x4 represents a pie.

the path from the root to the questioned variable.
Our unanswerable dataset proves to be challeng-
ing even for GPT-4o and o3-mini. In addition,
TreeCut allows precise control over the structural
components of each problem, enabling detailed
investigations into when and why LLMs produce
hallucinations. Our analysis highlights that deeper
or more complex trees, composite item names, and
removing necessary condition near the middle of a
path all increase the likelihood of hallucinations.

2 Related Work

Math Word Problem Benchmark Numerous
math word problem datasets of different difficulty
have been proposed in previous research, most no-
table examples including GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021).

Many benchmarks have been developed to mea-
sure the robustness of mathematical reasoning. Pa-
tel et al. (2021); Kumar et al. (2021); Xu et al.
(2022); Li et al. (2024); Zhou et al. (2024b); Yu
et al. (2023); Shi et al. (2023) perturb or rewrite
math word problems to measure the robustness of
mathematical reasoning.

Liu et al. (2021) utilize tree structures to rep-
resent and manipulate mathematical expressions
during the reverse operation based data augmenta-
tion process for MWP solving. Opedal et al. (2024)
introduced MathGAP, a framework for evaluating
LLMs using synthetic math word problems with
controllable proof tree characteristics. In contrast
to their approach, the tree structure in our problem-
generation procedure is fundamentally different. In
our work, each node represents a variable, and the
questioned variable appears as a leaf. In their work,
however, each node represents a logical statement,

with the answer represented by the root. More
importantly, we focus on unanswerable math word
problems, an aspect that their study did not address.

Unanswerable Math Problems Yin et al. (2023)
introduced SelfAware, consisting of unanswerable
questions from five diverse categories. It includes
less than 300 unanswerable mathematical prob-
lems. Li et al. (2024); Zhou et al. (2024a) gen-
erate unanswerable questions by prompting GPT4
to eliminate a necessary condition from the orig-
inal problem, an then the modified questions are
further checked or refined by human annotators.
Ma et al. (2024) prompt GPT4 to modify problems
from GSM8K. Sun et al. (2024) task human annota-
tors to modify original questions in existing MWP
datasets to make them unanswerable, creating a
dataset composed of 2,600 answerable questions
and 2,600 unanswerable questions.

3 TREECUT: a Synthetic (Un)answerable
Math Word Problem Dataset

For the purpose of our investigation, we aim to have
full control over the various aspects that determine
the underlying structure of a math word problem:
the name of the entities, the numeric values, and
the complexity of the problem. Furthermore, we
seek to reliably generate unanswerable problems by
precisely removing specific necessary conditions
of our choosing.

To this end, we start with a special kind of an-
swerable math word problem that can be repre-
sented as a tree, as illustrated in Figure 1. Within
such a tree, each non-root node represents a vari-
able, while the root is a uniquely reserved node.
An edge from root gives value to a variable, while

1074

ansDepth Llama-8B Llama-70B Qwen-7B Qwen-72B GPT-4o o3-mini

2 80.2% 24.6% 84.6% 59.8% 12.0% 44.0%
4 86.2% 40.2% 90.4% 82.8% 18.0% 25.2%
6 86.0% 63.4% 95.6% 88.4% 47.4% 19.2%
8 84.2% 65.0% 93.4% 85.2% 64.0% 25.6%

Table 1: Percentage of hallucination of various LLMs at different ansDepth values for unanswerable problems, zero-shot
prompting

ansDepth Llama-8B Llama-70B Qwen-7B Qwen-72B GPT-4o o3-mini

2 72.8% 33.6% 80.4% 55.4% 18.4% 3.2%
4 79.0% 57.6% 94.6% 84.8% 28.8% 2.4%
6 79.6% 72.4% 92.6% 84.8% 41.8% 3.6%
8 78.6% 76.8% 94.4% 83.0% 51.0% 3.0%

Table 2: Percentage of hallucination of various LLMs at different ansDepth values for unanswerable problems, few-shot
prompting

an edge between two variables represents a linear
formula of the two neighboring nodes. Given such
a tree, any variable can be calculated following the
unique path from the root to the node that repre-
sents the variable. Such a solving procedure does
not require solving a linear equation system, as the
solution only consists of carrying out basic arith-
metic operations along the path. To guarantee that
the arithmetic operations are well within the capac-
ity of current frontier LLMs,we further restrict the
unit price of each food item to be an integer be-
tween 5 and 15, and the coefficients of each linear
equation taking non-zero integer values between -3
and 3. Finally, variables are randomly mapped to
items, and then the formulas are translated to natu-
ral language using templates. The complete gener-
ation procedure, along with the templates used, is
provided in Appendix A.

