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Abstract

We introduce a novel framework for analyzing
sorting algorithms in pairwise ranking prompt-
ing (PRP), re-centering the cost model around
LLM inferences rather than traditional pairwise
comparisons. While classical metrics based on
comparison counts have traditionally been used
to gauge efficiency, our analysis reveals that
expensive LLM inferences overturn these pre-
dictions; accordingly, our framework encour-
ages strategies such as batching and caching to
mitigate inference costs. We show that algo-
rithms optimal in the classical setting can lose
efficiency when LLM inferences dominate the
cost under certain optimizations.

1 Introduction

LLMs have ushered in a new era of language un-
derstanding (Brown et al., 2020). Alongside these
developments, LLM-based reranking has emerged
in the information retrieval (IR) domain (Nogueira
et al., 2020; Zhuang et al., 2023; Ma et al., 2023;
Sun et al., 2024). Instead of using custom fine-
tuned rankers, off-the-shelf LLMs—often com-
bined with a first-stage retriever can refine search
results in a zero-shot manner. The practical sig-
nificance of reranking is evident in its rapid com-
mercial adoption, with major cloud platforms now
offering it as a core functionality. LLM-based
reranking enables robust ranking quality without
the overhead of dataset-specific models, which is
crucial, for example, for the widespread adoption
of Retrieval-Augmented Generation across both
cloud-based and on-prem deployments.

A notable exemplar in zero-shot LLM-based
reranking is Pairwise Ranking Prompting (PRP)
(Qin et al., 2024; Luo et al., 2024), which com-
pares two candidate documents. Despite its con-
ceptual elegance and model-agnostic nature, PRP
faces significant computational challenges; in prac-
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tice—each pairwise comparison requires an expen-
sive LLM inference, making a naive all-pairs ap-
proach prohibitively costly (Qin et al., 2024). This
has prompted both researchers and practitioners to
adopt classical sorting algorithms for minimizing
the number of comparisons (Qin et al., 2024) as
they offer theoretical guarantees.

We argue that classical analysis is not adequate
for PRP as it treats each comparison as an atomic,
uniform-cost operation, whereas in an LLM-based
system, each comparison is an expensive inference
call. This gap between classical and LLM-centric
views can invert conventional wisdom under cer-
tain basic optimizations, causing algorithms that
appear optimal under traditional assumptions to un-
derperform in real-world scenarios, and vice versa.

To address these limitations, we introduce a
framework that redefines how ranking algorithms
are analyzed in an LLM context. Rather than
merely counting comparisons, we focus on LLM
inference calls as the primary cost driver. We
show that basic optimizations—such as caching
and batch inference—can significantly alter algo-
rithms’ efficiency. Furthermore, we propose Quick-
sort as an efficient reranking algorithm, demonstrat-
ing its potential when leveraging these optimiza-
tions. To the best of our knowledge, this is the first
time Quicksort has been applied in this context.

Caching and Batching have no effect on algo-
rithm ranking performance; the exact same com-
parisons will be performed but much faster. While
caching repeated queries and batching independent
operations are seemingly trivial adaptations, they
significantly affect the choice of the optimal algo-
rithm challenging previous results (Qin et al., 2024;
Zhuang et al., 2024). For instance, Heapsort is
no longer the preferred choice. A mere batch size
of 2 will result in Quicksort generating 44% less
inference calls compared to Heapsort.

We validate our findings on standard ranking
benchmarks (TREC DL 2019 and 2020 (Craswell
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et al., 2020, 2021) and BEIR (Thakur et al., 2021)).
By re-framing sorting theory around real-world
LLM inference costs, we offer both practical guid-
ance for zero-shot reranking and a theoretical ba-
sis for understanding algorithmic efficiency under
modern IR constraints.

