Leveraging Self-Attention for Input-Dependent Soft Prompting in LLMs

Ananth Muppidi* Abhilash Nandy* Sambaran Bandyopadhyay
IIIT Hyderabad IIT Kharagpur Adobe Research
India India India

ananth.muppidi2l@gmail.com

Abstract

The performance of large language mod-
els in domain-specific tasks necessitates fine-
tuning, which is computationally expensive and
technically challenging. This paper focuses
on parameter-efficient fine-tuning using soft
prompting, a promising approach that adapts
pre-trained models to downstream tasks by
learning a small set of parameters. We pro-
pose a novel Input Dependent Soft Prompting
technique with a self-Attention Mechanism (ID-
SPAM) that generates soft prompts based on
the input tokens and attends different tokens
with varying importance. Our method is simple
and efficient, keeping the number of trainable
parameters small. We show the merits of the
proposed approach compared to state-of-the-
art techniques on various tasks and show the
improved zero shot domain transfer capability.

1 Introduction

Large language models (LLMs) have made signifi-
cant advancements in natural language processing
tasks, such as generation, translation and summa-
rization (Yeo et al., 2023; Zhang et al., 2023a). De-
spite their success, LLMs’ performance in domain-
specific tasks is limited, and fine-tuning on task-
oriented datasets is crucial. As models from BERT
(Devlin et al., 2019) to GPT-3 (Brown et al., 2020)
have millions to billions of parameters, fine-tuning
becomes computationally expensive and challeng-
ing. Therefore, parameter efficient fine-tuning
(Han et al., 2024) research aims to adapt pre-trained
models to downstream tasks by fixing most param-
eters and only learning a small subset.

Soft prompting is a promising direction for fine-
tuning large models. Without changing the core
architecture of an LLM, soft prompt methods gen-
erally introduce a small trainable vector (known as
a ‘soft prompt’) at the beginning of one or more

“Equal contribution. Work done during the internship at
Adobe Research.

nandyabhilash@gmail.com

samb.bandyol@gmail.com

transformer layers’ inputs within the LLM. During
fine tuning, only the soft prompt is trained to adapt
to the downstream task keeping the parameters of
the base LLLM frozen. Lester et al. (2021) propose
Prompt Tuning by prepending the trainable soft
prompt vector before the embeddings of the text
input, just after the embedding layer of the base
LLM. On similar lines, Li and Liang (2021) intro-
duce Prefix Tuning by prepending a soft prompt at
every transformer layer and Liu et al. (2021) come
up with P-tuning by interleaving learnable prompts
with input embeddings. Contrary to text prompt en-
gineering (Wei et al., 2022) or optimizing discrete
token representations via in-context learning (Dai
et al., 2023), Petrov et al. (2023) suggest that the
continuous embedding space of soft prompts inher-
ently possesses a greater amount of information.

Recent literature introduces several variants of
soft prompt techniques such as removing the repa-
rameterization module (Liu et al., 2022b), hierar-
chical structured pruning (Ma et al., 2022), intro-
ducing an adaptive gate mechanism to control the
prefix importance in each transformer layer (Zhang
et al., 2023b), diving the soft prompt into query,
key and value prompts (Wang et al., 2023), learning
multiple short soft prompts and a gating mechanism
to route an input to a specific soft prompt (Choi
et al., 2023), and decomposing the soft prompt into
low rank matrices (Shi and Lipani, 2024).

Many of these methods keep the soft prompt in-
dependent of the actual input given to the LLM.
However, this limits the soft prompt to adjust based
on the actual input during the inference time. It
is unlikely that a unified prompt would lead to a
performance improvement across different input
instances. It also makes the training difficult by
increasing the convergence time. To address this,
a few recent approaches leverage input dependent
soft prompts. But they need to concatenate the soft
prompts either at every transformer layer of the
base LLM (Wu et al., 2022) or all the layers after an

960

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 960-969
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Resize

Upward
Projection

=
: : Trainable Parameters

Down
Projection

Predict

| MatMul ‘ Layer 'L’
" T 3 Outputs
SoftMax Layer 'm'
T Qutputs
L Generated L) 1
Scale Soft ayer
= Prompt Qutputs
Input
E;
FH A, BT T | | | | | |
- W, W Wy =
T Y, Koot Yo [BOS] 1 love those | actors | | [EOS]
Dot Dot Dot
Product|ProduciProduci

Figure 1: ID-SPAM Framework. Given an LM, the generated soft-prompt can be prepended to any transformer

layer’s inputs (the figure can be best seen in color)

intermediate layer (Liu et al., 2022a), or transform
the soft prompt by using cross-attention with the in-
put tokens without explicitly generating from them
(Jin et al., 2023). These input dependent prompting
techniques still have multiple limitations: (i) Many
of them employ relatively complicated architecture
by concatenating soft prompts in multiple internal
transformer layers of the LLM; (ii) Since, a task
may contain diverse samples with different types
of words, it is important to attend different words
of the input with different weights while generat-
ing the soft prompt; And (iii) Number of trainable
parameters often increases significantly.