From an answerable math word problem de-
scribed above, we generate an unanswerable prob-
lem by removing an edge along the path from the
root to the questioned variable. In Figure 1, x3 is
the questioned variable. Along the path to the root,
we remove the edge between x1 and x2 (denoted
by a cut), rendering x2 and x3 undetermined, thus
making the question unanswerable, as all we know
about x2 and x3 is one single linear equation. A
key benefit of such a generation procedure is that
the distance from the questioned variable to the
cut is also fully controlled, as we will see that this
factor plays an important role in triggering LLM
hallucination.

In summary, we can control the structure of prob-
lems via the following parameters:

- numVars: total number of variables,
- ansDepth: distance from the root to the ques-

tioned variable,
- compositeName: boolean, whether the items

in the question have composite names (e.g. “a
burger at Bistro Nice” versus “a burger”),

- cutDepth: distance from the questioned vari-
able to the cut, if an unanswerable problem is
to be generated.

Appendix A contains the detailed problem genera-
tion algorithm.

4 Experiments

We evaluate several state-of-the-art LLMs using
TREECUT. Additionally, we analyze the halluci-
nation rate of GPT-4o on unanswerable problems
generated under different parameter configurations
of TREECUT.

4.1 Experimental Setup

For each set of generation parameters, we randomly
generate 500 problems. Unless stated otherwise,
we employ a zero-shot prompting template that ex-
plicitly directs the model to indicate when a ques-
tion is unanswerable due to insufficient conditions.
A chain-of-thought system message is incorporated
for all models except o3-mini1.

4.2 Evaluating LLMs

In the first set of experiments, we generate unan-
swerable math word problems of varying difficulty
to evaluate the following LLMs: Llama 3.1 In-
struct with 8B and 70B parameters(Dubey et al.,
2024), Qwen2.5 Instruct with 7B and 72B param-
eters(Yang et al., 2024), GPT-4o(Achiam et al.,
2023), and o3-mini(OpenAI, 2025).

1Following OpenAI’s guidelines of reasoning models.

1075

https://platform.openai.com/docs/guides/reasoning

ansDepth Llama-8B Llama-70B Qwen-7B Qwen-72B GPT-4o o3-mini

2 68% (14%) 95% (1%) 87% (2%) 95% (1%) 99% (1%) 100% (0%)
4 28% (12%) 82% (6%) 31% (6%) 86% (6%) 94% (0%) 100% (0%)
6 17% (16%) 83% (3%) 12% (9%) 80% (7%) 85% (3%) 100% (0%)
8 5% (12%) 76% (7%) 7% (10%) 68% (8%) 84% (2%) 100% (0%)

Table 3: Accuracy of various LLMs at different ansDepth levels for answerable problems. The percentage in parentheses
represents the proportion of answerable questions incorrectly identified as unanswerable.

Table 1 summarizes the results. None of the
LLMs gives satisfactory results. Llama 3.1 8B,
Qwen2.5 7B and 72B barely have any success iden-
tifying unanswerable problems. Llama 3.1 70B
and GPT-4o struggle with more complex problems
(ansDepth = 6, 8). o3-mini has the lowest hallu-
cination for ansDepth = 6, 8. However, for the
easiest case where ansDepth = 2 (in this setting,
only 4 variables are mentioned in each problem),
o3-mini displays a bias of making hallucinatory
assumptions (see Appendix C.2 for examples).

To further investigate whether the LLMs face
intrinsic challenges in recognizing unanswerable
math word problems, we conduct another set of
experiments using few-shot prompting. For each
unanswerable problem, we construct a few-shot
prompt by randomly selecting 3 answerable and 3
unanswerable problems, each accompanied by a
full solution path and the correct final answer. We
use sample size n=500. Results are summarized
in Table 2. O3-mini greatly benefits from few-
shot prompting, which is not surprising given our
analysis in Appendix C.2. For shorter problems,
o3-mini tends to recognize the lack of conditions
during reasoning, but choose to make unreasonable
assumptions to arrive at a final answer. Few-shot
examples guide it to refrain from doing that. The
hallucination rates of the other models remained
largely unchanged. This suggests that the five mod-
els besides o3-mini face intrinsic challenges in rec-
ognizing unanswerable math word problems.

