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Abstract

Large vision-language models (LVLMs) per-
form outstandingly across various multimodal
tasks. However, their ability to evaluate gen-
erated content remains limited, and training
vision-language reward models (VLRMs) with
preference data is computationally expensive.
This paper explores a training-free alterna-
tive by merging text-based reward models
(RMs) with LVLMs to create VLRMs. Our
approach shows that integrating these models
leads to improved performance over LVLMs’
scoring and text-based RMs, offering an ef-
ficient method for incorporating textual pref-
erences into LVLMs. The code and data are
publicly available at https://github.com/
1ca0503/MergeToVLRM.

1 Introduction

Large vision-language models (LVLMs) have
shown exceptional performance across a wide
range of multimodal tasks (Hurst et al., 2024; Team
et al., 2024; Anthropic, 2024), primarily due to the
implementation of reinforcement learning from hu-
man feedback (RLHF) (Ouyang et al., 2022), which
utilizes preference data (Sun et al., 2024; Li et al.,
2024b). This process often requires the use of re-
ward models (RMs). However, LVLMs still strug-
gle to assess generated content effectively (Chen
et al., 2024a; Li et al., 2024a), and training an RM
with preference data is resource-intensive.

In this work, we investigate an alternative ap-
proach: Can knowledge derived from text-only pref-
erence data be transferred to LVLMs without addi-
tional training? Several state-of-the-art LVLMs are
built upon pre-trained language models with vision
encoders and adapters (Dubey et al., 2024; Team,
2025; Lu et al., 2024). This architectural design
suggests that textual preferences learned by text-
based RMs may potentially integrate into LVLMs
through parameter merging.
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Figure 1: Framework for merging a text-based RM
with an LVLM. LVLMSs excel at visual tasks, while
text-based RMs struggle to provide accurate rewards
without visual cues. We transfer textual preferences
to the vision-language understanding, resulting in a
VLRM. All icons used in this figure are sourced from
https://www.flaticon.com/

Building on this idea, we propose merging
LVLMs with text-based RMs to create vision-
language reward models (VLRMs), as illustrated
in Figure 1. Our approach leverages existing RMs
and LVLMs, eliminating the need for costly multi-
modal preference data collection and training. We
explore various merging strategies, ranging from
simple weighted averaging (Wortsman et al., 2022)
to advanced techniques such as task arithmetic (Il-
harco et al., 2023), TIES (Yadav et al., 2024), and
DARE (Yu et al., 2024a).

We assess performance using VL-RewardBench
(Li et al., 2024a) and Best-of-N sampling with
TextVQA (Singh et al.,, 2019) and MMMU-
Pro (Yue et al., 2024b). The results show that
our combined VLRMs outperform scoring through
LVLMs and reward generation with text-based
RMs. Our approach offers a training-free method
for transferring textual preferences to LVLMs via
model merging, and we provide a detailed analysis
of merging strategies, demonstrating its effective-
ness across multiple benchmarks.
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2 Related Work

Preference Dataset A common approach to
train a reward model is to use the Bradley—Terry
model (Bradley and Terry, 1952), which relies on
paired data for learning. In NLP, many high-quality
preference datasets are already available (Stien-
non et al., 2020; Bai et al., 2022; Ethayarajh et al.,
2022; Kopf et al., 2023; Cui et al., 2024; Zhu et al.,
2024; Wang et al., 2024). Similarly, in the vision-
language domain, several preference datasets have
been introduced (Yu et al., 2024b,c; Chen et al.,
2024b; Wijaya et al., 2024; Li et al., 2024c; Zhou
et al., 2024; Xiao et al., 2024). In this work, we
explore the potential of transferring textual prefer-
ences to LVLMs in a training-free manner, specifi-
cally through model merging.

LVLM-as-a-Judge & Evaluation LVLM-as-
a-Judge refers to utilizing strong large vision-
language models for evaluation and judgment.
These LVLMSs can be either closed-source (Ope-
nAl, 2023; Hurst et al., 2024; Team et al., 2024,
Anthropic, 2024) or open-source (Lee et al., 2024;
Dubey et al., 2024; Deitke et al., 2024; Team, 2025).
To assess LVLMs as generative reward models,
Chen et al. (2024a) established benchmarks and
found that LVLMs exhibit high agreement with
humans in pairwise comparison judgments, but per-
form poorly in scoring evaluation and batch rank-
ing tasks. Recently, VL-RewardBench (Li et al.,
2024a) introduced challenging cases and complex
multimodal reasoning tasks, revealing that most off-
the-shelf LVLMs struggle with such evaluations.

Model Merging Model merging is a common,
training-free method for combining skills from
multiple models within the parameter space. A
basic approach involves simple weighted averag-
ing (Wortsman et al., 2022), while more advanced
techniques have been developed (Yadav et al., 2024;
Yu et al., 2024a; Yang et al., 2024). These tech-
niques have already proven effective in reward
modeling (Rame et al., 2024; Lin et al., 2024) and
LLM-as-a-judge (Kim et al., 2024) in NLP. Re-
cently, REMEDY (Zhu et al., 2025) introduced
strategies for merging LVLMs. In contrast, our
work focuses on merging textual reward models
into the language modeling components of LVLMs.

3 Methodology

We propose a training-free method to transfer tex-
tual preferences from a text-based RM 0®M to a

LVLM 6"VIM through model merging.

Since both models originate from the same
pre-trained language model #*RE, we merge mod-
ules that appear in both models and preserve the
LVLM’s vision capabilities and text-based RM re-
ward function, resulting in a VLRM that can as-
sess textual and visual content without additional
training. Below, we outline the components and
merging strategies involved.

3.1 Model Components
The pre-trained language model consists of:

PRE __ PRE pPRE APRE
0 - {eemb ) Otrans’ elm )

where 0PRE is the embedding layer, 055 is the
transformer, and HEEE is the language modeling
head, which maps the final hidden state of the trans-
former to the vocabulary.