To address the above research gaps, we introduce
an input dependent soft prompt technique where
the soft prompt is generated by a trainable network
that attends different tokens of the input with dif-
ferent importance by employing a self-attention
mechanism. We prepend the soft prompt with the
input to a single transformer layer of the base LLM,
keeping the number of trainable parameters small
and training smooth. Following are the contribu-
tions made in this work: (i) We propose ID-SPAM,
anovel (Input Dependent Soft Prompting technique
with a self-Attention Mechanism); Our method is
simple and efficient to train. (ii) We show the merit
of the proposed approach on six tasks from the
GLUE benchmark (Wang et al., 2018); And (iii)
Due to the use of trainable attention on the input
tokens, our approach is more efficient in zero-shot
domain transfer as shown in the experiment.

961

2 Proposed Solution

In this section, we introduce our proposed method
ID-SPAM (see its framework in Figure 1).

Given a Task 7' having training data repre-
sented as Dyrgin, = {(s, yz)}fi .- Following
Lester et al. (2021), we represent the input as
x; = E([SEP]S1[SEP]1S2[EOS]) for a task
with a pair of sentences 57,52 as the input or
x; = E([SEP]S1[E0S]) for for a task with a
single sentence S as the input, where E(-) is the
token embedding for the input sentence(s).

We introduce a learnable soft prompt such that
the prompt not only varies with the task at hand,
but is also generated based on the input in such a
way that it primarily attends to those input tokens
that are essential for the given task. To make the
learning efficient, we freeze the parameters of the
original LM M. Our proposed soft prompt for the
task T can be defined as ST € R™*, where is the
number of tokens in the prompt representation and
n is the hidden dimension of the LM M under con-
sideration. St is obtained by first applying a learn-
able attention layer (Vaswani et al., 2017) over the
input embeddings E(-) and averaging the outputs,
providing a context-rich representation. The n x 1
dimensional vector A so obtained is passed through
a downward projection MLP Layer having learn-
able weights W g0 € R™*€ and bias by, € R,
followed by a ReLU Activation Layer (Nair and
Hinton, 2010), and then an upward projection MLP

Layer having learnable weights W,,, € R
and bias by, € R™!, where ¢ < n. The output
so obtained is re-sized to get the learnable, input-
dependent soft prompt S7 € R™*?, which is either
prepended to the token embeddings or to the input
of any intermediate transformer layer of the LM M.
We will show some analysis on the choice of inter-
mediate layer in the experiments. Mathematically,

) (EWv) }

M
St = resize(c(Wupo (Waown(A4)))) (2)

-
A = mean{ softmax M
Vi

Wq, Wk, and Wy, are the query, key, and value
parameter matrices respectively, and is a scal-

ing factor, as used in Vaswani et al. (2017) oisa
non-linear activation which we used ReLLU here.

3 Experimental Evaluation

Here, we describe our experimental setup, eval-
uate ID-SPAM framework on GLUE and Super-
GLUE benchmarks, and zero-shot domain transfer
between tasks against several baselines, followed
by a detailed analysis.