To investigate whether the unsatisfactory accu-
racy of identifying unanswerable problems comes
from the incapability of the necessary mathematical
operations, we evaluate the LLMs on the answer-
able counterparts of the unanswerable questions
using the same zero-shot prompting template. For
this experiment, a sample size of n = 100 is used.
We observe that almost every model displays a
significant gap between its ability of solving an-
swerable problems and identifying unanswerable
problems. For instance, GPT-4o correctly solves
84% of answerable problems for ansDepth = 8,
but only correctly recognizes 36% of unanswerable

problems.

4.3 Unanswerable Problem Structure and
Hallucination

For a more fine-grained investigation of LLM’s
hallucination behavior under different structures
of unanswerable problems, we analyze GPT-4o’s
hallucination rate on unanswerable problems gener-
ated under different parameter choices of numVars,
ansDepth, compositeName and cutDepth.

Figure 2: Hallucination percentage under different config-
urations of unanswerable problems, plotted against varying
ansDepth.

Tree Structure and Item Names To investigate
the effect of (i) a deeper tree structure, (ii) a more
complex tree structure, and (iii) composite item
names, we consider the following parameter con-
figurations:
• ansDepth∈ {4, 5, 6, 7, 8}, which controls the

depth of the questioned variable,
• cutDepth = ⌊ansDepth/2⌋
• numVars = ansDepth + 2 (generates a

more complex tree structure, with condi-
tions unrelated to the questioned variable) or
numVars = ansDepth (the tree structure de-
generates into a single path),
• compositeName: true or false.

There are 5 × 2 × 2 = 20 configurations in total.
We randomly generate 500 unanswerable problems
for each configuration, and summarize GPT-4o’s
hallucination rate in Figure 2. In the figure,

1076

⋆ Orange line represents complex tree structure,
⋆ blue line represents simple tree structure,
- Solid line stands for composite item names,
- Dashed line stands for simple item names.
Examining each line individually, we observe

that the hallucination rate increases as the depth of
the questioned variable grows. Comparing solid
and dashed lines of the same color, a more complex
tree structure consistently results in a higher like-
lihood of hallucination across different ansDepth
values. Comparing orange and blue lines of the
same linestyle, composite item names consistently
lead to a higher likelihood of hallucination com-
pared to simple item names.

Figure 3: Hallucination percentage versus cutDepth. Left
panel has ansDepth = 7. Right panel has ansDepth = 8.

Location of the Cut For each unanswerable prob-
lem, the cut always happens along the path from
the root to the questioned variable. Does the loca-
tion of the cut change hallucination ratio? We vary
cutDepth from 1 to 7 while keeping ansDepth =
8 and other parameters fixed. In the right panel
of Figure 3, we see that cutDepth = 3, 4, 5, 6
all trigger over 60% hallucination for GPT-4o
(with cutDepth = 5 triggering over 70%), but
a cutDepth = 1, 2, 7 only triggers less than 50%
of hallucination, which means that GPT-4o is more
confused when the cut happens around the middle
point along the path, comparing to that happens
near the root or the questioned variable.

4.4 Conclusion of Experiments
Our findings indicate that the unanswerable math
word problems generated by TREECUT effectively
induce hallucinations in large language models, in-
cluding GPT-4o and o3-mini, with rates of 61% and
42% in their respective worst-case scenarios. Fo-
cusing on GPT-4o, we further observe that halluci-
nations are more likely to occur when the problem
exhibits (i) a deeper tree structure, (ii) a more com-
plex tree structure, (iii) composite item names, or
(iv) a cut positioned around the middle of the path.
These results underscore the challenges LLMs face
in handling unanswerable math problems.

Limitations

Our synthetic dataset is specifically designed for
math word problems, representing only a small
subset of the broader field of mathematics. Ad-
ditionally, our evaluations are based on zero-shot
and few-shot chain-of-thought prompting. We do
not explore alternative prompting techniques com-
monly used in LLM-based mathematical reasoning
studies, which may impact performance compar-
isons.

Acknowledgements

We thank the anonymous reviewers for their valu-
able feedback, which helped improve the quality
of this work.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Bowen Jiang, Yangxinyu Xie, Zhuoqun Hao, Xiaomeng
Wang, Tanwi Mallick, Weijie J Su, Camillo J Taylor,
and Dan Roth. 2024. A peek into token bias: Large
language models are not yet genuine reasoners. arXiv
preprint arXiv:2406.11050.

