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Abstract

Large language models (LLMs) excel at a range
of tasks through in-context learning (ICL),
where only a few task examples guide their pre-
dictions. However, prior research highlights
that LLMs often overlook input-label map-
ping information in ICL, relying more on their
pre-trained knowledge. To address this issue,
we introduce In-Context Contrastive Decod-
ing (ICCD), a novel method that emphasizes
input-label mapping by contrasting the output
distributions between positive and negative in-
context examples. Experiments on 7 natural
language understanding (NLU) tasks show that
our ICCD method brings consistent and signifi-
cant improvement (up to +1.8 improvement on
average) upon 6 different scales of LLMs with-
out requiring additional training. Our approach
is versatile, enhancing performance with vari-
ous demonstration selection methods, demon-
strating its broad applicability and effectiveness.
The code and scripts are released at https:
//github.com/Romainpkq/CD_ICL.

1 Introduction

In-context learning (ICL, Brown et al., 2020) is
one of the most remarkable emergent capabilities
of large language models (LLMs, Achiam et al.,
2023; Dubey et al., 2024). By leveraging just a
few carefully selected input-output examples, ICL
enables models to adapt to new tasks without pa-
rameter updating (Dong et al., 2022; Peng et al.,
2024). This approach has proven highly effective
in unlocking the advanced capabilities of LLMs
and has become a standard technique for tackling
a spectrum of tasks, like translation, coding, and
reasoning (Peng et al., 2023; Wang et al., 2025;
Wibisono and Wang, 2024).

Previous studies (Pan et al., 2023; Wei et al.,
2023) have identified two critical factors for suc-
cessful ICL: task recognition (TR), which involves
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identifying the task from the demonstrations and
utilizing prior knowledge to make predictions, and
task learning (TL), which focuses on directly learn-
ing the input-label mappings from the demonstra-
tions. However, ICL faces challenges in overcom-
ing the biases introduced by pretraining (Kossen
et al., 2024), and LLMs tend to underutilize input-
label mapping information (Min et al., 2022). For
example, in tasks like SST-2 (Socher et al., 2013b),
the model may default to using its internal knowl-
edge rather than learning the specific input-label
mappings provided in the context.

To address this issue, we propose a simple yet
effective method called in-context contrastive de-
coding (ICCD). Our method is inspired by the con-
trastive decoding technique (Li et al., 2023; Sen-
nrich et al., 2024; Kim et al., 2024; Zhong et al.,
2024; Wang et al., 2024), which increases the prob-
ability of the desired output by suppressing unde-
sired outputs, and our ICCD enhances the model’s
attention to input-label mapping during generation.
Specifically, we construct negative in-context ex-
amples by altering the inputs of the demonstrations,
creating incorrect input-label mappings while keep-
ing the labels unchanged. By comparing the out-
put distributions between positive and negative ex-
amples, ICCD effectively emphasizes the correct
input-label mappings, integrating this information
into the original ICL process. Notably, our method
works with any pretrained LLMs without requiring
additional training.

Experimental results across seven natural lan-
guage understanding tasks demonstrate that our
ICCD strategy consistently and significantly im-
proves performance upon several advanced LLMs,
e.g., Llama-3.1, Llama-3.2, and Qwen2, across var-
ious datasets and model scales. Moreover, we show
that ICCD can be seamlessly integrated with differ-
ent demonstration selection methods, showcasing
its robustness and universal applicability.
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2 Methodology

2.1 Background
Given an input query x, the probability of generat-
ing the target y using a casual LLM M parameter-
ized by θ can be formulated as follows:

y ∼ pθ(y | c, T (x)), (1)

where T (·) is the template used to wrap up in-
puts and c = T (x1), · · · , T (xk) is the context
string concatenating k in-context examples, pθ(y |
c, T (x)) = softmax[ logitθ(y | c, T (x))] is the
probability for the predicted token. For obtaining
the desired y, the regular decoding method is to
choose the token with the highest probability (i.e.,
greedy decoding) or sampling from its distribution
(e.g., top-k decoding).

Here, we can observe that there are two kinds of
knowledge contributing to model prediction, mod-
els’ prior knowledge and input-label mapping in-
formation in in-context learning. However, LLMs
usually prioritize prior knowledge over input-label
mapping information (Kossen et al., 2024), lead-
ing to ICL’s struggle to fully overcome prediction
preferences acquired from pre-training.