3.1 Experimental Setup

We compare ID-SPAM with the following baselines
- (1) Transformer fine-tuning: Here, all param-
eters of LM are learned (2) Parameter-Efficient
Soft Prompt-based Methods - (a) Prompt Tun-
ing: We use standard prompt tuning (Lester et al.,
2021), which learns soft prompts through back-
propagation to condition frozen language models
for specific tasks. (b) P-tuning: P-tuning (Liu
et al., 2022b) is a variant of Deep Prompt Tuning
(Li and Liang, 2021; Qin and Eisner, 2021) adapted
for NLU (c) Sparse Mixture of Prompts (SMoP):
SMoP (Choi et al., 2023) leverages multiple short
soft prompts with a gating mechanism to train mul-
tiple prompts tailored in addressing different data
subsets (d) Late Prompt Tuning (LPT): LPT (Liu
et al., 2022a) injects a late prompt into an interme-
diate layer of the LM, rather than into the input
layer or across all layers. (e) Decomposed Prompt
Tuning (DEPT): DEPT (Shi and Lipani, 2024) em-
ploys a decomposition strategy for the soft prompt,
breaking it down into a pair of low-rank matri-
ces. These components are then optimized inde-
pendently, each with its own specific learning rate.
(3) Parameter Efficient Fine-tuning using Low-
Rank Adaptation (LoRA): LoRA (Hu et al., 2022)

addresses challenge of fine-tuning large language
models by freezing pre-trained model’s weights
and introducing trainable low-rank matrices into
each layer. Note that it does not use a soft prompt.

For all methods, we train upto 30 epochs (Sec-
tion E of Appendix shows convergence after 30
epochs) using Standard Cross-Entropy Loss and
Adam Optimizer (Loshchilov and Hutter, 2018),
and number of soft-prompt tokens t = 10. We
perform hyperparameter tuning for /D-SPAM, as
described in Section A of Appendix. We use a
NVIDIA A100 GPU with a VRAM of 80 GB for
all experiments.

3.2 Evaluation on GLUE Benchmark

We evaluate ID-SPAM and baselines on the fol-
lowing 6 Natural Language Understanding (NLU)
Tasks from GLUE Benchmark (Wang et al., 2018) -
SST-2 (Socher et al., 2013), MRPC (Dolan and
Brockett, 2005), MNLI (Williams et al., 2018),
QNLI (Rajpurkar et al., 2016), RTE (Dagan et al.,
2005), and QQP (Quora, 2017). These tasks cover
various aspects of natural language understanding
and inference, providing a comprehensive assess-
ment of our approach’s performance across differ-
ent language processing challenges. All datasets
were obtained from the Hugging Face library (Wolf
et al., 2020; Lhoest et al., 2021). Further dataset
statistics are shared in Table 1.

We report accuracy for {SST, MNLI, QNLI,
RTE} and average of accuracy and macro F1-
Score for {MRPC, QQP} using RoBERTa-BASE,
RoBERTa-LARGE backbones (Liu et al., 2019) in
Table 2.

We infer that ID-SPAM outperforms all
Parameter-Efficient Soft Prompt-based baselines
on 4 out of 6 GLUE tasks and w.r.t average task
performance, and is a close second for 2 tasks,
when using both ROBERTa-BASE and RoBERTa-
LARGE backbones. This could be attributed to
the attention layer followed by 2-layer MLP in ID-
SPAM, which efficiently generates a context-rich
soft prompt. Also, ID-SPAM is shown to be more
or similarly efficient compared to well-performing
LPT baseline in Section D of Appendix.

Section B of Appendix shows - ID-SPAM per-
forms better than Soft Prompt baselines - (1) on
2/4 and 3/4 SuperGLUE (Wang et al., 2019) tasks
using ROBERTA-BASE and RoOBERTA-LARGE
backbones respectively, while giving best average
score; (2) when using autoregressive GPT-2 back-
bone on 3/6 and 2/4 GLUE and SuperGLUE tasks

962

Category Datasets | [Trainl | [Devl | ILabelsl Type Labels
Single-sentence | SST-2 67349 872 2 sentiment positive, negative
MNLI 392702 | 19647 3 NLI entailment, neutral, contradiction
MRPC 3668 408 2 paraphrase equivalent, not equivalent
Sentence-pair QNLI 104743 | 5463 2 NLI entailment, not entailment
QQP 363846 | 40430 2 paraphrase equivalent, not equivalent
RTE 2490 277 2 NLI entailment, not entailment

Table 1: Statistics of the datasets used in our experiments.