Vivek Kumar, Rishabh Maheshwary, and Vikram
Pudi. 2021. Adversarial examples for evaluat-
ing math word problem solvers. arXiv preprint
arXiv:2109.05925.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng
Kong, and Wei Bi. 2024. Gsm-plus: A comprehen-
sive benchmark for evaluating the robustness of llms
as mathematical problem solvers. arXiv preprint
arXiv:2402.19255.

1077

Qianying Liu, Wenyu Guan, Sujian Li, Fei Cheng,
Daisuke Kawahara, and Sadao Kurohashi. 2021.
Roda: Reverse operation based data augmentation
for solving math word problems. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
30:1–11.

Jingyuan Ma, Damai Dai, Lei Sha, and Zhifang Sui.
2024. Large language models are unconscious of
unreasonability in math problems. arXiv preprint
arXiv:2403.19346.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
arXiv preprint arXiv:2410.05229.

Andreas Opedal, Haruki Shirakami, Bernhard
Schölkopf, Abulhair Saparov, and Mrinmaya Sachan.
2024. Mathgap: Out-of-distribution evaluation on
problems with arbitrarily complex proofs. arXiv
preprint arXiv:2410.13502.

OpenAI. 2025. Openai o3 mini. Accessed: Feb. 5,
2025.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094.

Asir Saadat, Tasmia Binte Sogir, Md Taukir Azam
Chowdhury, and Syem Aziz. 2024. When not to
answer: Evaluating prompts on gpt models for effec-
tive abstention in unanswerable math word problems.
arXiv preprint arXiv:2410.13029.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed Chi, Nathanael Schärli, and
Denny Zhou. 2023. Large language models can be
easily distracted by irrelevant context. In Proceed-
ings of the 40th International Conference on Machine
Learning, pages 31210–31227.

YuHong Sun, Zhangyue Yin, Qipeng Guo, Jiawen Wu,
Xipeng Qiu, and Hui Zhao. 2024. Benchmarking hal-
lucination in large language models based on unan-
swerable math word problem. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalua-
tion (LREC-COLING 2024), pages 2178–2188.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Jialiang Xu, Mengyu Zhou, Xinyi He, Shi Han,
and Dongmei Zhang. 2022. Towards robust nu-
merical question answering: Diagnosing numeri-
cal capabilities of nlp systems. arXiv preprint
arXiv:2211.07455.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, et al. 2024. Qwen2.5-
math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint
arXiv:2409.12122.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu,
Xipeng Qiu, and Xuan-Jing Huang. 2023. Do large
language models know what they don’t know? In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 8653–8665.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi
Song, Mingjie Zhan, et al. 2023. Solving challenging
math word problems using gpt-4 code interpreter
with code-based self-verification. arXiv preprint
arXiv:2308.07921.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu,
Jindong Wang, Derek F Wong, Xiaowei Huang, Qi-
ufeng Wang, and Kaizhu Huang. 2024a. Is your
model really a good math reasoner? evaluating math-
ematical reasoning with checklist. arXiv preprint
arXiv:2407.08733.

Zihao Zhou, Qiufeng Wang, Mingyu Jin, Jie Yao, Jianan
Ye, Wei Liu, Wei Wang, Xiaowei Huang, and Kaizhu
Huang. 2024b. Mathattack: Attacking large language
models towards math solving ability. In Proceedings
of the AAAI Conference on Artificial Intelligence,
pages 19750–19758.

1078

https://openai.com/index/openai-o3-mini/

A Generation of the Math Word Problems

Algorithm 1 Generating Math Word Problem using Random Tree

Require: numVars ≥ ansDepth ≥ 2
Require: unanswerable ∈ {true, false}, order ∈ {"forward", "backward", "random"}
Require: cutDepth: int

1: if unanswerable = true then
Require: cutDepth: int, satisfying 1 ≤ cutDepth < ansDepth

2: end if
▷ (i) Sample a dictionary of variable values

3: varDict← {}
4: for i← 1 to numVars do
5: Sample an integer v ∈ [5, 15]
6: varDict[xi]← v
7: end for

▷ (ii) Build the random tree
8: Assign root as the parent of x1
9: for i← 2 to ansDepth do

10: Assign xi−1 as the parent of xi
11: end for ▷ Finish building the path from the root to the questioned variable

