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Abstract

It has been frequently observed that human
speakers align their language use with each
other during conversations. In this paper, we
study empirically whether large language mod-
els (LLMs) exhibit the same behavior of con-
versational adaptation. We construct a corpus
of conversations between LLMs and find that
two LLM agents end up making more similar
syntactic choices as conversations go on, con-
firming that modern LLMs adapt their language
use to their conversational partners in at least a
rudimentary way.

1 Introduction

It has been documented broadly that when humans
talk to each other, they adapt their language use to
their communication partners by coordinating their
behavior and language. Humans align not only
their gestures, posture, and speech rate (Holler and
Wilkin, 2011; Shockley et al., 2009; Jungers and
Hupp, 2009), but also their linguistic decisions at
deeper levels, such as semantics and syntax (Bock,
1986; Garrod and Anderson, 1987). In other words,
the distribution over syntactic structures of two
human speakers becomes more similar as a conver-
sation progresses.

In this paper, we investigate whether large lan-
guage models (LLMs) adapt their syntactic choices
to their conversational partners as well. While it is
well known that LLMs can be explicitly prompted
towards embodying different “personas” and chang-
ing the style of the language they generate (Desh-
pande et al., 2023; Thillainathan and Koller, 2025),
it is unclear whether merely being present in a con-
versation with an interlocutor is sufficient to make
LLMs adapt their language use to their interlocu-
tor’s. The ability to adapt to the communication
partner’s language is associated with increased suc-
cess in goal-oriented conversations (Reitter and
Moore, 2014), and it enables a dialogue system to

meet a user’s language use rather than requiring
the user to adapt to the system (Schlangen, 2022).
Language models will only serve as effective foun-
dations for dialogue systems if they prove capable
of implicitly adapting to a user’s language.

To this end, we create a new dataset of conver-
sations between LLMs in which both LLMs are
prompted to initially exhibit different language use.
We then measure the dynamics of syntactic lan-
guage adaptation over the course of the conversa-
tions, using a method adapted from the human-
human analysis of Reitter and Moore (2014). We
find that GPT-4o (Hurst et al., 2024) and Llama-
3-8B (Grattafiori et al.) conversations show sta-
tistically significant adaptation when comparing
syntactic repetitions within conversations against
repetitions across conversations, replicating Reit-
ter’s findings for human conversations. We further
show this is a continuous process active throughout
conversations and conclude by discussing whether
these findings demonstrate “human-like” alignment
in LLMs.

Our code and data are publicly available1.

2 Background

As we mentioned above, humans adapt their lan-
guage use to their communication partners across
various linguistic levels. In this paper, our focus is
on syntactic adaptation: Do the distributions over
the syntactic structures that two interlocutors pro-
duce become more similar over the course of a
conversation?

In the psycholinguistics literature on human com-
munication, two separate (but not exclusive) mech-
anisms have been proposed to explain the mutual
adaptation of language use. Rasenberg et al. (2020)
contrast two theoretical views that explain the pro-
cess through alignment on different cognitive lev-

1https://github.com/coli-saar/
llm-language-accomodation
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Figure 1: Phrase Structure Tree and Extracted Produc-
tion Rules

els: on a conscious level, in which cooperative deci-
sions establish a situational common ground (Bren-
nan and Clark, 1996), and a subconscious level,
in which automatic priming leads to aligned rep-
resentational states (Pickering and Garrod, 2004).
In psycholinguistics, priming refers to a process
in which encountering a word or construction tem-
porarily increases the activation of a cognitive rep-
resentation, thereby increasing the probability for
the word or construction to be reproduced.

In this paper, we study the conversational be-
havior of artificial, LLM-based agents. We will
primarily focus on the level of outwardly observ-
able changes to the language use and describe it
with the theory-neutral word adaptation. We will
discuss in Section 5 the extent to which concepts
like alignment and priming can apply to LLMs.

Related Work. Cai et al. (2024) examined syn-
tactic adaptation in LLMs, with a focus on short-
term priming. They showed that ChatGPT and
Vicuna are more likely to complete a sentence
with a double object or a prepositional object when
primed with a sentence of the respective type. We
extend this research to long conversations with nat-
ural sentences rather than carefully constructed one-
sentence stimuli.

3 Measuring human-human adaptation

The phenomenon of long-term syntactic adaptation
was first measured on corpora of human-human
dialogues by Reitter and Moore (2014). The basic
idea is to determine whether the usage frequency
of a syntactic structure (specifically, a rule in a
context-free grammar) in the first half of a conver-
sation has a statistical impact on its frequency in
the second half.