MNLI QNLI SST-2 MRPC RTE QQP Mean
Method GLUE (RoBERTa-BASE Backbone)
Fine-tuning 87424 91310 92306 92707 82513 90995 89.5
LoRA 88704 84251 90403 79305 77.611 81.802 837
Prompt Tuning ~ 78.35; 81.417 89314 74407 57905 77816 765
P-Tuning 8250 82503 88.1p5 81917 674p9 8429, 81
SMoP 80.710 82914 89803 78.121 71.718 83799 81.2
LPT 81.706 83211 91813 84302 73.607 84195 83.1
DEPT 81.503 87912 90212 75706 71210 79203 81.0
ID-SPAM (ours) 83.1ps 86.404 92712 82.8p3 79204 84.605 84.8
Method GLUE (RoBERTa-LARGE Backbone)
Fine-tuning 87.617 94753 95413 92.112 884093 90792 9148
LoRA 89.111 87903 95.1p2 86.509 78791 88493 87.6
Prompt Tuning 83.41; 88202 92.605 73914 6080 81.206 80.0
P-Tuning 86407 88712 95805 76311 62.605 85213 825
SMoP 86.71.1 88425 95814 79.608 76314 86793 85.6
LPT 8421 86.1p5 93414 87302 74207 85313 851
DEPT 83312 88813 91.215 77703 73205 82207 827
ID-SPAM (ours) 87.4ps 91.1p4 94.612 86.1p3 811y 88.4p5 88.1

Table 2: Test results on GLUE benchmark. We use
RoBERTa-BASE, RoBERTa-LARGE Backbones for all
methods. We report the score, along with stddev for 3
runs (in the subscript) for all tasks. The best performing
Soft Prompt-based method’s results are in bold

respectively, while giving better average score; (3)
on average when using a GPT-2 Large Backbone.
Comparison with LoRA: ID-SPAM gives better
average score compared to LoRA. Specifically, ID-
SPAM outperforms LoRA in 5/6 and 3/6 tasks when
using ROBERTa-BASE and RoBERTa-LARGE
backbones respectively. Also, ID-SPAM is shown
to be more efficient than LoRA based on the num-
ber of trainable parameters and training and infer-
ence times in Section D of Appendix.

Ablation Analysis: We compare the results of /D-
SPAM with just using mean-pooling directly us-
ing the ROBERTa-LARGE backbone on 3 GLUE
Datasets in Table 3. ID-SPAM outperforms mean-
pooling on all 3 tasks, giving an average improve-
ment of 5.82%, thus highlighting the importance
of the self-attention layer in ID-SPAM.

Method MRPC | RTE | QQP
Mean-pooling 82.3 752 | 84.2
ID-SPAM 86.1 81.1 | 884

Table 3: Ablation Analysis on ID-SPAM

3.3 Evaluation on SuperGLUE Benchmark

We compare ID-SPAM with several Soft Prompt-
Based Baselines on 4 SuperGLUE Datasets using
RoBERTA-BASE and RoBERTA-LARGE back-
bones in Tables B and 5 respectively. We observe
that ID-SPAM outperforms the baselines on 2/4 and
3/4 tasks using ROBERTA-BASE and RoBERTA-
LARGE backbones respectively, while also giving
the best average score.

CB COPA MultiRC BoolQ Mean
Prompt Tuning | 75.9 525 67.2 63.6 64.8
P-Tuning 76.3 547 67.9 63.7 65.6
SMoP 799 577 67.2 69.7 68.6
LPT 80.6 59.2 70.8 66.3 69.2
DEPT 78.6 529 67.1 714 675
ID-SPAM 839 578 72.9 699 711

Table 4: Test results on 4 SuperGLUE Datasets us-
ing ROBERTa-BASE Backbone. The best performing
method is bold for each task.

CB COPA MultiRC BoolQ Mean
Prompt Tuning | 78 53 67.2 63.3 65.4
P-Tuning 76 55 68.1 64.0 658
SMoP 81.9 59 69.6 711 704
LPT 82 60 71.0 68.0 70.2
DEPT 79 54 69.0 71.0 682
ID-SPAM 85 60 73.0 70.0 72.0

Table 5: Test results on 4 SuperGLUE Datasets using
RoBERTa-LARGE Backbone. The best performing
method is bold for each task.

3.4 Zero-Shot Task, Domain Transfer

Table 6 shows Zero-Shot Transfer using RoOBERTa-
LARGE backbone, where a model is trained on
training set of a dataset, evaluated on another
dataset. We use (QQP, MRPC) and (SST-2,
IMDB)! pairs for transfer across tasks and domains
respectively similar to Lester et al. (2021). Table 6
shows ID-SPAM performs better than Soft Prompt-
based baselines, showing ID-SPAM is generaliz-

'Task for SST-2 and IMDB is binary classification. SST-2
contains phrases, while IMDB contains full movie reviews

963

able across datasets. ID-SPAM even outperforms
Fine-tuning in 3/4 pairs. Also, even though ID-
SPAM has much less number of parameters com-
pared to LoRA (see Section D of Appendix), ID-
SPAM gives better/comparable performance. In
addition, we show that ID-SPAM performs bet-
ter/comparable to well-performing LPT baseline in
Few-Shot Task Transfer in Section C of Appendix.