2 Related Work

Traditional IR systems require extensive labeled
data and struggle with cross-domain generalization
(Matveeva et al., 2006; Wang et al., 2011). LLMs
have transformed this landscape by enabling zero-
shot ranking. PRP emerged then as a particularly ef-
fective technique (Qin et al., 2024; Luo et al., 2024).
PRP’s key advantage lies in its model-agnostic
nature- by comparing document pairs through sim-
ple prompts, it can leverage any LLM without train-
ing or access to model internals, making it espe-
cially valuable as newer models emerge. However,
PRP faces significant computational challenges as
each pairwise comparison requires an expensive
LLM inference, with costs scaling quadratically
with document count.

To address these computational demands, recent
work has incorporated sorting algorithms into the
PRP framework (Qin et al., 2024; Zhuang et al.,
2024). While theoretically well-grounded, these
approaches adopt the cost framework of traditional
sorting theory, where comparisons are treated as
atomic operations with uniform costs. However,
in LLM-based ranking, inferences are orders of
magnitude more expensive than other operations.
This mismatch between classical cost assumptions
and LLM-specific characteristics suggests the need
to reevaluate sorting algorithm selection and opti-
mization for real-world performance.

3 Revisiting sorting algorithms

This section examines how small yet impact-
ful opimizations (caching, batching, and top-
k extraction) in the context of classical algo-
rithms—Bubblesort, Quicksort, and Heapsort can
significantly shift which algorithm is most efficient
in LLM-based ranking. While these adaptations are
not exhaustive, they demonstrate how our frame-
work redefines efficiency based on LL.M-specific
costs, where reducing inference steps matters more
than traditional complexity metrics. Importantly,
these optimizations preserve the final ranking out-
come: the same comparisons are performed but are
batched or reused, leading to fewer inference calls

and a much faster process. Table 1 summarizes the
optimizations applicable to each algorithm.

Algorithm Batching Caching Top-k Efficiency
Heapsort X X v
Bubblesort X v v
Quicksort v X e

Table 1: Summary of optimization techniques under
LLM-centric costs.

Bubble Sort Pass
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1st

— S e

2nd

Figure 1: Bubblesort with Caching. Solid arrows show
inferences, dashed arrows cached comparisons.

Heapsort has been favored in early PRP research
Qin et al. (2024) for its O(nlogn) complexity and
natural support for top-k extraction. However, it
cannot be adapted to batching or caching due to
its binary tree structure. Each comparison is inher-
ently sequential and unique. This makes it impos-
sible to group comparisons into a single inference
step (batching) or to reuse prior results (caching)
effectively.

Bubblesort has been considered expensive due to
its O(n?) complexity, but this can be adapted via
caching from its repeated adjacent comparisons
across passes (Figure 1). The memory overhead re-
mains negligible, requiring only a small dictionary
to store prior results. While its pairwise swap struc-
ture precludes batching (comparisons cannot be
grouped into single inferences), it inherently sup-
ports top-k extraction (Qin et al., 2024), enhancing
its practicality for ranking applications.
Quicksort uniquely enables batching through its
partition phase, where multiple elements can be
evaluated simultaneously against a pivot (Figure 2).
However, it has limited potential for caching, as
pivot comparisons are typically non-repeating. De-
spite this, the Partial Quicksort variant (Martinez,
2004) enhances its efficiency by enabling early ter-
mination for top-k extraction. To the best of our
knowledge, we are the first to introduce Quicksort
in PPR as prior research focused on Heapsort and
Bubblesort due to their top-k properties.

1Using Partial Quicksort (Martinez, 2004).
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Figure 2: a. One comparison per inference as classic analysis for these algorithms. b. Multiple comparisons per

inference making gaining more information per inference.