We follow Reitter in splitting each conversation
in a dialogue corpus into two parts. We call the
first 49% of each conversation PRIME and the last
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Figure 2: Sampling process to analyse syntactic align-
ment. Samples are drawn by checking rule occurences
in the same conversation and in different random con-
versations.

49% of each conversation TARGET; the middle 2%
are discarded to ensure that we measure long-term
adaptation as opposed to short-term priming. On
corpora that are not already syntactically annotated,
we parse each conversation with the Neural Berke-
ley Parser2 (Kitaev and Klein, 2018; Kitaev et al.,
2019), to obtain a set of context-free production
rules for the PRIME and TARGET section of each
conversation, respectively (see Fig. 1).

Adaptation takes place if rule repetitions are
more likely between the PRIME and TARGET of the
same conversation (where adaptation is possible),
compared to a PRIME and TARGET of different con-
versations (where no adaptation could have taken
place). In order to fit a model that can find such an
effect, we sample data from our conversations in
the following way: For each rule across the TAR-
GETs of all conversations, we draw two samples,
one for which we check whether that rule has been
uttered within the same conversation, but by the
other speaker, and one sample for which we check
whether that rule has been uttered by a random
speaker of a random other conversation. Figure 2
depicts this process. For every sample, we encode
whether a rule was found this way in a binary vari-
able Prime. Another binary variable, SameConv, is
used to indicate whether we looked for a prime in
the same conversation (1) or in a different, random
conversation (0). If repetitions are more likely be-
tween speakers within conversations, such that we
see an effect of SameConv on Prime, we take that
as evidence of cross-speaker adaptation.

2We used the benepar_en3_large model of the benepar
python package for parsing and spacy’s en_core_web_md
model for tokenization.
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We further include features representing the
log-frequency of rules across all conversations
(ln(Freq)), as more frequent rules are expected to
be more likely to appear in any PRIME, and a vari-
able ln(Size). This second variable encodes the
amount of different rules that a speaker used in the
PRIME of a conversation, i.e. the size of the set
of rules that we use to look for a prime; a larger
set increases the probability of any rule to occur.
We follow Reitter and Moore (2014) in excluding
rules that appear only once in the whole dataset and
rules that have disproportionately high frequencies
(around 0.3% of each dataset), because these rules
are never primed or almost always primed. Includ-
ing these rules in the analysis does not substantially
change the results (see Appendix D). We further
remove structures that are lexically identical.

Our analysis differs from Reitter’s original
method in two aspects. First, we consider only
overlaps between rule uses in TARGET with uses
in PRIME by the other speaker. This eliminates ef-
fects that solely stem from speaker idiosyncrasies
or the conditioning of LLM-generated language on
its own prior output. Second, our analysis includes
the set size of rules used to check for a prime.

3.1 Alignment in human conversations
We replicate Reitter’s results on human-human con-
versations to ensure that we obtain comparable re-
sults after our modifications. We use the method
described above to analyze the Switchboard corpus
(Marcus et al., 1994), which comprises 650 syn-
tactically annotated telephone conversations (see
Fig. 4 in Appendix B for an overview of its com-
position). This is in contrast to Reitter’s work,
which used the HCRC Map Task corpus (Anderson
et al., 1991), consisting of task-oriented conversa-
tions. By looking at Switchboard as opposed to
Map Task, we demonstrate alignment effects on
non-task-oriented conversations, facilitating com-
parison with LLM-generated conversations, and
we make use of hand-annotated rather than auto-
matically parsed syntactic structures.

We fit a mixed-effects logistic regression to the
sampled data using the generalized linear mixed
models (GLMM) of Python’s pymer4 (v0.8.2)
package. We included a nested random intercept
for conversations and speakers and a random slope
for ln(Freq) and centered fixed effects except Same-
Conv. We selected the model through a backward
selection process. Results are shown in Table 1.

We find that SameConv (β = 0.228, p < 0.001)

has a significant positive effect, replicating Reitter’s
findings that humans align syntactically to their
partners over the course of a conversation.

4 Measuring LLM-LLM adaptation

We follow the same method to analyze syntactic
adaptation in conversations of GPT-4o and Llama-
3-8B.

Dataset. One challenge towards this goal is the
availability of a suitable dataset of LLM conver-
sations. We require a dataset consisting of long
natural conversations (with no intervening task
prompts) in which the speakers use varying syn-
tactic structures to make adaptation possible and
evenly distributed utterance lengths.