2.2 In-Context Contrastive Decoding
To mitigate the issue above, we construct negative
in-context examples to factor out the input-label
mapping from the models’ original output distribu-
tion contrastively. Specifically, in addition to the
origin in-context examples c, we construct negative
in-context examples c− with incorrect input-label
mapping. We then subtract the negative output z−t
from the positive output zt to isolate the knowledge
of input-label mapping. Finally, we integrate this
knowledge with the original in-context learning to
reinforce the importance of input-label mapping:

yt ∼ softmax(zt + α(zt − z−t )), (2)

where α is a hyperparameter that governs the impor-
tance of input-label mapping information. Equiva-
lently,

yt ∼ p̃θ(y|c, c−, T (x)) (3)

∝ pθ(y|c, T (x))

(
pθ(y|c, T (x)

pθ(y|c−, T (x))

)α

. (4)

Construction of c−. The negative in-context ex-
amples c− is the key to the success of the in-context
contrastive decoding method (ICCD). Considering

the label bias (Zhao et al., 2021) of in-context learn-
ing, directly altering the labels of demonstrations
may introduce a completely different label bias,
potentially distorting the input-label mapping infor-
mation. Hence, we adjust the inputs instead of the
labels to change input-label mapping information.
Specifically, for each demonstration (xi, yi), we
first randomly select a different label yj(yj ̸= yi)
from the label space. Then we randomly choose
an input xj whose label is yj from the demonstra-
tions pool to construct the negative demonstration
(xj , yi). We compare the effect of different c− in
Section 5.

3 Experimental Setup

Models and Baselines. We perform experiments
across different sizes of models, including Llama-
series: Llama3.2-1B (1B), Llama3.2-3B (3B) and
Llama3.1-8B (8B) (Dubey et al., 2024) and Qwen2
series: Qwen2-0.5B (0.5B), Qwen2-1.5B (1.5B)
and Qwen2-7B (7B) (Yang et al., 2024), which
are all widely-used decoder-only dense LMs. We
also conduct experiments on extensive alignment
models, e.g., Llama3.2-1B-Instruct, Llama3.2-3B-
Instruct, and Llama3.1-8B-Instruct (Dubey et al.,
2024) to verify the generalizability of our approach.
For the baseline, we use the regular decoding meth-
ods following prior work (Shi et al., 2024; Zhao
et al., 2024).

Demonstration Selection methods. To verify
that our method is complementary to different
demonstration selection methods, we mainly con-
sider three different demonstration selection meth-
ods that do not require additional training.

• Random baseline randomly select in context
examples for each testing sample.

• BM25 (Robertson et al., 2009) baseline uses
BM25 to calculate the word-overlap similarity
between samples and test input and select the
high-similarity samples as demonstrations.

• TopK (Liu et al., 2022) baseline uses the near-
est neighbors of a given test sample as the
corresponding in-context examples.

Datasets and Metrics. We conduct a systematic
study across 7 NLU tasks, including binary, multi-
class classification tasks (SST-2, SST-5 (Socher
et al., 2013a), CR, Subj (Wang et al., 2018)) and
natural language inference tasks: MNLI (Williams
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et al., 2018) and QNLI (Wang et al., 2018). We
will report the accuracy to show the performance.

Experimental Details. Our method introduces a
hyperparameter α to control the input-label map-
ping information. For simplicity, we set α = 1 for
all models and settings. We ran all experiments
3 times with different random seeds and reported
the average accuracies. We use 16-shot ICL for all
models. Without a special statement, we report the
results of the random selection method.

4 Main Results

We demonstrate the effectiveness of our method in
7 NLU tasks described in the Datasets and Metrics
section. We summarize the results in Table 1, Ta-
ble 2, Tabel 3, and Figure 1. Based on the results,
we can find that:

Our method brings gain across different tasks
and model scales. Results on Table 2 show that
our method can achieve consistently better perfor-
mance across the majority of tasks under different
model scales than the regular decoding method.
Specifically, our method brings over 1.0 improve-
ments (in accuracy) in all Llama-series models and
Qwen2-series models. It’s worth highlighting that
ICCD brings +2.3 gains on average in the Qwen2-
1.5B model. Furthermore, it is noteworthy that our
approach can achieve more significant improve-
ments in challenging tasks with the increase of
model scale, such as QNLI and MNLI tasks, re-
spectively bringing 5.1% (1.4%) and 1.8% (1.2%)
gains compared to regular decoding in Llama3.1-
8B (Qwen2-7B), demonstrating the effectiveness
and universality of our method.