4 Experimental Setup

Hardware: Our analysis is theoretical and agnos-
tic to hardware. However, to validate that our cost
assumptions align with practical throughput be-
havior, we ran two lightweight empirical checks
on NVIDIA A100 (40GB), RTX 3090, and RTX
2080 Ti. These include single forward-pass latency
measurements across batch sizes and GPUs, and
full PRP reranking with Quicksort and Heapsort at
batch sizes 2 and 128 for the A100 (see Section 5).
Metric: Instead of focusing on traditional com-
parison counts, we shifted to the number of LLM
inference calls, which are the dominant computa-
tional cost. Each inference—regardless of token
count or monetary cost—is treated as a uniform
cost unit. We disregard token counts and dollar
costs because these are determined by the dataset
and pre-trained model. Moreover, standard pre-
processing (e.g., chunking/truncation) ensures uni-
formity across documents. We show mean and
standard deviation across datasets and LLMs. Indi-
vidual results can be found in Appendix A.
LLMs: Following Qin et al. (2024); Zhuang et al.
(2024) we used: Flan-T5-L (780M), Flan-T5-XL
(3B), Flan-T5-XXL (11B) (Chung et al., 2022),
Mistral-Instruct (7B) (Jiang et al., 2023), and
Llama-3-Instruct (8B) (et al, 2024). For the la-
tency analysis we implemented batch processing
with Flan-T5-Large using the Hugging Face Trans-
formers library (Wolf et al., 2020).

Algorithms: (1) Bubblesort, (2) Quicksort with
median-of-three pivot strategy (other strategies are
shown in Appendix A), and (3) Heapsort.
Datasets: TREC DL 2019 (43 queries) and 2020
(200) (Craswell et al., 2020, 2021) as well as
subsets from BEIR (Thakur et al., 2021): Webis-
Touche2020 (49), NFCorpus (295), Large-Scifact

(300), TREC-COVID (50), FiQA (648), and
DBpedia-Entity (400). Following standard prac-
tices, we re-ranked the top 100 BM25-retrieved
documents per query (Robertson and Zaragoza,
2009; Qin et al., 2024; Zhuang et al., 2024; Luo
et al., 2024) to identify the top-10 most relevant
ones efficiently.

5 Results and Discussion

Cost model analysis: Figure 3 illustrates the num-
ber of inferences performed by Heapsort and Quick-
sort across different batch sizes. When the batch
size is set to 1 (equivalent to counting individual
comparisons), Heapsort emerges as the most ef-
ficient algorithm consistent with traditional sort-
ing analysis and previous results (Qin et al., 2024;
Zhuang et al., 2024). However, as the batch size
increases, Quicksort is able to significantly outper-
form as multiple comparisons can be run in parallel.
For instance, with a batch size of 2, the average
number of inference calls is reduced already by
almost 45%.

Figure 4 compares the number of inferences per-
formed by Bubblesort with and without cache. Bub-
blesort benefits significantly more from caching at
a minimal storage overhead. This is because Bub-
blesort involves repeated comparisons, many of
which can be cached, reducing the total number of
inferences by an average of 46%.

Importantly, despite these optimizations reduc-
ing the number of LLM inferences, they do not
alter the final ranking outcome. The same compar-
isons are performed, but they are either batched
together or retrieved from cache rather than recom-
puted, leading to fewer inference calls and a much
faster process.

Latency Analysis: Figure 5 shows single-pass
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Figure 3: Mean and SD inference count for Quicksort and Heapsort across batch sizes. Black number: Heapsort vs.
Quicksort using batching gain; Green number: Quicksort batching vs. no batching gain.
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Figure 4: Mean and SD inference count for Bubblesort,
with and without cache. Green numbers indicate the
percentage gain with cache. The dashed line represents
the mean inference count for Heapsort and Quicksort.

speed-ups on A100, RTX 3090, and RTX 2080
Ti for different batch sizes. A100 achieves near-
ideal scaling up to batch size 8, with throughput
continuing to improve—albeit with diminishing re-
turns—up to batch 128. On 3090 and 2080 Ti, ideal
scaling occurs up to batch sizes 2 and 4, respec-
tively, with throughput saturating between batch
sizes 32 and 64. These results indicate that while
theoretical efficiency peaks at larger batch sizes,
practical efficiency is constrained by GPU architec-
ture. The point at which near-ideal conditions are
met before saturation sets in is GPU-dependent.

We also ran the full PRP pipeline over BEIR
on the A100 using both batch size 2 and 128 for

Inference Speedup vs Batch Size (per GPU)

128 | e~ A100 Speedup
~e— 3090 Speedup
~e— 2080 Speedup
64 —=- Theoretical Speedup (f(x)=x)

Speedup (relative to batch size

Batch Size

Figure 5: Speed-up vs batch size for Flan-T5-Large
(log-log). Dashed red: ideal linear scaling.