Existing datasets of conversations with LLMs
do not satisfy these requirements. UltraChat (Ding
et al., 2023) is a dataset of LLM-LLM conver-
sations, but these conversations follow simple
question-answering between a user and a model
“persona”. Conversations are too short and there
is no variability between the language use across
conversations. By contrast, available datasets
of human-LLM conversations, such as WildChat
(Zhao et al., 2024), consist of conversations that
each have unique instructions by the user. This
makes conversations incomparable and therefore
unsuitable for a statistical analysis of adaptation.

We therefore created our own dataset by let-
ting GPT-4o and Llama-3-8B3 converse with them-
selves. We created 17 different conversational
agents with identical system prompts, except for
an initial specification of a “language persona” that
is unique to each agent. We then generated conver-
sations between pairs of LLM agents by iteratively
prompting each of them for the next utterance, in-
cluding the context of the conversation history. Iter-
ations were stopped, once a conversation surpassed
a predefined length threshold. All prompts for man-
aging the conversations and defining the language
personas can be found in Appendix A.

To ensure sufficient variety in the agents’ lan-
guage use, we further generated conversations
where each agent conversed with itself. We then
calculated how often each syntactic rule was used
and normalized these frequencies to create a dis-
crete probability distribution of syntactic rules for
each agent. To compare these distributions, we
measured their distances using the Jensen-Shannon

3We used GPT-4o-2024-08-06 and Meta-Llama-3-8B-
Instruct with default parameters.
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Switchboard Corpus
β SE z p > |z|

Intercept -2.927 0.018 -158.8 0.000
ln(Freq) 1.174 0.008 143.2 0.000
SameConv 0.228 0.023 9.9 0.000
ln(Size) 1.402 0.033 41.9 0.000
ln(Freq):SameConv -0.101 0.01 -9.8 0.000
ln(Freq):ln(Size) 0.068 0.015 4.7 0.004

GPT Corpus
β SE z p > |z|

-2.031 0.048 -42.5 0.000
1.275 0.028 45.6 0.000
0.198 0.056 3.5 0.000
1.175 0.107 11.0 0.000

-0.146 0.035 -4.2 0.000
0.266 0.062 4.3 0.000

Llama Corpus
β SE z p > |z|

-2.016 0.049 -41.0 0.000
1.333 0.030 44.5 0.000
0.505 0.052 9.6 0.000
0.825 0.147 5.6 0.000

-0.252 0.032 -7.8 0.000
-0.005 0.088 -0.06 0.952

Table 1: The regression models for the Switchboard corpus (left) and the GPT corpus (middle) and LLama corpus
(right). Effects show high significance except for the interaction between ln(Freq) and ln(Size) in the Llama corpus.

divergence (JSD). See Figures 9 and 10 in Ap-
pendix C for details. The results confirm a high
degree of syntactic variety, with JSD values of up
to 0.69 for GPT-4o and 0.70 for Llama-3-8B.

Adaptation in LLM conversations. We gener-
ated 136 conversations for each model by pairing
up every conversational agent with every other con-
versational agent, all on the topic “What makes a
day a good day?” In GPT conversations, twelve of
them ended in repeating patterns (see Appendix E)
for Llama only one; we excluded them and used the
remaining 124 and 135 conversations to form the
GPT and Llama corpora respectively. The distribu-
tions of conversation and utterance lengths closely
mirror that of the Switchboard corpus (cf. Fig. 5,
Fig. 6 and Fig. 4 in Appendix B).

We ran the analysis described in Section 3.1 on
the corpora. Because agents appear in multiple
different conversations, we took care not to sam-
ple from identical agents from other conversations.
Fixed effects, except SameConv, are centered. The
models were selected using backward selection.
The results are shown in Table 1.

For both Llama and GPT, SameConv has a sig-
nificant positive effect on Prime (β = 0.198, p <
0.001 and β = 0.364, p < 0.001), showing that
there is syntactic adaptation.

Fine-grained tracking of the adaptation process.
To gain a deeper understanding of the adaptation
process performed by the LLMs, we performed a
fine-grained analysis of adaptation over the course
of the conversation. To do so, we again directly
compared the distributions of syntactic structures
used by two different agents; however, this time,
we focused on comparing the distributions to see
how they evolve throughout a conversation. To
obtain reliable estimates of the distributions, we
created 520 conversations between agents 5 and 6,
a pair of agents with moderate initial JSD (cf. Fig.
9, 10), while keeping the topic the same (cf. Ap-
pendix A). Due to repeating patterns, we excluded

14 conversations of GPT-4o and 7 of the Llama
model.