Our method consistently improves the perfor-
mance with different in-context examples selec-
tion methods. Table 1 lists the average perfor-
mance and standard deviation of different mod-
els with different demonstration selection methods.
Clearly, our method can achieve better and stable
performance with different demonstration selec-
tion methods. When the model scale increases, our
method can achieve more improvement gains com-
pared to the regular decoding method, +0.5 and
+1.1 with BM25 method under Llama3.2-3B and
Llama3.1-8B, respectively. These results prove
that ICCD can be complementary with different
demonstration selection methods.

Model Decoding Random BM25 TopK

avg. std. avg. std. avg. std.

Llama3.2-1B Regular 66.1 - 72.5 - 73.6 -
Ours 68.3 0.19 72.9 0.11 73.4 0.17

Llama3.2-3B Regular 72.9 - 76.6 - 76.7 -
Ours 74.6 0.47 77.1 0.28 76.9 0.19

Llama3.1-8B Regular 77.6 - 79.7 - 80.2 -
Ours 79.4 0.19 80.8 0.15 80.9 0.05

Table 1: Average performance and standard devia-
tion of 7 Natural Language Understanding (NLU)
tasks with different in-context example selection
methods. Red results indicate that our method brings
improvement over the regular decoding, while Green
results denote no improvement.

Our method works for aligned chat models. To
verify the effectiveness of our method for the chat
LLMs, we conducted experiments on different
instruction-tuned and RLHF-tuned LLMs. Figure 1
show that our method can achieve consistent im-
provement in different chat models, demonstrating
that our method also works for instruction-tuned
and safety-enhanced models.

Our method works for a larger number of target
classes. To verify the effectiveness of our method
for a larger number of target classes, we conducted
experiments on datasets TREC (6 target classes)
and Dbpedia (14 target classes) with the random
selection method. Results on Table 3 show that
our method can achieve remarkable improvement,
demonstrating the effectiveness of our method in
larger target classes.

5 Analysis

To further explore the impact of different factors on
the effectiveness of our method, we conduct further
analysis with the Llama3.2-8B models.

Effects of Different Negative In-context Exam-
ples. As mentioned in Section 2.2, the choice of
negative in-context examples is important to the
performance of our methods. Here, we conduct
contrastive experiments to analyze the impact of
different negative examples. Specifically, we refer
to the selected negative examples as Input, if the
input-label mapping is altered by modifying the
inputs of the demonstrations. Additionally, we con-
struct another variant, Label, in which the labels
of the demonstrations are changed. For compari-
son, we also include NULL, which does not use
any negative demonstrations, similar to Shi et al.
(2024). The results in Table 4 show that Input out-
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Model Decoding SST2 CR SST5 Subj QNLI MNLI AG_NEWS Avg.

Llama3.2-1B Regular 89.8 83.0 43.7 72.8 53.5 36.6 83.3 66.1
Ours 91.1 83.7 43.3 83.0 53.8 39.2 84.1 68.3 (+2.1)

Llama3.2-3B Regular 93.7 87.2 46.2 86.0 54.2 56.9 86.4 72.9
Ours 94.0 88.1 46.5 92.1 57.2 57.0 86.9 74.6 (+1.7)

Llama3.1-8B Regular 96.7 92.3 48.0 94.0 60.3 65.3 86.7 77.6
Ours 96.5 93.2 49.3 96.1 65.4 67.5 87.6 79.4 (+1.8)

Qwen2-0.5B Regular 87.9 89.4 34.5 62.2 52.5 47.6 78.1 64.6
Ours 89.2 89.6 33.9 68.1 53.2 47.6 78.7 65.8 (+1.2)

Qwen2-1.5B Regular 95.2 91.0 49.0 72.3 60.2 61.8 76.7 72.3
Ours 95.1 91.3 48.3 81.5 61.8 65.2 79.1 74.6 (+2.3)

Qwen2-7B Regular 96.0 91.5 51.9 82.3 71.4 78.7 83.8 79.4
Ours 96.3 91.7 52.9 90.4 72.8 79.9 85.0 81.3 (+1.9)

Table 2: Performance of different models across 7 Natural Language Understanding (NLU) tasks. Red results
indicate our method brings improvement over the regular decoding, while Green denote no improvement.