Quicksort and Heapsort. At batch 128, Quicksort is
5.52x faster than Heapsort while achieving similar
nDCG@10 (See Appendix A, Tables 2-3) . Experi-
ments show that the theoretical gains from batching
and algorithmic design hold in end-to-end ranking
performance.
Ranking Performance: Figure 6 shows that the
ranking performance of all these algorithms across
optimization settings remains relatively stable for
a given dataset, allowing users to prioritize compu-
tational efficiency and hardware constraints before
performance when choosing an algorithm.
Findings provide a detailed insight of sorting
algorithms behavior in LLM-based pairwise rank-
ing, highlighting their respective benefits and draw-
backs, enabling users to select the most suitable
algorithm based on their specific resources and re-
quirements. More specifically:
Quicksort is ideal for latency-sensitive applica-
tions with batch sizes > 2, leveraging hardware
parallelism to outperform alternatives.
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Bubblesort achieves a susbtantial efficiency gain
with caching. It’s remarkable performance in some
datasets like scifact and touche2020 makes it a
more competitive choice with the new adaptation.
Bubblesort tends to be effective in the context of
LLMs in which pairwise transitivity is not guar-
antied. Pairwise adjacent comparisons seemed to
be more stable and bring better results in the con-
text of PRP (Luo et al., 2024).

Heapsort, once the gold standard for its theoretical
logarithmic complexity, its advantage emerges only
with no batching (rarely seen in LLM ranking).
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Figure 6: Algorithms’ performance across datasets.

6 Conclusion

We introduced a framework for optimizing sort-
ing algorithms in LLM-based pairwise ranking
by prioritizing inference calls over comparison
counts. We found that classical efficiency assump-
tions break down under LLM workloads, revealing
Quicksort as a natural, yet unexplored, choice of
algorithm. This demonstrates that inference ef-
ficiency is a property deeply tied to algorithmic
design. We hope this framework encourages fur-
ther exploration of algorithms better aligned with
LLM cost structures.

7 Limitations

While our work showcases the efficacy of batch-
ing and caching optimizations in mitigating the
high inference costs of LLM-based pairwise rank-
ing, certain limitations remain. First, sorting algo-
rithms work best when transitivity in pairwise com-
parisons holds, but LLMs can yield inconsistent
judgments for near-equivalent or context-sensitive
documents. Addressing this inconsistency requires
dedicated methods to detect and resolve intransi-
tive preferences, which remains an open area of

research. Future work could examine how much
performance is degraded and whether ranking algo-
rithms that do not assume transitivity can actually
offer any practical advantage.

Additionally, although our experiments were lim-
ited to medium-sized LLMs for budgetary and com-
putational reasons, larger models could further am-
plify the benefits observed here. Future research
should explore how our framework performs with
these more powerful models, potentially unlocking
even greater gains in inference efficiency. More-
over, hybrid methods that unify the strengths of
multiple algorithms, as well as active ranking strate-
gies or noisy sorting algorithms (Mikhailiuk et al.,
2020; Bai and Coester, 2023), are fully compat-
ible with our approach: they rely on additional
computations separate from the LLM inferences
themselves, thereby enabling more informed—and
thus fewer—LLM queries. Ultimately, our findings
underscore the need for ongoing algorithmic inno-
vation that exploits LLM-specific cost structures,
paving the way for more efficient, scalable, and
broadly applicable ranking solutions.
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A Appendix

In this appendix, we present a comparison of different methods across the BEIR and TREC datasets. Each
table follows the same structure and reports NDCG@ 10 (Normalized Discounted Cumulative Gain), the
number of inferences, and the number of comparisons (#Inferences and #Comparisons) for each method.
Also, latency (in seconds) is reported for Quicksort and Heapsort over the BEIR suite and corresponds
to end-to-end PRP execution over each dataset on an A100 40GB GPU. Quicksort is analyzed using
four pivot selection strategies: the original Hoare’s method, the middle-element selection, random and
median-of-three strategies (Hoare, 1962; Sedgewick, 1975).