▷ Assign the remaining nodes
12: for i← ansDepth+ 1 to numVars do
13: Randomly select a node xp in the tree
14: Assign xp as the parent of xi
15: end for

▷ (iii) Get the list of all edges via a breadth-first traversal
16: edgeList← the list of edges collected by a breadth-first traversal (see Algorithm 2)

▷ (iv) For unanswerable problems, create the cut
17: if unanswerable = true then
18: Remove (xansDepth-cutDepth-1, xansDepth-cutDepth) from edgeList
19: end if

▷ (v) Generate a formula for each edge, and store in forumlaList
20: formulaList← []
21: for edge (xi, xj) in edgeList do
22: Sample a, b ∈ {−3,−2,−1, 1, 2, 3}
23: Define formula← a · xi + b · xj = a · varDict[xi] + b · varDict[xj]
24: Append formula to formulaList ▷ So that formulaList has the same order as edgeList
25: end for

▷ (vi) Adjust the ordering of formulaList according to order
26: if order = "backward" then
27: Reverse formulaList
28: end if
29: if order = "random" then
30: Random Shuffle formulaList
31: end if

return formulaList ▷ Formulas serving as conditions of the problem.

Algorithm 1 generates formulaList, which contains the formulas that will serve as the conditions
of the problem. To translate that into natural language, item names will be sampled according to the
compositeName option. Then, formulaList can be translated to natural language using pre-defined
templates. The question sentence will simply be “what is the price of {item name of the questioned

1079

variable}”.

We want to point out that although all the variables are assigned a value in varDict, this is purely for
the sake of (i) subsequently generating the random formulas (ii) guaranteeing that all calculable variables
will have values between 5 and 15. When unanswerable = true, the cut will guarantee that the problem
is unanswerable.

In the following, we also detail the simple breadth-first traversal algorithm for getting all the edges
from the tree, which enables us to control the order of the conditions in the problem.

Algorithm 2 Breadth-First Traversal to Get Edges

Require: root: the root of a tree
▷ Get the list of all edges via a breadth-first traversal

1: edgeList← [], q← a queue containing root
2: while q is not empty do
3: node← q.dequeue()
4: for child ∈ node.children do
5: Add (node, child) to edgeList
6: Add child to q
7: end for
8: end while

return edgeList

Given a formulaList, each formula is translated via the following template:

Formula Translation Template

Suppose x1 stands for <dish1> at <restaurant1>, and x2 stands for <dish2> at
<restaurant2>.

1. If the formula is a1x1 + a2x2 = b where a1, a2 > 0, then the formula will be
translated to: “a1 <dish1> at <restaurant1> and a2 <dish2> at <restaurant2>
cost b dollars”.

2. If the formula is a1x1 − a2x2 = 0 where a1, a2 > 0, then the formula will be
translated to: “The price of a1 <dish1> at <restaurant1> is the same as the
price of a2 <dish2> at <restaurant2>”.

3. If the formula is a1x1−a2x2 = b where a1, a2 > 0 and b > 0, then the formula
will be translated to either “a1 <dish1> at <restaurant1> cost b dollars
more than a2 <dish2> at <restaurant2>” or “a2 <dish2> at <restaurant2> cost
b dollars less than a1 <dish1> at <restaurant1>”.

4. The case of b < 0 is similar to the case above.

B Details of Experiments

B.1 Prompt Template

Below is the prompt template used for evaluation, which is a 0-shot prompting template with chain-of-
thought system message. For reasoning models like o3-mini, we do not use the chain-of-thought system
message.

1080

Zero-shot Evaluation Prompt Template

// system message (for non-reasoning models)
As an expert problem solver, solve step by step the following mathematical
questions.

// user message
Please solve the following math question, and then answer in the form ’Answer:
x’. If the known conditions are not sufficient to answer the question, please
answer in the form ’Answer: unknown.’.

Question: {{question}}

Your solution:

B.2 Evaluation

For all the models other than o3-mini, we set {max_tokens=4000, temperature=0}. o3-mini does not al-
low setting temperature, and we set {max_completion_tokens=32000, reasoning_effort=“high”}.
GPT-4o and o3-mini are evaluated via calling OpenAI API. The exact version numbers are “gpt-4o-2024-
08-06” and “o3-mini-2025-01-31”, respectively.