Model Decoding TREC Dbpedia

Llama3.2-1B Regular 40.0 85.6
Ours 46.2 (+6.2) 90.5 (+4.9)

Llama3.2-3B Regular 44.4 83.1
Ours 49.6 (+5.2) 91.4 (+8.3)

Llama3.1-8B Regular 41.0 87.5
Ours 46.6 (+5.6) 93.8 (6.3)

Table 3: Average performance of two datasets with
larger target classes. Red results indicate that our
method brings improvement over the regular decoding.
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Llama3.2-1B-Instruct Llama3.2-3B-Instruct Llama3.1-8B-Instruct

Regular Ours

Figure 1: Performance with different chat models.

performs the other counterparts, thus leaving it as
our default setting in this work.

Differences between the positive and negative ex-
amples. To verify whether our proposed method
can truly lead to models to contrast the positive and
negative in-context examples, we calculate the aver-
age KL divergence between the output distributions
and report the results in Table 5, we can notice that
our method can get large KL divergence in most

Method Selection Method

Random BM25 TopK

Regular Decoding 77.6 79.7 80.2

Equipped with our method
+NULL 73.0 75.8 76.5
+Label 77.3 79.5 80.0
+Input 79.4 80.8 80.9

Table 4: Average performance with different negative
in-context examples. Red results indicate that our
method brings improvement over the regular decoding,
while Green results denote no improvement.

SST2 CR SST5 Subj QNLI MNLI AGNEWS

KL_divergence 0.64 0.48 0.43 0.49 0.04 0.27 0.79

Table 5: The average KL divergence between the nor-
malized output distributions with positive and negative
in-context examples with Llama3.2-8B.

datasets, which means that the output distributions
of positive and negative in-context examples are no-
tably different. This demonstrates that our method
can truly lead to models to contrast the positive and
negative in-context examples.

Effects of Different number of shots. We grad-
ually increase the number of in-context examples
(denoted as N) from 1 to 16 to verify the influence
of the number of shots in our method. Figure 2 re-
ports the average performance of 7 NLU tasks and
the different task QNLI. We see that our method
can consistently outperform the regular decoding
method with a different number of shots on aver-
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Dataset Method α

0.0 0.5 1.0 1.5 2.0

SST5
Random 48.0 49.1 49.3 49.3 49.5

BM25 53.0 53.6 53.3 53.2 53.1
TopK 53.0 53.2 53.2 52.9 52.5

MNLI
Random 65.3 66.8 67.5 67.8 68.1

BM25 65.8 66.6 67.1 67.4 67.6
TopK 65.9 67.0 67.4 67.7 67.7

Table 6: The SST5 and MNLI performance with
different α.

Number of shots
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Figure 2: The performance with different shots.

age. For the task QNLI, as the number of shots
increases, the performance gains of our method
also improve. We attribute this to the model acquir-
ing more input-label mapping information from the
demonstrations, which aligns with previous find-
ings (Pan et al., 2023).

Effects of α. The factor α in Eq. 2, which con-
trols the importance of input-label mapping infor-
mation, is an important hyper-parameter. In this
part, we analyze its influence by evaluating the
performance on SST5 and MNLI varying α from
0 to 2. The results on Table 6 show that: 1) the
performance improves with the increase of α, and
it becomes stable when α ≥ 1.0, we set α = 1
as default; 2) For advanced demonstration selec-
tion methods(e.g.TopK), too large positive α values
lead to performance degradation.

6 Conclusion

Large language models suffer from insufficient at-
tention to the input-label mapping compared to
their prior knowledge in in-context learning, lead-
ing to an unfaithful generation of the input query.
In this work, we present a simple yet effective in-
context contrastive decoding method that highlights
input-label mapping by contrasting positive and

negative in-context examples. Our experiments
across various datasets and model architectures
demonstrate the effectiveness and broad applica-
bility of our approach, confirming its potential to
enhance in-context learning.