The LVLM expands upon this with:

LVLM __ (pLVLM pLVLM HLVLM pLVLM pLVLM
0 - {evenc 79&dapt 7eemb 70trans ’elm )

LVLM ; o LVLM ;
where 62, is the vision encoder, and 0,5, " is the

adapter that integrates the vision encoder outputs
into the language model.
Similarly, the text-based RM is defined as:

RM RM oRM »RM
o= = {eemb7 Orrans: Orm’ 1+
where ORM s the reward modeling head, which
projects the transformer’s final hidden state to a

scalar value as the reward for a given input.

3.2 Merging Strategies

We explore four merging strategies.

Weighted Averaging The weighted averaging
strategy is defined as:

Ortans -~ = A~ Oans + (1= ) - Oigan,
where A is a hyperparameter that controls the
weight distribution between the two terms.

Task Arithmetic Task arithmetic strategy is de-
fined as:

LVLM _ pLVLM PRE
T - atrans - atransv

RM _ pRM PRE
T - etrans - etransv

MERGE PRE
etrans = etrans + A Tvim + A - TRM,

where 7VIM represents the task vector derived

from instruction tuning, and 7RM is the task vector
obtained from reward modeling. The hyperparame-
ter A controls the contribution of the task vectors.
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VL-RewardBench

TextVQA MMMU-Pro

Method General Hallucination Reasoning Overall Macro Avg.  Overall ~ Standard Vision
Llama-3.2-Vision  33.3* 38.4% 56.6% 42.9% 42.8% 46.4 28.8 19.8
Tulu-2.5-RM 43.2 31.4 54.1 38.9 429 42.6 29.8 21.4
Random 50.0 50.0 50.0 50.0 50.0 482 29.2 18.4
Cascade 44.8 37.8 572 43.8 46.6 432 30.9 234
Linear 39.3 52.3 54.4 51.0 48.7 54.7 27.8 221
Task Vec. 48.6 59.4 59.7 579 55.9 59.0 31.0 227
TIES 43.7 58.2 58.5 56.2 535 64.2 29.1 22.6
DARE + Task Vec. 49.2 61.7 61.0 59.7 57.3 58.8 30.3 22.4
DARE + TIES 49.2 59.1 58.2 57.4 55.5 57.3 31.6 22.0

Table 1: Comparison of merging methods across the VL-RewardBench, TextVQA, and MMMU-Pro datasets using
TULU-2.5-RM for merging. *Indicates results from Li et al. (2024a).

TIES & DARE For the TIES and DARE strate-
gies, we simplify the expression to:

GMERGE _ HPRE+)\'f(TLVLM,d) +>\‘f(TRM,d),

trans trans

where f(-) denotes the function for trimming, se-
lecting, and rescaling the task vector, and d is the
density determining how many parameters are re-
tained. The two strategies apply different methods
for trimming, selecting, and rescaling. See Ap-
pendix A for more details on TIES and DARE.

3.3 Merged VLRM
GMERGE .o

The merged embedding parameters, 6\’
obtained following standard embedding merging
techniques outlined in MergeKit (Goddard et al.,
2024), as detailed in Appendix A.

Finally, the merged VLRM §MERGE g obtained
by combining several components:
GVERCE — (gL, LA, ONERO, OMERCE, g8,
As a result, the merged VLRM can be used to pro-
vide rewards for both text and image content.

4 [Experiments

4.1 Experimental Setup

4.1.1 Models

In this paper, we employ L1ama-3.2-11B-Vision
-Instruct (Dubey et al., 2024) as our LVLM, re-
ferred to as Llama-3.2-Vision. For text-based
RMs, we use L1ama-3.1-Tulu-2-8B-uf-mean-
rm (Ivison et al., 2024) and L1ama-3.1-Tulu-3-
8B-RM (Lambert et al., 2024), which we denote
as Tulu-2.5-RM and Tulu-3-RM, respectively. All
models derive from the same pre-trained language
model L1lama-3.1-8B. Our main results focus on
Tulu-2.5-RM since it outperforms Tulu-3-RM on
several VQA tasks with text-based input. Please
refer to Appendix E for the model details.

4.1.2 Model Merging

We use MergeKit for model merging and apply
several techniques: weighted averaging, task arith-
metic, TIES, and DARE—Iabeled as Linear, Task
Vec., TIES, and DARE, respectively. Additionally,
we explore combining DARE with task arithmetic
and TIES for a more thorough analysis. To de-
termine the optimal merging hyperparameters, we
conduct a hyperparameter search and sample 400
instances from the RLAIF-V (Yu et al., 2024c¢)
training set as our validation set. More details are
provided in Appendix A.

4.2 Reward Model Evaluation

4.2.1 VL-RewardBench

We assess the merged VLRMs using VL-
RewardBench (Li et al., 2024a), a benchmark that
includes three domains: general multimodal in-
structions, hallucination-related tasks, and multi-
modal reasoning tasks. Each instance includes a
multimodal query that consists of an image and a
user prompt, along with a chosen response and a
rejected response.

4.2.2 Best-of-N Sampling

We assess our reward model’s effectiveness in
enhancing performance through reranking us-
ing Best-of-N sampling, where N = 8 in our
work. This method scores and ranks re-
sponses to check if the highest-scoring one
matches the correct answer. Specifically, we
use Llama-3.2-11B-Vision-Instruct to gener-
ate eight candidates for the TextVQA (Singh et al.,
2019) and MMMU-Pro (Yue et al., 2024b) datasets.
See Appendix B for dataset details.

4.3 Main Results

Table 1 demonstrates the effectiveness of merg-
ing methods for combining an LVLM with
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a text-based RM. The baseline approaches in-
clude Llama-3.2-Vision, which utilizes the
LVLM for direct scoring—pairwise scoring in
VL-RewardBench and verbalized scoring in Best-
of-N sampling tasks. Another baseline method,
Tulu-2.5-RM, utilizes the text-based RM that fo-
cuses solely on evaluating the textual elements of
questions and responses. We also incorporate a
Random baseline that randomly selects responses.
Furthermore, we implement a Cascade approach
that employs a two-stage process: it first uses
the LVLM to generate text descriptions of images
based on the given question, then passes these de-
scriptions with the original text inputs through the
text-based RM to produce final scores.