When evaluating model’s answer to an unanswerable problem, we change the response to all lower
case, and if “unknown” is mentioned after the last occurrence of the trigger word “answer”, it is counted
as a correct answer.

C Examples of Hallucinatory Answers

C.1 GPT-4o

Example 1: A BLT sandwich at Urban Plate costs 13 dollars. 3 burgers at Taste Good Cuisine cost 6
dollars more than 3 fruit tarts at Taste Good Cuisine. A BLT sandwich at Taste Good Cuisine costs 5
dollars. A fruit tart at Taste Good Cuisine costs 9 dollars less than 3 burgers at Urban Plate. 2 burgers at
Taste Good Cuisine cost 8 dollars more than a fruit tart at Urban Plate. Question: how much does a burger
at Taste Good Cuisine cost?
Model answer:
To solve this problem, we need to set up equations based on the information given and solve for the unknowns.

Let's define the variables:
- Let \(B_T \) be the cost of a burger at Taste Good Cuisine.
- Let \(F_T \) be the cost of a fruit tart at Taste Good Cuisine.
- Let \(B_U \) be the cost of a burger at Urban Plate.
- Let \(F_U \) be the cost of a fruit tart at Urban Plate.

We are given the following information:

1. A BLT sandwich at Urban Plate costs 13 dollars.
2. 3 burgers at Taste Good Cuisine cost 6 dollars more than 3 fruit tarts at Taste Good Cuisine.

\[
3B_T = 3F_T + 6
\]

3. A BLT sandwich at Taste Good Cuisine costs 5 dollars.
4. A fruit tart at Taste Good Cuisine costs 9 dollars less than 3 burgers at Urban Plate.

\[
F_T = 3B_U - 9
\]

5. 2 burgers at Taste Good Cuisine cost 8 dollars more than a fruit tart at Urban Plate.
\[
2B_T = F_U + 8
\]

1081

We need to find the cost of a burger at Taste Good Cuisine, \(B_T \).

From equation (2), we can express \(F_T \) in terms of \(B_T \):
\[
F_T = B_T - 2
\]

Substitute this expression for \(F_T \) into equation (4):
\[
B_T - 2 = 3B_U - 9
\]
\[
B_T = 3B_U - 7
\]

Now, let's substitute \(F_T = B_T - 2 \) into equation (5):
\[
2B_T = (B_T - 2) + 8
\]
\[
2B_T = B_T + 6
\]
\[
B_T = 6
\]

Thus, the cost of a burger at Taste Good Cuisine is 6 dollars.

Answer: 6

Mistake: When the model did “Now, let’s substitute F_T = B_T - 2 into equation (5)”, it
actually confused F_T with F_U in equation (5).

Example 2: 3 Greek salads at Texas BBQ cost 6 dollars less than 3 pieces of cheese cake at Texas BBQ.
3 burgers at Texas BBQ and 2 pieces of cheese cake at Texas BBQ cost 59 dollars. 3 burgers at Taste
Good Cuisine and 2 Greek salads at Taste Good Cuisine cost 42 dollars. 2 burgers at Texas BBQ and a
piece of cheese cake at Taste Good Cuisine cost 32 dollars. 3 burgers at Texas BBQ cost 15 dollars more
than 3 fruit tarts at Taste Good Cuisine. A burger at Taste Good Cuisine costs 10 dollars. A fruit tart at
Texas BBQ costs 2 dollars more than a Greek salad at Texas BBQ. Question: how much does a Greek
salad at Texas BBQ cost?
Model answer:
To solve this problem, we need to set up equations based on the information given and solve for the cost of
a Greek salad at Texas BBQ. Let's define the variables:

- \(G \): Cost of a Greek salad at Texas BBQ
- \(C \): Cost of a piece of cheesecake at Texas BBQ
- \(B \): Cost of a burger at Texas BBQ
- \(F \): Cost of a fruit tart at Taste Good Cuisine
- \(B_T \): Cost of a burger at Taste Good Cuisine (given as $10)
- \(F_T \): Cost of a fruit tart at Texas BBQ

Now, let's translate the information into equations:

1. "3 Greek salads at Texas BBQ cost 6 dollars less than 3 pieces of cheesecake at Texas BBQ."
\[
3G = 3C - 6
\]

2. "3 burgers at Texas BBQ and 2 pieces of cheesecake at Texas BBQ cost 59 dollars."
\[
3B + 2C = 59
\]

3. "3 burgers at Taste Good Cuisine and 2 Greek salads at Taste Good Cuisine cost 42 dollars."
\[
3B_T + 2G = 42
\]

1082

Since \(B_T = 10 \), substitute:
\[
3(10) + 2G = 42 \implies 30 + 2G = 42 \implies 2G = 12 \implies G = 6
\]

4. "2 burgers at Texas BBQ and a piece of cheesecake at Taste Good Cuisine cost 32 dollars."
\[
2B + C_T = 32
\]
(Note: We don't have enough information about \(C_T \), the cost of cheesecake at Taste Good Cuisine,
so we can't use this equation directly.)