To highlight performance differences, we emphasize the best-performing algorithm for each dataset and
LLM model in black, while the second-best is underlined. Additionally, the tables distinguish between
two computational scenarios: (1) cached: The number of inferences made to the LLM. (2) non-cached:
The number of comparisons performed using precomputed results, avoiding additional inferences. All
results are presented with a batch size of 2 and 128 to show batch inference efficiency.

dbpedia nfcorpus figa
# Methods NDCG@10 #comp #inf Lat. NDCG@10 #comp #inf Lat. NDCG@ 10 #comp #inf Lat.
BM25 0.318 - - - 0.322 - - - 0.240 - - -
heapsort # 0.413 225.1 225.1 24.8 0.335 160.0 160.0 18.4 0.313 200.3 200.3 26.1
quicksort (original, b=2) 0.403 245.3 126.8 34.1 0.321 171.0 88.9 16.8 0.284 253.3 130.8 27.7
quicksort (original, b=128) 0.403 2453 132 4.7 0.321 171.0 11.1 3.0 0.284 2533 13.6 4.8
9, quicksort (random, b=2) 0414 2369 1224 - 0.322 1813 941 - 0.282 246.0 127.0 -
8 quicksort (random, b=128) 0.405 2415 13.0 - 0.322 171.6 109 - 0.289 246.6 132 -
vy quicksort (middle, b=2) 0410 23191199 - 0.315 1689 87.8 - 0.277 24321256 -
§ quicksort (middle, b=128) 0410 2319 128 - 0.315 1689 109 - 0277 2432 132 -
I quicksort (median of three, b=2) 0414 25521156 - 0.326 187.0 83.7 - 0.295 2849 128.7 -
quicksort (median of three, b=128) 0.414 2552 123 - 0.326 187.0 10.5 - 0.295 2849 13.1 -
bubblesort (classic) 0415 777.6777.6 - 0.343 59395939 - 0.295 662.1 662.1 -
bubblesort (cached) 0.415 777.6 360.4 - 0.343 59392422 - 0.295 662.1 2353 -
heapsort 0419 22932293 - 0.353 1449 1449 - 0.361 224.52245 -
quicksort (original, b=2) 0.404 238.6 1233 - 0.345 160.6 83.7 - 0.338 209.1 1083 -
quicksort (original, b=128) 0.404 238.6 12.7 - 0.345 160.6 109 - 0.338 209.1 119 -
_ quicksort (random, b=2) 0412 2216 1147 - 0.343 168.7 87.6 — 0.345 21131095 -
:ﬁ quicksort (random, b=128) 0411 2308 124 - 0.344 159.0 105 - 0338 2113 120 -
L quicksort (middle, b=2) 0410 22131145 - 0.353 1576 821 - 0.341 205.4106.5 -
S quicksort (middle, b=128) 0410 2213 122 - 0.353 157.6 104 - 0.341 2054 119 -
- quicksort (median of three, b=2) 0.413 234.6 106.3 - 0.349 1849 82.8 - 0.357 226.6 102.7 -
quicksort (median of three, b=128) 0413 2346 11.6 - 0.349 1849 103 - 0.357 226.6 11.1 -
bubblesort (classic) 0.420 788.2788.2 - 0.351 443.8 4438 - 0355 7128 712.8 -
bubblesort (cached) 0.420 788.1 376.0 - 0.351 4438 189.6 - 0.355 712.8 3325 -

Table 2: Comparison of different methods across DBPedia, NFCorpus, and FiQA datasets.
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scifact

trec-covid

touche2020

# Methods NDCG@10 #comp #inf Lat. NDCG@10 #comp #inf Lat. NDCG@ 10 #comp #inf Lat.
BM25 0.679 - - - 0.595 - - - 0.442 - - -
heapsort 0.675 222.4222.426.9 0.753 241.0 241.0 28.0 0.332 221.0 221.0 26.0
quicksort (original, b=2) 0.579 211.4109.5 25.3 0.752 2453 126.9 26.9 0.268 273.6 141.0 34.9
quicksort (original, b=128) 0.579 2114 12.0 43 0.752 2453 13.6 5.2 0.268 273.6 139 5.6