As shown in Table 1, merged VLRMs
consistently outperform Llama-3.2-Vision and
Tulu-2.5-RM across nearly all merging methods
and benchmarks. This result demonstrates that
combining a text-based RM with an LVLM effec-
tively transfers textual preferences without train-
ing. Different merging strategies achieve the high-
est scores in different benchmarks, but overall,
more advanced methods outperform simpler ones,
highlighting the advantages of structured merg-
ing techniques. Additionally, in several bench-
marks, merged VLRMs surpass or match the strong
Cascade baseline, suggesting that model merging
captures more information than merely cascading
two models. Furthermore, as shown in Table 2, our
merged VLRMs even exceed the performance of
the 90B LVLM and achieve results comparable to
commercial models. A similar trend emerges when
using Tulu-3-RM as the text-based RM; further de-
tails are provided in Appendix G.1.

4.4 Analysis

Without Image Input To further investigate
whether the merged VLRMs effectively use the
vision encoder, we conduct an ablation study by
evaluating the models without image input. As
shown in Table 3, most models with image input
outperform those without it across various merg-
ing techniques. This result suggests that the vi-
sion encoder plays an active role after merging,
with performance gains not solely attributed to the
text-based RM. These findings highlight how merg-
ing methods effectively combine textual and visual
information. However, image input does not im-
prove performance in the MMMU-Pro Standard
set, likely because this set emphasizes reasoning,
where reward assessments depend more on textual

Method ‘ General Hallucination Reasoning
Open-Source Models*
Llama-3.2-Vision (11B) 33.3 38.4 56.6
Llama-3.2-Vision (90B) 42.6 57.3 61.7
Proprietary Models*
Gemini-1.5-Flash 47.8 59.6 58.4
Gemini-1.5-Pro 50.8 72.5 64.2
GPT-40-mini 41.7 34.5 58.2
GPT-40 49.1 67.6 70.5
Using TULU-2.5-RM for merging
Linear 39.3 52.3 54.4
Task Vec. 48.6 59.4 59.7
TIES 43.7 58.2 58.5
DARE + Task Vec. 49.2 61.7 61.0
DARE + TIES 49.2 59.1 58.2

Table 2: VL-RewardBench results comparing open-
source and proprietary models with our reward model
using TULU-2.5-RM for merging. *Indicates results
from Li et al. (2024a). Full results are provided in Ta-
ble 12

VL-RB TextVQA MMMU-Pro

Method Overall Overall Standard  Vision
Linear 51.0 54.7 27.8 22.1
w/o image input 39.8 45.8 29.1 21.6
Task Vec. 57.9 59.0 31.0 22.7
w/0 image input 44.9 38.7 31.8 21.0
TIES 56.2 64.2 29.1 22.6
w/o image input 42.7 40.9 31.2 21.0
DARE + Task Vec. 59.7 58.8 30.3 22.4
w/o image input 44.5 36.2 32.1 20.8
DARE + TIES 57.4 57.3 31.6 22.0
w/o image input 45.6 36.9 32.1 20.8

Table 3: Comparison of merging methods with and
without image input, using Tulu-2.5-RM for merging.
VL-RB stands for VL-RewardBench.

coherence than visual understanding, limiting the
vision encoder’s contribution. A similar trend oc-
curs when using Tulu-3-RM as the text-based RM;
see Appendix G.2 for details.

Effect of Merging Hyperparameters We also
investigate how merging hyperparameters impacts
performance. Figure 2 presents the results of
searching for d within the range [0.2, 0.4, 0.6, 0.8]
and )\ within [0.5, 0.7, 1.0] for DARE + Task Vec..
Our findings indicate that optimal hyperparameter
values vary across benchmarks. For example, in
VL-RewardBench, A values do not have a signifi-
cant effect, but in the MMMU-Pro standard set, we
observe that A = 1.0 performs best. This variation
indicates that the choice of hyperparameters affects
the performance of the final merged VLRM differ-
ently across tasks. Consequently, it highlights the
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Figure 2: Effect of Dare + Task Vec. merging hyper-
parameters with Tulu-2.5-RM as the text-based RM.

importance of a well-curated validation set when
selecting the optimal hyperparameters, which could
be further explored in future research.
Furthermore, our results for d align with previ-
ous studies on TIES and DARE: even when task
vectors are trimmed to lower rates (e.g., 0.4, 0.2),
the merged VLRMSs maintain strong performance,
consistent with the findings on LLM merging. For
further hyperparameter search results across other
methods and benchmarks, refer to Appendix G.3.

Computation Overhead In our experiments,
model merging is done entirely on CPUs (Intel
Xeon Silver 4216) using a system with 128 GB of
RAM. Using 11 different A\ values for weighted
averaging takes about 1.5 hours of CPU time. The
task arithmetic method takes a similar amount of
time when using the same number of X values. Ap-
plying 12 combinations of A and density d for the
TIES method takes about 6 hours of CPU time,
while DARE takes around 3 hours to handle the
same number of combinations.

We evaluate the models on a validation set of
400 examples from the RLAIF-V dataset. We run
model inference on GPUs with 24 GB of mem-
ory (Nvidia GeForce RTX 3090). Across all con-
figurations and merging methods, inference takes
approximately 1.5 hours of GPU time per method.

Overall, merging and evaluation require much
less computing time than training a reward model
from scratch. Since merging is the most time-
consuming step and runs only on the CPU, the
total computational cost stays relatively low. Also,
both merging and evaluation can be run in parallel
on multiple machines to reduce the actual runtime.

5 Conclusion

This work presents a training-free approach for inte-
grating text-based RMs into LVLMs through model

merging. Our method enables the efficient trans-
fer of textual preferences without the expensive
multimodal preference data collection or additional
training. Experimental results show that our ap-
proach outperforms LVLM scoring and text-based
RMs in multimodal reward assessment tasks.