5. "3 burgers at Texas BBQ cost 15 dollars more than 3 fruit tarts at Taste Good Cuisine."
\[
3B = 3F + 15
\]

6. "A fruit tart at Texas BBQ costs 2 dollars more than a Greek salad at Texas BBQ."
\[
F_T = G + 2
\]

Now, let's solve the equations:

From equation 3, we found \(G = 6 \).

Let's verify if this value is consistent with other equations:

- From equation 1:
\[
3G = 3C - 6 \implies 3(6) = 3C - 6 \implies 18 = 3C - 6 \implies 3C = 24 \implies C = 8
\]

- From equation 2:
\[
3B + 2C = 59 \implies 3B + 2(8) = 59 \implies 3B + 16 = 59 \implies 3B = 43 \implies B = \frac{43}{3}
\]
(This value seems unusual, but let's proceed.)

- From equation 5:
\[
3B = 3F + 15 \implies \frac{43}{3} = F + 5 \implies F = \frac{43}{3} - 5 = \frac{43}{3} - \frac{15}{3}
= \frac{28}{3}
\]

- From equation 6:
\[
F_T = G + 2 \implies F_T = 6 + 2 = 8
\]

The calculations are consistent with the given conditions. Therefore, the cost of a Greek salad at Texas BBQ
is:

Answer: 6

Mistake: At step 3, model calculated the value of “G”, but from the start of the solution, “G” denotes the
“cost of a Greek salad at Texas BBQ”, not the cost of a Greek salad at Taste Good Cuisine.

C.2 o3-mini

Example 1: A pizza at Taste Good Cuisine and 3 lasagnas at Taste Good Cuisine cost 48 dollars. A
lasagna at Urban Plate costs 6 dollars. 3 lasagnas at Urban Plate and 3 pizzas at Urban Plate cost 63
dollars. Question: how much does a lasagna at Taste Good Cuisine cost?
Model answer:
Let p be the price of a pizza at Taste Good Cuisine and l be the price of a lasagna at Taste Good Cuisine.
We are given:

1. p + 3l = 48. (Taste Good Cuisine)

1083

2. A lasagna at Urban Plate costs 6 dollars.
3. 3 lasagnas at Urban Plate and 3 pizzas at Urban Plate cost 63 dollars.

From (3), the total cost of 3 lasagnas at Urban Plate is 3 × 6 = 18 dollars. This means that the 3 pizzas at
Urban Plate cost 63 - 18 = 45 dollars, so one pizza at Urban Plate costs 45/3 = 15 dollars.

A common (though unstated) assumption in these puzzles is that dishes with the same name cost the same
across restaurants. Thus, we assume that a pizza at Taste Good Cuisine also costs 15 dollars. Substitute
p = 15 into equation (1):

15 + 3l = 48
3l = 48 - 15 = 33
l = 33/3 = 11

Answer: 11

Mistake: The model made an assumption: “A common (though unstated) assumption in these
puzzles is that dishes with the same name cost the same across restaurants.” However,
this cannot be a mathematically valid assumption because following this assumption, it arrives at the
conclusion that the price for lasagna at Urban Plate is not the same as that at Taste Good Cuisine (6 dollars
versus 11 dollars).

We randomly selected 20 problems from the ansDepth = 2 set that triggered hallucinatory answer
from o3-mini and manually checked the model answer, all of them shares this same mistake. Below is a
similar example:

Example 2: A scrambled egg at Bistro Nice and a piece of cheese cake at Mike’s Place cost 21 dollars. 2
scrambled eggs at Bistro Nice cost 6 dollars more than 2 pieces of cheese cake at Bistro Nice. A scrambled
egg at Mike’s Place costs 6 dollars. Question: how much does a scrambled egg at Bistro Nice cost?
Model answer:
Let S_B = price of a scrambled egg at Bistro Nice,

C_B = price of a piece of cheesecake at Bistro Nice,
C_M = price of a piece of cheesecake at Mike’s Place.