9, quicksort (random, b=2) 0.596 22471162 - 0.759 243.8 126.0 - 0.270 2752 1420 -

8 quicksort (random, b=128) 0.611 2185 123 - 0.755 2437 13.6 - 0.256 273.0 134 -

vy quicksort (middle, b=2) 0.597 21121094 - 0.763 2355 121.8 - 0.269 2532 130.8 -

§ quicksort (middle, b=128) 0.597 2112 11.8 - 0.763 2355 13.0 - 0.269 2532 134 -

I quicksort (median of three, b=2) 0.637 237.1 107.6 - 0.763 256.0 115.1 - 0.274 2894 131.6 -
quicksort (median of three, b=128) 0.637 237.1 114 - 0.763 256.0 129 - 0.274 2894 130 -
bubblesort (classic) 0.692 805.7 805.7 - 0.718 890.1 890.1 - 0.447 84548454 -
bubblesort (cached) 0.692 805.7 2849 - 0.718 890.1 4379 - 0.447 84543328 -
heapsort 0.710 197.5197.5 - 0.783 249.52495 - 0.284 24432443 -
quicksort (original, b=2) 0.634 2069 107.2 - 0.761 2254 116.6 - 0.261 234.7121.3 -
quicksort (original, b=128) 0.634 2069 11.6 - 0.761 2254 125 - 0.261 2347 126 -

__ quicksort (random, b=2) 0.646 219.0 113.3 - 0.777 24341256 - 0.285 2163 112.1 -

:ﬁ quicksort (random, b=128) 0.639 211.8 120 - 0.772 2224 128 - 0.265 236.7 129 -

o quicksort (middle, b=2) 0.642 2004 103.9 - 0.777 2394 123.6 - 0.277 2147 111.0 -

S quicksort (middle, b=128) 0.642 2004 11.5 - 0.777 2394 124 - 0277 2147 119 -

- quicksort (median of three, b=2) 0.663 235.1 106.7 - 0.775 250.3 113.3 - 0.283 232.0 105.1 -
quicksort (median of three, b=128) 0.663 2351 114 - 0.775 2503 124 - 0.283 2320 114 -
bubblesort (classic) 0.713 58195819 - 0.748 874.58745 - 0.428 869.4 869.4 -
bubblesort (cached) 0.713 58192179 - 0.748 874.55109 - 0.428 869.4 467.7 -

Table 3: Comparison of different methods across SciFact, TREC-COVID, and Touche2020 datasets.
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TREC DL 2019

TREC DL 2020

# Methods NDCG@10 #Comparisons #Inferences NDCG@10 #Comparisons #Inferences
BM25 0.510 - - 0.479 - -
heapsort 0.650 230.9 230.9 0.626 226.5 226.5

9, quicksort (original, b=2) 0.637 249.0 128.8 0.588 237.1 122.7

& quicksort (original, b=128) 0.637 249.0 14.1 0.588 237.1 13.5

vy quicksort (random, b=2) 0.639 236.7 122.3 0.587 236.7 122.4

§ quicksort (random, b=128) 0.650 260.5 13.7 0.580 240.0 12.8

I quicksort (middle, b=2) 0.650 231.1 119.6 0.594 235.5 121.8
quicksort (middle, b=128) 0.650 231.1 13.5 0.594 235.5 13.0
quicksort (median of three, b=2) 0.650 276.0 124.8 0.600 259.5 117.0
quicksort (median of three, b=128) 0.650 276.0 13.2 0.600 259.5 12.8
bubblesort (classic) 0.634 843.7 843.7 0.586 777.2 777.2
bubblesort (cached) 0.634 843.7 388.3 0.586 777.2 357.1
heapsort 0.706 242.0 242.0 0.689 244.9 244.9
quicksort (original, b=2) 0.697 266.6 137.5 0.672 250.6 129.3
quicksort (original, b=128) 0.697 266.6 13.9 0.672 250.6 12.9