Limitations

Our study has several limitations. First, we focused
on a specific 11B vision-language model paired
with an 8B text-based reward model, primarily due
to limitations in computational resources. Addition-
ally, we focused solely on the LLaMA architecture
and did not explore alternatives like Qwen (Bai
et al., 2023a,b) due to the absence of a suitable
Qwen-based reward model for our experiments.
Furthermore, we did not perform extensive abla-
tion studies on the validation set. Our experimental
results highlight the importance of a well-curated
validation set in selecting optimal hyperparameters,
which could be explored further in future research.
Finally, due to the sensitivity of RLHF to hyperpa-
rameter tuning and our computational constraints,
we did not implement algorithms like PPO (Schul-
man et al., 2017). Future work could explore inte-
grating RLHF with merged VLRMsS to assess its
potential impact.

Ethics Statement

Our approach leverages pre-trained language and
reward models, which may inherit biases from the
training data. While merging models can enhance
efficiency, it does not inherently mitigate existing
biases. We encourage further research to evaluate
and address potential biases in merged models to
ensure fairness across diverse user groups.
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A Merging Details

Weighted Averaging Wortsman et al. (2022)
showed that combining the weights of multiple
models fine-tuned with varying hyperparameter set-
tings often leads to improved accuracy and robust-
ness. In this work, we employ a weighted averag-
ing strategy as a straightforward method to merge
a large vision-language model with a text-based
reward model. The weighted averaging strategy is
formally defined as:

MERGE __ LVLM RM
Htrans =A- Htrans + (1 - )‘) ’ 9trans>

where ) is a hyperparameter that determines the
weight distribution between the two models. We
explore \ values in the range: [0.0, 0.1, 0.2, 0.3,
0.4,0.5,0.6,0.7,0.8, 0.9, 1.0].

Task Arithmetic Ilharco et al. (2023) demon-
strated that the task vector, obtained by subtracting
the weights of a pre-trained model from those of
the same model after fine-tuning for a specific task,
defines the task direction. Utilizing this task vec-
tor can improve task performance. We also apply
the task arithmetic approach to develop a vision-
language reward model. The task arithmetic strat-
egy is formally defined as:

LVLM __ pLVLM PRE
T - gtrans - gtranw
RM __ pRM PRE
T - etrans - etransﬁ

MERGE PRE
etrans = Qtrans + A TLvim + A - Tru,
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where 7VIM denotes the task vector derived from
instruction tuning, and 7RM refers to the task vec-
tor obtained from reward modeling. The hyperpa-
rameter A controls the relative contribution of task
vectors. We explore A values in the range: [0.0, 0.1,
0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, 1.0].

TIES Yadav et al. (2024) consider the interfer-
ence between parameters from different models
during the model merging process. Their approach
consists of three main steps. First, they prune task
vector values based on magnitude, retaining only
a proportion d of the task vector. Second, they
resolve sign conflicts by calculating the total mag-
nitude of parameter values in positive and negative
directions and selecting the direction with the larger
total magnitude. Only values that match the cho-
sen sign are retained. Finally, they compute the
mean of the retained values to determine the final
parameter value. The TIES method can be simply
expressed as:

eMERGE —_ QPRE —‘r)\'f(TLVLM,d) —i—)\'f(TRM,d),

trans trans

where f(-) denotes the function for trimming, se-
lecting, and rescaling the task vector, and d is the
density determining how many parameters are re-
tained. We search for optimal values of A within
the range [0.5, 0.7, 1.0] and d within the range [0.2,
0.4, 0.6, 0.8].

DARE Yu et al. (2024a) also addresses the inter-
ference between parameters from different mod-
els during the model merging process. They ran-
domly drop delta parameters with a probability of
p and rescale the remaining ones by 1/(1 —p). The
DARE method can be combined with both the Task
Arithmetic and TIES approaches. When combined
with Task Arithmetic, a proportion p of task vectors
is randomly dropped, and the remaining ones are
rescaled by 1/(1 — p). When DARE is combined
with TIES, a proportion p of task vectors is ran-
domly dropped, and the sign of each parameter is
determined by comparing the total magnitude in
the positive and negative directions. The sign cor-
responding to the larger total magnitude is selected,
and only values matching this sign are retained.
Their mean is then computed as the final parameter
value, and the result is rescaled by 1/(1 — p). The
DARE method can also be expressed as:

GMERGE — GPRE+)\'f(’TLVLM,d) +)\'f(TRM7d),

trans trans

where d represents the density, determining the
proportion of retained parameters, with d = 1 — p.

We search for optimal values of A\ within the range
[0.5, 0.7, 1.0] and d within the range [0.2, 0.4, 0.6,
0.8].

Merging Embeddings We follow the embedding
merging procedure from MergeKit (Goddard et al.,
2024). The process is as follows:

1. If a token exists in the pre-trained model, we
use its embedding from that model.

2. If a token appears in only one model (either
the LVLM or the text-based RM), we use its
embedding from that model.

3. If a token appears in multiple models, we com-
pute the average of its embeddings.

Notably, the pre-trained model is not required
for the weighted averaging method. Therefore, we
omit the first step when applying this merging ap-
proach.

Merging Hyperparameter Selection We select
the merging hyperparameter by using a sampled
set of 400 instances from the RLAIF-V (Yu et al.,
2024c) training set as our validation set. In case of
a tie in scores, an additional 100 sampled instances
will be used for evaluation. Results are discussed
in Appendix G.3.

B Dataset Details

VL-RewardBench VL-RewardBench (Li et al.,
2024a) is a benchmark comprising 1,250 high-
quality examples spanning three domains: gen-
eral multimodal instructions, hallucination-related
tasks, and multimodal reasoning tasks. Each exam-
ple includes a multimodal query—consisting of an
image and a user prompt—along with a selected
response and a rejected response.

TextVQA TextVQA (Singh et al., 2019) is a
dataset designed to evaluate the ability of visual
question-answering (VQA) models to read and rea-
son about text within images. We use its validation
set, which contains 5,000 instances, to assess our
merged VLRMs.

MMMU-Pro MMMU-Pro (Yue et al., 2024b)
is an advanced benchmark designed to assess the
understanding and reasoning abilities of multi-
modal models. It is derived from the original
MMMU (Yue et al., 2024a) dataset and consists
of two subsets: a standard set, which includes im-
age and text queries with 10 answer options, and a
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vision set, which features a vision-only input sce-
nario. In the vision set, the questions are embedded
within screenshots or photos, with no explicit text
provided.