Limitations

While the results presented in this paper demon-
strate the effectiveness of our In-Context Con-
trastive Decoding (ICCD) method, there are a few
limitations that warrant future exploration. First,
our experiments were conducted on models up to
8B parameters, primarily due to computational lim-
itations. Extending our method to even larger mod-
els (e.g., 70B parameters) could provide further
insights into its scalability and effectiveness. Sec-
ond, while our method shows promise across vari-
ous Natural Language Understanding (NLU) tasks,
its performance in specialized domains, such as
legal or medical texts, has yet to be thoroughly
examined. Third, our method requires additional
forward passes to compute contrastive distributions.
Although these passes are executed in parallel, the
overall inference time may still increase. Future
work will explore the generalizability of ICCD to
these domains, as well as investigate its interac-
tion with domain-specific datasets. Additionally,
while we focused on classification tasks, other NLP
tasks like text generation, machine translation, and
summarization remain unexplored.

Acknowledges

We are grateful to the anonymous reviewers and
the area chair for their insightful comments and
suggestions. This work is supported by the Na-
tional Natural Science Foundation of China (No.
62377002). This project is supported by the Na-
tional Research Foundation, Singapore, under its
NRF Professorship Award No. NRF-P2024-001.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. GPT-4 technical re-
port. arXiv preprint.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,

1001

https://arxiv.org/pdf/2303.08774
https://arxiv.org/pdf/2303.08774


Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint.

Taehyeon Kim, Joonkee Kim, Gihun Lee, and Se-Young
Yun. 2024. Instructive decoding: Instruction-tuned
large language models are self-refiner from noisy
instructions. In ICLR.

Jannik Kossen, Yarin Gal, and Tom Rainforth. 2024.
In-context learning learns label relationships but is
not conventional learning. In ICLR.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and Mike Lewis. 2023. Contrastive decoding:
Open-ended text generation as optimization. In ACL.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B
Dolan, Lawrence Carin, and Weizhu Chen. 2022.
What makes good in-context examples for gpt-3? In
DeeLIO.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In EMNLP.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen.
2023. What in-context learning “learns” in-context:
Disentangling task recognition and task learning. In
ACL Findings.

Keqin Peng, Liang Ding, Yancheng Yuan, Xuebo Liu,
Min Zhang, Yuanxin Ouyang, and Dacheng Tao.
2024. Revisiting demonstration selection strategies
in in-context learning. In ACL.

Keqin Peng, Liang Ding, Qihuang Zhong, Li Shen,
Xuebo Liu, Min Zhang, Yuanxin Ouyang, and
Dacheng Tao. 2023. Towards making the most
of chatgpt for machine translation. In Findings of
EMNLP.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval.

Rico Sennrich, Jannis Vamvas, and Alireza Moham-
madshahi. 2024. Mitigating hallucinations and off-
target machine translation with source-contrastive
and language-contrastive decoding. In EACL.

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia
Tsvetkov, Luke Zettlemoyer, and Wen-tau Yih. 2024.
Trusting your evidence: Hallucinate less with context-
aware decoding. In NAACL.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013a. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013b. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for
natural language understanding. In EMNLP.

Shuai Wang, Liang Ding, Li Shen, Yong Luo, Zheng He,
Wei Yu, and Dacheng Tao. 2024. Uscd: Improving
code generation of llms by uncertainty-aware selec-
tive contrastive decoding. arXiv preprint.

Shuai Wang, Liang Ding, Yibing Zhan, Yong Luo,
Zheng He, and Dapeng Tao. 2025. Leveraging
metamemory mechanisms for enhanced data-free
code generation in llms. arXiv preprint.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. 2023. Larger language
models do in-context learning differently. arXiv
preprint.