_.quicksort (random, b=2) 0.694 232.3 120.2 0.676 239.0 123.5

.Z quicksort (random, b=128) 0.697 257.3 13.2 0.676 237.6 12.7

I quicksort (middle, b=2) 0.703 230.5 119.4 0.668 232.9 120.5

S quicksort (middle, b=128) 0.703 230.5 13.1 0.668 232.9 12.6

= quicksort (median of three, b=2) 0.696 243.5 110.5 0.682 239.6 108.9
quicksort (median of three, b=128) 0.696 243.5 11.9 0.682 239.6 11.8
bubblesort (classic) 0.684 887.8 887.8 0.670 869.5 869.5
bubblesort (cached) 0.684 887.8 544.9 0.670 869.5 542.6
heapsort 0.702 238.9 238.9 0.688 239.4 2394
quicksort (original, b=2) 0.677 265.9 137.0 0.680 2347 121.3
quicksort (original, b=128) 0.677 265.9 13.6 0.680 234.7 12.7

= quicksort (random, b=2) 0.691 239.4 124.0 0.678 228.3 117.9

% quicksort (random, b=128) 0.685 244.7 12.8 0.674 2274 12.3

‘2 quicksort (middle, b=2) 0.688 226.3 117.0 0.677 229.2 118.5

E quicksort (middle, b=128) 0.688 226.3 12.3 0.677 229.2 12.3

H quicksort (median of three, b=2) 0.686 254.8 116.3 0.688 230.4 104.7
quicksort (median of three, b=128) 0.686 254.8 119 0.688 230.4 11.4
bubblesort (classic) 0.679 866.2 866.2 0.680 827.1 827.1
bubblesort (cached) 0.679 866.2 532.1 0.680 827.1 465.0
heapsort 0.662 235.0 235.0 0.615 231.9 231.9
quicksort (original, b=2) 0.645 266.5 137.4 0.576 235.5 121.8

g quicksort (original, b=128) 0.645 266.5 13.5 0.576 235.5 12.9

Z quicksort (random, b=2) 0.663 231.3 119.8 0.580 231.7 119.8

é quicksort (random, b=128) 0.660 219.0 12.8 0.585 232.9 12.8

¢ quicksort (middle, b=2) 0.640 220.9 114.4 0.564 228.1 118.0

£ quicksort (middle, b=128) 0.640 220.9 12.6 0.564 228.1 12.6

z quicksort (median of three, b=2) 0.650 236.0 106.3 0.594 2443 110.1

S quicksort (median of three, b=128) 0.650 236.0 12.0 0.594 2443 12.3
bubblesort (classic) 0.641 822.5 822.5 0.600 797.6 797.6
bubblesort (cached) 0.641 822.5 389.4 0.600 797.6 365.9
heapsort 0.559 200.3 200.3 0.513 190.1 190.1
quicksort (original, b=2) 0.578 278.9 143.7 0.529 276.2 142.2

— quicksort (original, b=128) 0.578 278.9 14.0 0.529 276.2 13.4

$ quicksort (random, b=2) 0.593 293.8 150.9 0.511 271.5 139.8

2 quicksort (random, b=128) 0.573 279.7 12.9 0.524 263.9 13.2

2 quicksort (middle, b=2) 0.595 257.3 132.7 0.531 249.3 128.6

g quicksort (middle, b=128) 0.595 257.3 13.5 0.531 249.3 12.9

% quicksort (median of three, b=2) 0.612 292.1 132.5 0.538 292.5 133.0

# quicksort (median of three, b=128) 0.612 292.1 13.1 0.538 292.5 12.9
bubblesort (classic) 0.587 631.0 631.0 0.539 578.7 578.7
bubblesort (cached) 0.587 631.0 250.5 0.539 578.7 223.4

Table 4: Comparison of methods for TREC DL 2019 and TREC DL 2020.
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