RLAIF-V RLAIF-V (Yu et al., 2024c) prefer-
ence dataset is created by generating multiple can-
didate responses for a given prompt and image us-
ing various random seeds. Each response is divided
into individual claims, which are then assessed us-
ing an open-source large vision-language model.
This model assigns confidence scores to each claim,
which are combined to form an overall response
score. Preference pairs are generated by comparing
the response scores for the same prompt, select-
ing the preferred response and the less favorable
one based on the score differences. Pairs with sig-
nificant length disparities are excluded to avoid
bias. We select 400 instances from this preference
dataset to serve as our validation set for selecting
the hyperparameters of merging methods.

C Best-of-N Sampling Details

We use Imms-eval (Zhang et al., 2024) for response
generation with the Best-of-N sampling technique.
For the TextVQA dataset, we set both the tempera-
ture and top-p to 1.0, sampling 8 responses. To en-
courage concise answers, we append “Answer the
question using a single word or phrase.” after the
generation prompt. For the MMMU-Pro dataset,
we also set the temperature and top p to 1.0, with
a maximum token limit of 4096, to sample 8 re-
sponses. Additionally, we apply chain-of-thought
(CoT) for generating both answers and their rea-
soning.

D Prompt Template

For Best-of-N sampling using LLaMA-3.2-Vision
as the generative reward model, the prompt tem-
plate is provided in Table 4. For image caption-
ing with LLaMA-3.2-Vision and reward modeling
using Tulu-3-RM and Tulu-2.5-RM, the detailed
prompt template can also be found in Table 4.

E Open-Source Model Details

Llama-3.2-11B-Vision-Instruct Llama-3.2
-11B-Vision-Instruct (Dubey et al., 2024) is an
11B-parameter LVLM consisting of three main
components: a vision encoder, an adapter, and a
pre-trained language model. The language model is
based on Llama-3.1-8B-Instruct. The adapter

incorporates cross-attention layers to integrate im-
age representations into the language model. Dur-
ing adapter training, the language model remains
frozen, enabling seamless drop-in replacement
for Llama-3.1 series models without requiring re-
training.

Tulu-2.5-RM Tulu-2.5-RM (Ivison et al., 2024)
is a reward model initialized from L1ama-3.1-8B
and fine-tuned using the Tulu 2 recipe (Ivison et al.,
2023). It is adapted for reward modeling by re-
placing the language modeling head with a linear
layer and fine-tuning it on preference data from di-
verse sources, including Ultrafeedback (Cui et al.,
2024), Nectar (Zhu et al., 2024), HH-RLHF (Bai
et al., 2022), and AlpacaFarm (Dubois et al., 2023),
among others.

Tulu-3-RM Tulu-3-RM (Lambert et al., 2024)
is another reward model initialized from
Llama-3.1-8B and fine-tuned following the Tulu 3
recipe (Lambert et al., 2024). Like Tulu-2.5-RM,
it is adapted for reward modeling by replacing
the language modeling head with a linear layer.
However, Tulu-3-RM is trained on a mixture
of on-policy and off-policy preference data
collected through an enhanced version of the
Ultrafeedback (Cui et al., 2024) pipeline. This
dataset includes prompts from various sources,
such as the SFT dataset in the Tulu 3 recipe,
WildChat (Zhao et al., 2024), Ultrafeedback (Cui
et al., 2024), and synthetic persona-augmented
instructions.

F Qualitative Results

We investigate reward model behavior before and
after merging, and we evaluate qualitatively on
VL-RewardBench. Tables 5 and 6 present re-
sults for Tulu-2.5-RM, while Tables 7 and 8 show
Tulu-3-RM. Red text indicates misalignment with
the image. Before merging, the text-based reward
model made incorrect predictions. After merging,
the vision-language reward models correctly iden-
tified the better response. In most cases, more ad-
vanced merging methods—such as task arithmetic,
TIES, and DARE—produce larger reward differ-
ences between chosen and rejected responses than
simple weighted averaging.
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G  Full Results
G.1 Main Results

The main results of merging with Tulu-2.5-RM
are discussed in Section 4.3 of the main text. As
shown in Table 1, merged VLRMs consistently
outperform Llama-3.2-Vision and Tulu-2.5-RM
across nearly all merging methods and benchmarks.
Notably, in VL-RewardBench, they show the great-
est improvement in the Hallucination domain. In
Best-of-N evaluation, they perform well in both
TextVQA and MMMU-Pro. Additionally, merged
VLRMs match or surpass the strong Cascade base-
line, suggesting that merging captures more infor-
mation than simply cascading two models.

A similar trend is observed when merging with
Tulu-3-RM. As shown in Table 9, merged VLRMs
outperform Llama-3.2-Vision and Tulu-3-RM
across most methods and benchmarks. In VL-
RewardBench, they improve mainly in the Gen-
eral and Hallucination domains. For Best-of-N
evaluation, they perform well in MMMU-Pro,
but only a few achieve results comparable to
Llama-3.2-Vision in TextVQA, likely due to
Tulu-3-RM’s weaker performance in this task.
While merging with L1ama-3.2-Vision enhances
performance over Tulu-3-RM, it does not surpass
Llama-3.2-Vision’s score. Additionally, merged
VLRMs exceed the strong Cascade baseline in
other benchmarks and remain competitive with it
in TextVQA.

In Table 12, we compare our merged VLRMs
with large open-source LVLMs and commercial
systems on VL-RewardBench. Surprisingly, our
merged VLRMs outperform 90B LVLMs and
achieve performance comparable to commercial
models, demonstrating the effectiveness of trans-
ferring textual preferences from text-based RMs to
LVLMs.

G.2 Without Image Input

We conduct an ablation study by evaluating
models without image input. Full results with
Tulu-2.5-RM are shown in Table 10. Models with
image input consistently outperform those with-
out it across various merging techniques, suggest-
ing that the vision encoder actively contributes af-
ter merging rather than performance gains being
solely due to the text-based RM. This indicates that
merged VLRMs effectively utilize the vision en-
coder in most cases. Notably, in VL-RewardBench,
merged VLRMSs match or surpass those without

image input, especially in the hallucination do-
main, where image input significantly improves
performance. In Best-of-N evaluation, models with
image input perform better in the TextVQA and
MMMU-Pro Vision sets. However, in the MMMU-
Pro Standard set, image input does not provide an
advantage, likely because this set emphasizes text
reasoning, where reward assessments depend more
on textual coherence than visual information.