. QQP— MRPC— SST-2— IMDB—
Tuning Method yippc QP IMDB SST-2
_Fine-tuning - 64007 68315 87.loo 88804
LoRA Tlloy 66104 90302 = 87.611
Prompt Tuning 54.10.3 54.60.2 68.71.1 63.53.5
P—Tuning 57.61.2 52711 66.50.0 66.81.3
SMoP 67.90.4 64.10.6 84.50.5 83310
LPT 66.70.4 64.50.3 67.10.5 Tl.lie
DEPT 63318 58.80.5 69.80.1 69.30.9
ID-SPAM (ours) 70.91 2 69.20 4 89.10 3 86.0(),8

Table 6: Mean, stddev of zero-shot task, domain transfer
for different methods. ‘Score’ is average of Accuracy
and macro F1-Score. The best performing Soft Prompt-
based method’s results are in bold.

3.5 Method Analysis

90
—— MRPC (LPT)
8 5 /\ -~ : ;LEPEZLE-Q'SPAM)
) A T RTE (ID-5PAM)
80 L N—
= ey N\
E75 — SN
., 7 TN N
g7 N N— R
65 N\~ A\
0 3 6 9 12 15 18 21 24

Layer

Figure 2: Effect of Variation in layer index (m) corre-
sponding to which soft prompt is prepended on perfor-
mance (m = 0 refers to input embeddings). Metrics are
average of acc. and F1 for MRPC and acc. for RTE.

We analyze the effect of varying layer index where
soft prompt is prepended (m in Figure 1) on perfor-
mance of LPT and /D-SPAM on 2 GLUE datasets
using ROBERTa-LARGE backbone in Figure 2.
We infer that ID-SPAM and LPT perform better
when soft prompt is prepended to inputs in middle
layers of LM. Also, ID-SPAM significantly outper-
forms LPT corresponding to almost every layer
index for RTE Dataset. Also, ID-SPAM performs
better for earlier layers, as soft prompt is generated
by using a single attention layer over input embed-
dings. Hence, prepending this prompt to an earlier
layer’s outputs performs better than later layer’s
outputs, as later layer’s outputs are obtained after

input embeddings are passed through several at-
tention layers, reducing compatibility with the soft
prompt. Also, if we prepend soft prompt to later
layers, it passes through a small number of layers
of LLM, thus showing a reduced performance.

4 Discussions and Conclusion

In this paper, we propose ID-SPAM which signifi-
cantly improves parameter-efficient fine-tuning and
zero-shot task and domain transfer performance
on various NLU tasks compared to several SOTA
parameter-efficient baselines. Notably, further anal-
ysis shows that ID-SPAM performs reasonably well
when the generated soft prompt is prepended at
any layer’s inputs. Hence, ID-SPAM is an efficient,
input-dependent soft prompt generation framework
that could generalize well across several NLP tasks.

5 Limitations

We have shown that our proposed approach ID-
SPAM improves the performance of two backbone
LLMs (RoBERTa-BASE and RoBERTa-LARGE)
on multiple NLP tasks. Our framework is generic
and can be used with any open source LLMs as
backbone. However, we could not use more recent
very large scale pre-trained LLMs (like Llama-3.1-
70B and Mixtral 8x22B) with tens of billions of
parameters as backbone LMs in our experiments
due to limited computational resources. We are
interested to see the performance gain when we use
our approach with those large scale state-of-the-art
LLMSs in some future work.

In the current work, we do not have an auto-
mated way to choose the layer of the LM where
we input the soft prompt. The layer number is kept
as a hyperparameter in the current work and its
effect is shown in Section 3.5. In future, we want
to automatically identify the optimal transformer
layer, as proposed by Zhu and Tan (2023).

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Joon-Young Choi, Junho Kim, Jun-Hyung Park, Wing-
Lam Mok, and SangKeun Lee. 2023. Smop: Towards
efficient and effective prompt tuning with sparse
mixture-of-prompts. In The 2023 Conference on
Empirical Methods in Natural Language Processing.