The problem gives:
1. S_B + C_M = 21 dollars.
2. Two scrambled eggs at Bistro Nice cost 6 dollars more than two cheesecakes at Bistro Nice:
2S_B = 2C_B + 6 → S_B = C_B + 3.

3. A scrambled egg at Mike’s Place costs 6 dollars (this is extra information).

Without further assumptions the system involves three unknowns (S_B, C_B, C_M) and only two equations.
However, it is common in these problems to assume that when the same item is mentioned (here “cheesecake”)
it has a consistent price from one restaurant to the other. That is, we assume C_M = C_B.

Under that assumption the first equation becomes:
S_B + C_B = 21.

Then using S_B = C_B + 3 we substitute:
(C_B + 3) + C_B = 21 → 2C_B + 3 = 21 → 2C_B = 18 → C_B = 9.

Thus, S_B = 9 + 3 = 12.

Answer: 12

Mistake: Same as above.

Example 3: 3 BLT sandwiches at Bistro Nice cost 6 dollars more than 3 pieces of cheese cake at Urban
Plate. 3 burgers at Urban Plate cost 18 dollars less than 3 pieces of cheese cake at Bistro Nice. 2 BLT
sandwiches at Urban Plate and 2 scrambled eggs at Urban Plate cost 34 dollars. A BLT sandwich at Urban
Plate costs 8 dollars. 3 pieces of cheese cake at Bistro Nice cost 12 dollars more than 3 burgers at Bistro
Nice. 2 burgers at Urban Plate cost 10 dollars less than 2 scrambled eggs at Bistro Nice. 3 pieces of
cheese cake at Bistro Nice and a piece of cheese cake at Urban Plate cost 54 dollars. Question: how much
does a piece of cheese cake at Urban Plate cost?
Model answer:
Let CC_U be the cost of one piece of cheese cake at Urban Plate.

1084

Step 1. From “3 BLT sandwiches at Bistro Nice cost 6 dollars more than 3 pieces of cheese cake at Urban
Plate”:
3·BLT_B = 3·CC_U + 6 → BLT_B = CC_U + 2 (1)

Step 2. From “3 burgers at Urban Plate cost 18 dollars less than 3 pieces of cheese cake at Bistro Nice”:
3·BUR_U = 3·CC_B - 18 → With BUR_U determined later, we use this after finding BUR_U.

Step 3. “2 BLT sandwiches at Urban Plate and 2 scrambled eggs at Urban Plate cost 34 dollars”:
2·BLT_U + 2·Eggs_U = 34 and we are given in Step 4 that BLT_U = 8.
Thus, 2·8 + 2·Eggs_U = 34 → 16 + 2·Eggs_U = 34 → 2·Eggs_U = 18 → Eggs_U = 9.

Step 4. “A BLT sandwich at Urban Plate costs 8 dollars”:
BLT_U = 8.

Step 5. “3 pieces of cheese cake at Bistro Nice cost 12 dollars more than 3 burgers at Bistro Nice”:
3·CC_B = 3·BUR_B + 12 → CC_B = BUR_B + 4 (2)

Step 6. “2 burgers at Urban Plate cost 10 dollars less than 2 scrambled eggs at Urban Plate”:
2·BUR_U = 2·Eggs_U - 10 → 2·BUR_U = 18 - 10 → 2·BUR_U = 8 → BUR_U = 4.

Step 7. Now return to the burgers at Urban Plate in Step 2:
3·BUR_U = 3·CC_B - 18 With BUR_U = 4,
3·4 = 3·CC_B - 18 → 12 = 3·CC_B - 18 → 3·CC_B = 30 → CC_B = 10.

Step 8. “3 pieces of cheese cake at Bistro Nice and a piece of cheese cake at Urban Plate cost 54 dollars”:
3·CC_B + CC_U = 54 → 3·10 + CC_U = 54 → 30 + CC_U = 54 → CC_U = 24.

The question asks: “how much does a piece of cheese cake at Urban Plate cost?”

Answer: 24

Mistake: Step 6. “2 burgers at Urban Plate cost 10 dollars less than 2 scrambled eggs
at Urban Plate”. That is a hallucinatory condition. The actual condition is "2 burgers at Urban Plate
cost 10 dollars less than 2 scrambled eggs at Bistro Nice".

1085