Full results with Tulu-3-RM are shown in
Table 11, following a similar trend. In VL-
RewardBench, merged VLRMs outperform those
without image input in the hallucination domain
and are comparable to or surpass them in general
and reasoning domains. Image input also enhances
Best-of-N evaluation, particularly in TextVQA and
MMMU-Pro Vision. However, in the MMMU-Pro
Standard, image input does not provide a clear ad-
vantage, reaffirming that this set prioritizes text
reasoning over visual input.

G.3 Effect of Merging Hyperparameters

In this study, we optimize hyperparameter merg-
ing using sampled instances from RLAIF-V. The
results, based on 400 sampled RLAIF-V instances
used as a validation set, are presented in Tables 13
to 22. Bold text highlights the best performance,
while text with * indicates cases where scores are
tied. In these cases, an additional 100 samples are
used, and * marks the top-performing result among
them.

Figures 3 to 12 show the effect of hyperparame-
ters across various benchmarks, merging methods,
and text-based RMs. The results reveal that op-
timal hyperparameters differ across these factors,
emphasizing the importance of a well-constructed
validation set. Future research could further ex-
plore this. For example, Figure 3 shows the results
of searching for A values between 0 and 1 for the
Linear method using Tulu-2.5-RM. In the VL-
RewardBench, a mid-range A produces the best
performance, while in the MMMU-Pro vision set,
a smaller \ yields better results. This variation
suggests that hyperparameter choices influence the
performance of the final merged VLRMs differ-
ently depending on the task.

Moreover, we observe a trend consistent with
prior studies (Yadav et al., 2024; Yu et al., 2024a):
even when task vectors are reduced to lower rates
(e.g., 0.4, 0.2), merged VLRMs continue to per-
form well, aligning with findings on LLM merging.
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Best-of-N Sampling Prompt template for L1ama-3.2-Vision

<|start_header_id|>system<|end_header_id|>

You are a highly capable multimodal Al assistant tasked with evaluating answers to visual questions.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Please analyze the following image and question, then evaluate the provided answer:

Question:

{INSTRUCTION}

Answer:

{RESPONSE}

Evaluate the answer based on the following criteria:
1. Accuracy: How well does the answer align with the visual information in the image?
Score: [1 (Poor) to 5 (Excellent)]

2. Completeness: Does the answer fully address all aspects of the question?
Score: [1 (Poor) to 5 (Excellent)]

3. Clarity: Is the answer well-articulated and easy to understand?
Score: [1 (Poor) to 5 (Excellent)]

4. Relevance: Does the answer directly relate to the question and the image?
Score: [1 (Poor) to 5 (Excellent)]

After your evaluation, please include:

1. Reasoning: A detailed explanation for each criterion, highlighting why you assigned the given score.
2. Overall Assessment: Provide a n overall quality score (1 to 5) for the answer.

<|eot_id|>

Image Captioning Prompt template using L1ama-3.2-Vision

<|start_header_id|>system<|end_header_id|>
You are a highly capable multimodal Al assistant tasked with evaluating answers to visual questions.
<|eot_id|><|start_header_id|>user<|end_header_id|>

{IMAGE} Please describe this image according to the given question: {INSTRUCTION}
<|eot_id|>

Prompt template for reward modeling

<|start_header_id|>user<|end_header_id|>

{INSTRUCTION}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{RESPONSE}
<|eot_id|>

Table 4: Prompt template for best-of-n sampling, image captioning and reward modeling.
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Image:

Query: Describe this image in detail.

Response 1:

The image showcases a lively scene of a couple of kids playing soccer on a field. They are kicking a sports
ball around while several people, including young men and other onlookers, are watching and enjoying
the game.

The spectators are spread throughout the scene, with some standing in different spots around the grassy
area. There are also numerous chairs set up in the vicinity, possibly for the audience to take a rest or
gather at a later time. Furthermore, various personal items, such as backpacks and a handbag, can be
observed near the chairs.

Additionally, a few cars and an umbrella are present in the background, hinting at an outdoor, casual
setting for this friendly soccer match.

Response 2:

The image showcases a lively scene of a couple of kids playing soccer on a field. They are kicking a sports
ball around while several people, including young men and other onlookers, are watching and enjoying
the game. The spectators are spread throughout the scene, with some standing in different spots around
the grassy area. There are also numerous chairs set up in the vicinity, possibly for the audience to take
a rest or gather at a later time. Moreover, the soccer goalposts stand tall, ready for the players to score.
Additionally, the grassy terrain adds to the natural charm of the setting, making it an ideal place for a
friendly soccer match.

Score comparison:

Method Response 1 Score | Response 2 Score
Tulu-2.5-RM 2.17188 2.27930
Linear 1.89551 1.60156
Task Vec. 3.50391 1.82422
TIES 2.67773 1.96387
DARE + Task Vec. 3.51758 1.69141
DARE + TIES 3.44336 1.65430

Table 5: Qualitative results on VL-RewardBench using TULU-2. 5-RM for merging.
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Image:

Query: What is still on the tray?

Response 1:
There are still two portions of fries left on the tray.

Response 2:
There are still two hot dogs and some fries left on the tray.

Score comparison:

Method Response 1 Score | Response 2 Score
Tulu-2.5-RM 0.56885 1.20508
Linear 0.60986 0.38477
Task Vec. 2.47461 0.55273
TIES 1.76953 1.10840
DARE + Task Vec. 2.5918 0.62988
DARE + TIES 2.46484 0.43701

Table 6: Qualitative results on VL-RewardBench using TULU-2.5-RM for merging.
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Image:

=R OMNLLY

Query: How many bananas are there in the image?

Response 1:
In the picture, there are at least 26 bananas. The bananas are divided into several bunches, which may
indicate that they vary in size and ripeness.