Kevin Christian Wibisono and Yixin Wang. 2024. In-
context learning from training on unstructured data:
The role of co-occurrence, positional information,
and training data structure. In ICML 2024 Workshop
on Theoretical Foundations of Foundation Models.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing

1002

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2301.00234
https://arxiv.org/pdf/2407.21783
https://openreview.net/pdf?id=LebzzClHYw
https://openreview.net/pdf?id=LebzzClHYw
https://openreview.net/pdf?id=LebzzClHYw
https://openreview.net/pdf?id=YPIA7bgd5y
https://openreview.net/pdf?id=YPIA7bgd5y
https://aclanthology.org/2023.acl-long.687/
https://aclanthology.org/2023.acl-long.687/
https://aclanthology.org/2022.deelio-1.10/
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2023.findings-acl.527/
https://aclanthology.org/2023.findings-acl.527/
https://aclanthology.org/2024.acl-long.492/
https://aclanthology.org/2024.acl-long.492/
https://aclanthology.org/2023.findings-emnlp.373.pdf
https://aclanthology.org/2023.findings-emnlp.373.pdf
https://dl.acm.org/doi/10.1561/1500000019
https://dl.acm.org/doi/10.1561/1500000019
https://dl.acm.org/doi/10.1561/1500000019
https://aclanthology.org/2024.eacl-short.4.pdf
https://aclanthology.org/2024.eacl-short.4.pdf
https://aclanthology.org/2024.eacl-short.4.pdf
https://aclanthology.org/2024.naacl-short.69/
https://aclanthology.org/2024.naacl-short.69/
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170.pdf
https://aclanthology.org/D13-1170.pdf
https://aclanthology.org/W18-5446
https://aclanthology.org/W18-5446
https://aclanthology.org/W18-5446
https://arxiv.org/pdf/2409.05923
https://arxiv.org/pdf/2409.05923
https://arxiv.org/pdf/2409.05923
https://arxiv.org/pdf/2501.07892
https://arxiv.org/pdf/2501.07892
https://arxiv.org/pdf/2501.07892
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2303.03846
https://openreview.net/forum?id=55DHL6rJwK
https://openreview.net/forum?id=55DHL6rJwK
https://openreview.net/forum?id=55DHL6rJwK
https://openreview.net/forum?id=55DHL6rJwK
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101


Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-
cal report.

Zheng Zhao, Emilio Monti, Jens Lehmann, and
Haytham Assem. 2024. Enhancing contextual un-
derstanding in large language models through con-
trastive decoding. In NAACL.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
ICML.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2024. ROSE doesn‘t do that: Boosting
the safety of instruction-tuned large language models
with reverse prompt contrastive decoding. In Find-
ings of ACL.

A Datasets

Natural Language Understanding (NLU) Dataset
information is detailed in Table 7. All NLU
datasets are loaded from the HuggingFace Hub.
For most NLU datasets, we report the results on
the test set; while for the datasets MNLI and QNLI,
we report the results on the validation set due to
restricted access to their test sets.

B Templates

The templates of NLU tasks used in this paper are
detailed in Table 8.
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Dataset Task # of Classes Data Split

SST-2 Sentiment Classification 2 6920/872/1821
SST-5 Sentiment Classification 5 8544/1101/2210
CR Sentiment Classification 2 3394/0/376
Subj Subjectivity Analysis 2 8000/0/2000
AgNews Topic Classification 4 120000/0/7600
MNLI Natural Language Inference 3 392702/19647/19643
QNLI Natural Language Inference 2 104743/5463/5463

Table 7: Details of NLU datasets.

Task Prompt Class

SST-2
Review: "<X>" Sentiment: positive positive
Review: "<X>" Sentiment: negative negative

SST-5

Review: "<X>" Sentiment: terrible terrible
Review: "<X>" Sentiment: bad bad
Review: "<X>" Sentiment: okay okay
Review: "<X>" Sentiment: good good
Review: "<X>" Sentiment: great great

Subj
Input: "<X>" Type: objective objective
Input: "<X>" Type: subjective subjective

CR
Review: "<X>" Sentiment: positive positive
Review: "<X>" Sentiment: negative negative

AgNews

Input: "<X>" Type: world World
Input: "<X>" Type: sports Sports
Input: "<X>" Type: business Business
Input: "<X>" Type: technology Sci/Tech

MNLI
Premise: <C> Hypothesis: <X> Prediction: entailment Entailment
Premise: <C> Hypothesis: <X> Prediction: neutral Neutral
Premise: <C> Hypothesis: <X>? Prediction: contradiction Contradiction

QNLI
<C> Can we know <X>? Yes. Entailment
<C> Can we know <X>? No. Contradiction

Table 8: Templates of NLU tasks. Placeholders (e.g., <X> and <C>) will be replaced by real inputs.
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