964

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1-53.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Proceedings of the PASCAL Challenges
Workshop on Recognising Textual Entailment, vol-
ume 1.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can gpt
learn in-context? language models secretly perform
gradient descent as meta-optimizers. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4005-4019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP).

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang,
et al. 2024. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint
arXiv:2403.14608.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Feihu Jin, Jinliang Lu, Jiajun Zhang, and Chengqing
Zong. 2023. Instance-aware prompt learning for lan-
guage understanding and generation. ACM Transac-
tions on Asian and Low-Resource Language Informa-
tion Processing, 22(7):1-18.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059.

Quentin Lhoest, Albert Villanova del Moral, Patrick
von Platen, Suraj Patil, Julien Chaumond, Mariama
Drame, Timo Miiller, Isabella Géron, Simon Bran-
deis, Sylvain Gugger, Théo Matussiere, Abhishek
Thakur, Philipp Schmid, Yacine Jernite, Jeff Boudier,
Francesco Calefato, Clara Ma, Clement Delangue,
Thibault Goehringer, Victor Sanh, Canwen Xu,
Alexander M. Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. Preprint, arXiv:2109.02846.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597.

Xiangyang Liu, Tianxiang Sun, Xuan-Jing Huang, and
Xipeng Qiu. 2022a. Late prompt tuning: A late
prompt could be better than many prompts. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 1325-1338.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022b. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61-68.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Fang Ma, Chen Zhang, Lei Ren, Jingang Wang, Qifan
Wang, Wei Wu, Xiaojun Quan, and Dawei Song.
2022. Xprompt: Exploring the extreme of prompt
tuning. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 11033-11047.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on International Conference on Machine Learning,
ICML 10, page 807-814, Madison, WI, USA. Omni-
press.

Aleksandar Petrov, Philip Torr, and Adel Bibi. 2023.
When do prompting and prefix-tuning work? a the-
ory of capabilities and limitations. In The Tivelfth
International Conference on Learning Representa-
tions.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203-5212, Online. Association for Computa-
tional Linguistics.

Quora. 2017. Quora question pairs.

965

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2109.02846
https://arxiv.org/abs/2109.02846
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392.

Zhengxiang Shi and Aldo Lipani. 2024. DePT: De-
composed prompt tuning for parameter-efficient fine-
tuning. In The Twelfth International Conference on
Learning Representations.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

Qifan Wang, Yuning Mao, Jingang Wang, Hanchao Yu,
Shaoliang Nie, Sinong Wang, Fuli Feng, Lifu Huang,
Xiaojun Quan, Zenglin Xu, et al. 2023. Aprompt:
Attention prompt tuning for efficient adaptation of
pre-trained language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 9147-9160.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112-1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yux-
iao Dong, VG Vinod Vydiswaran, and Hao Ma.
2022. Idpg: An instance-dependent prompt genera-
tion method. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

Technologies, pages 5507-5521.

Yee Hui Yeo, Jamil S Samaan, Wee Han Ng, Peng-
Sheng Ting, Hirsh Trivedi, Aarshi Vipani, Walid Ay-
oub, Ju Dong Yang, Omer Liran, Brennan Spiegel,
et al. 2023. Assessing the performance of chatgpt in
answering questions regarding cirrhosis and hepato-
cellular carcinoma. medRxiv, pages 2023-02.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2023a.
Summit: Iterative text summarization via chatgpt.
arXiv preprint arXiv:2305.14835.

Zhen-Ru Zhang, Chuangi Tan, Haiyang Xu, Chengyu
Wang, Jun Huang, and Songfang Huang. 2023b. To-
wards adaptive prefix tuning for parameter-efficient
language model fine-tuning. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
1239-1248.

Wei Zhu and Ming Tan. 2023. Spt: Learning to selec-
tively insert prompts for better prompt tuning. In 7The
2023 Conference on Empirical Methods in Natural
Language Processing.

966

https://openreview.net/forum?id=KjegfPGRde
https://openreview.net/forum?id=KjegfPGRde
https://openreview.net/forum?id=KjegfPGRde
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Appendix
A Experiment Settings

For our experiments, we use roberta-base and
roberta—-large implementations from Hug-
gingFace. For all baselines, the number of ap-
pended prompt tokens (for Prompt Tuning, P-
tuning, Late Prompt Tuning) are set to 10 tokens.
For DEPT, we set the rank to 45. For P-Tuning,
we set the encoder reparameterization type to MLP.
For ID-SPAM, appended prompt tokens are set to
10 tokens. The search space for hyperparameters
for tuning are shown in Table 7. For all experi-
ments, standard CrossEntropyLoss was used. For
all experiments, we train using a warm-up rate of
0.06, and AdamW optimizer with € of 1 x 1075,
B1 0of 0.9, B2 of 0.98.