Response 2:
There are 47 bananas in the picture. The bananas are divided into several bunches, which may indicate
that their size and ripeness are different.

Score comparison:

Method Response 1 Score | Response 2 Score
Tulu-3-RM 1.4043 2.33594
Linear 1.33984 0.51074
Task Vec. 5.58203 4.90234
TIES 7.99219 7.55469
DARE + Task Vec. 4.35938 2.88672
DARE + TIES 5.51953 5.20312

Table 7: Qualitative results on VL-RewardBench using TULU-3-RM for merging.
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Image:

Query: Describe this image in detail.

Response 1:

In the image, there is a twin-propeller airplane parked on the tarmac, surrounded by a crowd of people.
Some people seem to be disembarking from the plane, while others are walking around in the vicinity.
There are at least 15 people in total, spread out near the airplane.

Luggage is being unloaded, with a suitcase visible near the center of the scene and a handbag located
towards the right side. It appears that the passengers are either arriving at their destination or preparing to
board the aircraft, as the luggage is being sorted and attended to.

Response 2:

In the image, the flight crew consisting of a pilot and co-pilot can be seen conversing near the twin-
propeller airplane parked on the tarmac. A crowd of people surrounds them, with some individuals
disembarking from the plane and others preparing to board. Ground support equipment such as baggage
carts and fuel trucks are visible in the background near the airport terminal building. Luggage is being
unloaded and sorted, with a suitcase and handbag visible in the foreground. The blue stripe on the airplane
adds a pop of color to the scene. It appears that the passengers are either arriving at their destination or
preparing to depart on their journey. An information sign can be seen towards the left side of the image.

Score comparison:

Method Response 1 Score | Response 2 Score
Tulu-3-RM 3.94531 4.74219
Linear 3.66016 2.74414
Task Vec. 5.23828 2.99219
TIES 7.72656 5.67188
DARE + Task Vec. 4.67188 2.24414
DARE + TIES 5.79688 2.88477

Table 8: Qualitative results on VL-RewardBench using TULU-3-RM for merging.
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VL-RewardBench TextVQA MMMU-Pro
Method General Hallucination Reasoning Overall Macro Avg.  Overall  Standard Vision
Llama-3.2-Vision  33.3%* 38.4% 56.6* 42.9% 42.8* 46.4 28.8 19.8
Tulu-3-RM 454 36.6 56.6 43.0 46.2 274 29.4 20.4
Random 50.0 50.0 50.0 50.0 50.0 48.2 29.2 18.4
Cascade 54.1 40.5 57.2 46.7 50.6 38.3 31.3 23.7
Linear 475 51.0 55.0 515 51.2 45.8 29.1 19.0
Task Vec. 63.4 66.4 57.5 63.7 62.4 36.0 31.6 20.9
TIES 59.0 74.1 50.9 66.0 61.4 28.3 30.7 20.6
DARE + Task Vec. 63.4 68.9 58.5 65.4 63.6 36.1 30.2 20.9
DARE + TIES 63.9 65.6 57.2 63.2 62.2 56.9 314 21.8

Table 9: Comparison of merging methods across the VL-RewardBench, TextVQA, and MMMU-Pro datasets using

TULU-3-RM for merging. *Indicates results from Li et al. (2024a).

VL-RewardBench TextVQA MMMU-Pro

Method General Hallucination Reasoning Overall Macro Avg. Overall Standard Vision
Linear 39.3(-2.2) 523 (+20.8) 54.4(-4.1) 51.0(+11.2) 48.7(+49) 54.7(+8.9) 27.8(-1.3) 22.1(+0.5)
w/o image input 415 31.5 58.5 39.8 43.8 45.8 29.1 21.6
Task Vec. 48.6 (+4.3)  59.4 (+20.4)  59.7 (+0.6) 57.9 (+13.0) 559 (+8.4) 59.0(+20.3) 31.0(-0.8) 22.7(+1.7)
w/o image input 443 39.0 59.1 44.9 47.5 38.7 31.8 21.0
TIES 43.7 (-1.1)  58.2(+23.0) 58.5(-0.6) 56.2(+13.5) 53.5(+7.1) 642(+23.3) 29.1(-2.1) 22.6(+1.6)
w/o image input 44.8 352 59.1 42.7 46.4 40.9 31.2 21.0
DARE + Task Vec. 49.2(+4.4) 61.7(+23.4) 61.0(+2.2) 59.7(+152) 57.3(+10.0) 58.8(+22.6) 30.3(-1.8) 22.4(+1.6)
w/o image input 44.8 38.3 58.8 44.5 47.3 36.2 32.1 20.8
DARE + TIES 49.2 (+3.3)  59.1 (+19.2) 58.2(-0.6) 574 (+11.8) 555(+7.3) 57.3(+204) 31.6(-0.5) 22.0(+1.2)
w/0 image input 45.9 39.9 58.8 45.6 48.2 36.9 32.1 20.8

Table 10: Full results comparing merging methods with and without image input, using TULU-2.5-RM for merging.

VL-RewardBench TextVQA MMMU-Pro

Method General ~ Hallucination ~Reasoning Overall Macro Avg. Overall Standard Vision
Linear 475 (-1.1)  51.0(+1.1) 55.0(0.0)  51.5(+0.5) 51.2(0.0) 458 (+25.5) 29.1(+0.5) 19.0(-1.3)
w/o image input 48.6 49.9 55.0 51.0 51.2 20.3 28.6 20.3
Task Vec. 63.4 (+3.8) 664 (+19.3) 575(+44) 63.7(+132) 624(+9.1) 36.0(+1.2) 31.6(-0.1) 20.9 (+0.3)
w/o image input 59.6 47.1 53.1 50.5 53.3 34.8 31.7 20.6
TIES 59.0(-0.6)  74.1 (+33.5) 509(-3.2) 66.0(+19.2) 61.4(+10.0) 283(-0.3) 30.7(-1.0) 20.6(-0.9)
w/o image input 59.6 40.6 54.1 46.8 514 28.6 31.7 21.5
DARE + Task Vec. 63.4(+3.8) 689 (+18.4) 585 (+2.2) 654 (+12.1) 63.6(+8.2) 36.1(-5.8) 30.2(-1.9) 209 (+0.7)
w/0 image input 59.6 50.5 56.3 53.3 55.4 41.9 32.1 20.2
DARE + TIES 63.9 (+8.7) 65.6(+20.9) 572(+1.9) 63.2(+14.2) 62.2(+10.4) 569 (+29.2) 31.4(+0.6) 21.8(+1.4)
w/o image input 55.2 44.7 553 49.0 51.8 27.7 30.8 20.4

Table 11: Full results comparing merging methods with and without image input, using TULU-3-RM for merging.
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Method General Hallucination Reasoning | Overall Macro Avg.
Open-Source Models*
Llama-3.2-Vision-11B-Instruct 333 38.4 56.6 42.9 42.8
Llama-3.2-Vision-90B-Instruct 42.6 57.3 61.7 56.2 53.9
Qwen2-VL-72B-Instruct 38.1 32.8 58.0 39.5 43.0
Molmo-72B-0924 339 423 549 44.1 43.7
NVLM-D-72B 38.9 31.6 62.0 40.1 44.1
Proprietary Models*
Gemini-1.5-Flash (2024-09-24) 47.8 59.6 58.4 57.6 55.3
Gemini-1.5-Pro (2024-09-24) 50.8 72.5 64.2 67.2 62.5
Claude-3.5-Sonnet (2024-06-22) 434 55.0 62.3 55.3 53.6
GPT-40-mini (2024-07-18) 41.7 34.5 58.2 41.5 44.8
GPT-40 (2024-08-06) 49.1 67.6 70.5 65.8 62.4
Using TULU-2.5-RM for merging
Linear 39.3 523 54.4 51.0 48.7
Task Vec. 48.6 59.4 59.7 57.9 559
TIES 43.7 58.2 58.5 56.2 53.5
DARE + Task Vec. 49.2 61.7 61.0 59.7 57.3
DARE + TIES 49.2 59.1 58.2 574 55.5
Using TULU-3-RM for merging
Linear 47.5 51.0 55.0 51.5 51.2
Task Vec. 63.4 66.4 57.5 63.7 62.4
TIES 59.0 74.1 50.9 66.0 61.4
DARE + Task Vec. 63.4 68.9 58.5 65.4 63.6
DARE + TIES 63.9 65.6 57.2 63.2 62.2

Table 12: Full results on VL-RewardBench, compared with current strong large vision-language models. *Indicates
results from Li et al. (2024a).
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Figure 7: Full results of merging L1ama-3.2-Vision and Tulu-2.5-RM (DARE + TIES)
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Figure 9: Full results of merging L1ama-3.2-Vision and Tulu-3-RM (Task Vec.)
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Figure 10: Full results of merging L1ama-3.2-Vision and Tulu-3-RM (TIES)
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Figure 11: Full results of merging L1ama-3.2-Vision and Tulu-3-RM (DARE + Task Vec.)
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Figure 12: Full results of merging L1ama-3.2-Vision and Tulu-3-RM (DARE + TIES)
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A ‘0.0 01 02 03 04 05 06 07 08 09 10
Overall Acc.‘49.8 523 503 525 520 49.0 473 46.5 465 503 470

Table 13: Linear merging using Tulu-2.5-RM as the text-based RM, evaluated on sampled RLAIF-V.

A ‘ 00 01 02 03 04 05 06 07 08 09 1.0
OverallAcc.‘55.3 500 533 545 535 493 528 54.0 538 548 55.3*

Table 14: Task Vec. merging using Tulu-2.5-RM as the text-based RM, evaluated on sampled RLAIF-V.

A | 1.0 | 0.7 | 0.5
d | 08 06 04 02|08 06 04 02|08 06 04 02
Overall Acc. | 53.5 53.8% 523 50.0|535 538 523 503|535 538 523 500

Table 15: TIES merging using Tulu-2.5-RM as the text-based RM, evaluated on sampled RLAIF-V.

A | 1.0 | 0.7 | 0.5
d | 08 06 04 02|08 06 04 02]08 06 04 02
Overall Acc. | 553 565 545 553|545 540 535 558|490 493 518 548

Table 16: DARE + Task Vec. merging using Tulu-2.5-RM as the text-based RM, evaluated on sampled RLAIF-V.

A | 1.0 | 0.7 | 0.5
d | 08 06 04 02]08 06 04 02|08 06 04 02
Overall Acc. | 55.5 56.0* 560 555|533 543 538 523|515 498 515 518

Table 17: DARE + TIES merging using Tulu-2.5-RM as the text-based RM, evaluated on sampled RLAIF-V.

A ‘0.0 01 02 03 04 05 06 07 08 09 10
OverallAcc.‘Sl.S 46.8 503 493 52.0 50.8 493 473 495 493 513

Table 18: Linear merging using Tulu-3-RM as the text-based RM, evaluated on sampled RLAIF-V.

A ‘0.0 01 02 03 04 05 06 07 08 09 10
OverallAcc.‘49.3 535 498 498 51.0 51.0 53.8 53.0 53.0 503 553

Table 19: Task Vec. merging using Tulu-3-RM as the text-based RM, evaluated on sampled RLAIF-V.

A | 1.0 | 0.7 | 0.5
d | 08 06 04 02|08 06 04 02|08 06 04 02
Overall Acc. | 53.5 533 540 510|538 543 543* 515|535 533 540 510

Table 20: TIES merging using Tulu-3-RM as the text-based RM, evaluated on sampled RLAIF-V.

A \ L0 \ 0.7 \ 05
d | 08 06 04 02|08 06 04 02]08 06 04 02
Overall Acc. | 548 558 553 580|538 538 523 503|500 503 510 515

Table 21: DARE + Task Vec. merging using Tulu-3-RM as the text-based RM, evaluated on sampled RLAIF-V.

A \ 10 \ 0.7 \ 05
d | 08 06 04 02|08 06 04 02]08 06 04 02
Overall Acc. | 55.8 558 56.0 568|528 525 525 523|553 538 480 545

Table 22: DARE + TIES merging using Tulu-3-RM as the text-based RM, evaluated on sampled RLAIF-V.
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