In Figure 2, we can see that layers 11-13 show
optimal performance for both /D-SPAM and LPT.
LPT (Liu et al., 2022a) shows that the 13th layer is
optimal. This makes our method ID-SPAM compa-
rable to LPT taking the layer number into account.
Also, following the trend from other prior art on
soft prompts (Lester et al., 2021; Liu et al., 2022a;
Li and Liang, 2021; Choi et al., 2023), we used
the best hyperparameter set for each of the base-
lines. Our experimental approach is also logical
and consistent as the experimental settings (choice
of backbone LMs, datasets) are same for baselines
and our method ID-SPAM.

Hyperparameter Values
Epochs {1, 5, 10, 20, 30}
Batch Size {16, 32, 64}
Learning Rates {1e-3, 5e-4, 1e-4, 5e-3, 1e-5}
Dropout Rate {0.1, 0.2, 0.3}
Weight Decay {0,0.01, 0.1}
Layer (RoBERTa-Large) {1,2,3..23}
Layer (RoBERTa-Base) {1,2,3...11}

Table 7: Hyperparameters used for tuning /D-SPAM.

B Evaluation using GPT-2 and GPT-2
Large Backbones

Using GPT-2 Backbone. We carry out experi-
ments with decoder-only GPT-2 backbone on 6
GLUE Datasets - Table 8 shows that when using
GPT-2 as backbone, ID-SPAM outperforms LPT
on 3/6 tasks and gives an average performance im-
provement of 2.3%.

Next, we carry out experiments with decoder-
only GPT-2 backbone on 4 SuperGLUE Datasets —

MNLI QNLI SST-2 RTE QQP MRPC AVG
LPT 695 794 901 628 803 8L9 773
ID-SPAM | 783 771 851 71.6 829 795 79.1

Table 8: Test results on 6 GLUE Datasets using GPT-2
Backbone. The best performing PEFT method is bold
for each task.

Table 9 shows that compared to Soft Prompt-Based
baselines, ID-SPAM gives the best average score,
and performs the best on 2 tasks, while performing
the second best on one of them.

CB COPA MultiRC BoolQ Mean
Prompt Tuning | 71.7 57 61.7 64.1 63.6
P-Tuning 73.3 577 63.2 65.7 65
SMoP 814 612 68.4 694 70.1
LPT 82.1 613 72.1 74.1 72.4
DEPT 76.1 55.1 73.5 67.2 68
ID-SPAM 88.1 63.1 71.7 724 73.8

Table 9: Test results on 4 SuperGLUE Datasets using
GPT-2 Backbone. The best performing method is bold
for each task.

Using GPT-2 Large Backbone. We compare the
performance of /D-SPAM with LoRA and LPT us-
ing a large generative model GPT-2 Large (around
0.8 Billion Parameters) as the backbone on 2 GLUE
Datasets - RTE and MRPC, as shown in Table 10.

Method RTE MRPC Average
LoRA 74.0 80.0 71.0
LPT 699 829 76.4
ID-SPAM 737 81.1 774

Table 10: Test results on 2 GLUE Datasets using GPT-2
Large Backbone.

ID-SPAM gives an average improvement of 0.5%
and 1.3% compared to LoRA and LPT respectively
across the 2 GLUE Datasets, showing that /D-
SPAM is competitive even for a large, generative
backbone LM.

C Few-Shot Task Transfer

Train | Eval (Few-shot, 100 samples) | Tuning Score
MRPC | QQP Fine-Tuning | 81.7
MRPC | QQP LPT 74.4
MRPC | QQP ID-SPAM 73.1
QQP MRPC Fine-Tuning | 79.7
QQP MRPC LPT 69.4
QQP MRPC ID-SPAM 72.5

Table 11: Few-shot task transfer for different methods
using the ROBERTa-LARGE Backbone.

967

ID-SPAM and LPT (a well-performing baseline in
Table 2) using the ROBERTa-LARGE Backbone
are fine-tuned on the first dataset, and then further
fine-tuned on 100 training samples from the second.
This model is then evaluated on the second dataset.

From Table 11, we can see that ID-SPAM per-
forms better than LPT on QQP->MRPC, while the
performance is comparable for MRPC->QQP.

D Comparison of ID-SPAM with
baselines w.r.t model size and training
and inference times

Model LPT LoRA ID-SPAM
RoBERTa-BASE 2,162,688 | 3,495,312 | 2,064,384
RoBERTa-LARGE | 2,883,584 | 7,931,280 | 3,538,944

Table 12: number of trainable parameters of /D-SPAM
and well-performing baselines LPT and LoRA (see Ta-
ble 2).

Table 12 shows that the number of trainable pa-
rameters in ID-SPAM is lesser than that of LoORA
for both backbones, and is lesser than that of LPT
using ROBERTa-BASE backbone, while they are
comparable in case of ROBERTa-LARGE back-
bone.

No. of Parameters

Backbone in Backbone LM ID-SPAM LoRA

GPT2 126.8 2.1 2.4 (1.1x)
GPT2-medium 361.1 35 6.3 (1.8x)
GPT2-large 785.8 5.1 11.8 (2.3x)
GPT2-xl 1571.3 83 19.7 (2.4x)
Gemma-2B (Team et al., 2024) 2525.8 13.4 19.6 (1.5x)
FLAN-T5-x1 (Chung et al., 2024) 2823.6 13.4 35.5 (2.6x)

Table 13: Number of trainable parameters (in millions)
of ID-SPAM compared to LoRA for several LM back-
bones of different sizes. The decrease in the number of
trainable parameters of ID-SPAM compared to LoRA is
written within brackets.

Table 13 shows that as the size of the backbone
LM increases, efficiency in the number of trainable
parameters of /D-SPAM compared to LoRA tends
to increase. Hence, ID-SPAM is suitable even for
massive LMs.

Training Time per | Inference Time per

Dataset | Method . .
sample (in secs) sample (in secs)

BoolQ | LPT 0.669 0.236
BoolQ LoRA 0.715 0.313
BoolQ | ID-SPAM 0.651 0.251
WiC LPT 0.082 0.041
WiC LoRA 0.113 0.067
WiC ID-SPAM 0.084 0.035

Table 14: Training and inference times of ID-SPAM
and well-performing baselines LPT and LoRA for 2
SuperGLUE Datasets.

Table 14 shows that ID-SPAM requires less time
for training as well as for inference, in comparison
to LoRA on both BoolQ (a yes/no QA dataset) and
WiC (dataset for binary classification) Datasets (2
datasets from SuperGLUE). Also, ID-SPAM takes
lesser time to train on BoolQ than LPT, while the
times are comparable on WiC. In case of infer-
ence, ID-SPAM takes lesser time than LPT for
WiC, while taking slightly more time than LPT for
BoolQ. Hence, ID-SPAM has comparable training
and inference times w.r.t LPT, while giving better
performance on GLUE datasets (see Table 2).

MNLI QNLI SST-2 RTE QQP MRPC
Fine Tuning 2887s 270s 224s 247s 1854s 87s
LPT 2013s 157s 161s 168s 1157s 59s
ID-SPAM 1902s 166s 171s 168s 1004s Sls

Table 15: Total training time cost before convergence
(in seconds) of ID-SPAM compared to baselines

Table 15 shows the training convergence times
(in seconds - lower the better) for LPT and our
proposed ID-SPAM (By convergence, we mean the
epoch where the validation error is the least) using
RoBERTa-LARGE Backbone. We can see that ID-
SPAM gives better/similar convergence time com-
pared to LPT on 4 out of 6 GLUE Tasks. Also,
LPT takes an average convergence of time of 619
s, while ID-SPAM takes 577 s, giving an improve-
ment of 7.3% in average convergence time.

E Convergence of the LoRA Baseline

The training loss is tabulated every 5 epochs in
Table 16 when training LoRA with the RoBERTa-
BASE backbone on the MRPC and RTE Datasets
from the GLUE Benchmark.

968

Epoch | MRPC | RTE
5 0.21 0.4
10 0.12 0.14
15 0.05 0.07
20 0.02 0.06
25 0.02 0.04
30 0.0001 | 0.02

Table 16: Training Loss across epochs when training
LoRA with the RoOBERTa-BASE backbone

We can see that the training loss continuously de-
creases with increasing epochs on both the MRPC
and RTE Datasets. Also, the losses are consider-
ably lowered after 30 epochs as can be seen in the

table, thus showing convergence.

969