To observe how the similarity of the two agents’
distributions evolves, we split the remaining con-
versations into sections of 200 words (see Fig. 7,
8 in Appendix B for an overview of the data), and
compare the distributions of used rules by the two
agents for each split. Again, we obtain these proba-
bility distributions by normalizing rule frequencies
for each split across conversations. To estimate the
variance of these calculations, we perform them
on 100 bootstraps of the data. Each bootstrap is
a collection of conversations that is drawn with
replacement from the original GPT and Llama con-
versations, therefore resulting in 100 collections
of 506 and 513 randomly drawn conversations for
each model. We report the means and standard
deviations of these 100 JSD values across splits in
Fig. 3.

We find that the mutual adaptation of the two
LLM agents is a gradual process that persists
throughout the conversation for both Llama-3-8B
and GPT-4o. The rate of adaptation is relatively
constant, with the strongest adaptation happening
in the first split.

5 Discussion

Throughout the paper, we have avoided using the
words “alignment” and “priming” for the LLMs’
adaptation process to steer clear of any connota-
tions about human cognitive processes. While we
have established that the LLMs’ syntax becomes in-
creasingly similar to their conversational partner’s,
this does not necessarily mean that this process is
driven by a similar underlying mechanism.

An LLM does not maintain an explicit mental
model of its interlocutor’s language use and does
not make conscious decisions on coordinating it
with its interlocutor. Thus it seems inappropriate,
under the notion of alignment sketched in Section 2,
to explain the LLMs’ adaptive behavior as align-
ment. At the same time, priming effects in humans
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Figure 3: Jensen-Shannon divergence scores between
agents 5 and 6 across splits of conversations.

are usually assumed to impact their language use
only in the short term. One conceivable explanation
for GPT-4o’s and Llama-3-8B’s ability to perform
long-term adaptation is that they condition the lan-
guage they produce on the previous conversation
(a mechanism that is similar to priming in humans),
but have a much larger capacity than humans for
remembering the verbatim conversational context.

The findings of our second experiment also sup-
port this idea: A gradual adaptation that appears
with increased context length underpins the intu-
ition that LLMs can adapt to longer contexts, and
that longer context correlates with an increased in-
fluence on the production of syntactic structures.
Different from humans, short-term effects, like
those reported in Cai et al. (2024), may therefore
be driven by the same principles as long-term adap-
tation in LLMs. A more detailed analysis would be
an interesting avenue of future research.

6 Conclusion

We showed that GPT-4o and Llama-3-8B can grad-
ually adapt their language use to their conversa-
tional partner, to an extent that is similar to what
we observe in human-human conversations. This
observation goes beyond previous findings, which
indicated that an LLM’s language use can be con-
trolled through explicit instructions and influenced
by priming from the previous utterance. A more de-
tailed comparison of the mechanisms that humans
and LLMs use to achieve such long-term adaptation
is an interesting avenue of future work.
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8 Limitations

This work focuses on texts generated with GPT-4o
and Llama-3-8B. We decided to use these models,
as they cover a range between one of the highest
performing accessible models and an open sourced,
but smaller and less performant model. The find-
ings suggest that syntactic adaptation generalizes
to other models as well, which is supported by the
findings of Cai et al. (2024). Further research could
explore additional models to investigate the under-
lying factors that may influence syntactic adapta-
tion.

Our study concentrates on syntactic structures of
the English language. LLMs may exhibit similar
behavior for other languages and other linguistic
features, also of different modalities (e.g. intona-
tion, speech rate). It would be interesting to inves-
tigate this in future work.

Furthermore, in this study we controlled for top-
icality by keeping the topic of all conversations
identical. It is unclear whether topicality has an
effect on syntactic structures, but there is evidence
that lexical choices influence the syntax at least to
some extent (lexical boost, Cai et al., 2024). To
what extent topicality can have an effect on syntac-
tic choices in LLMs is left as an avenue for future
research.

Moreover, our study currently only focuses on
LLM-LLM conversations. It would be interesting
to see how these effects impact human-LLM con-
versations, especially given the societal impact of
human-LLM interaction.

The analysis that we adapt from Reitter and
Moore (2014) loses information by encoding the
presence of syntactic structures in a binary variable.
While the analysis is suitable for capturing adapta-
tion in general, it lacks the sensitivity to account for
the occurrence rate of rules in a meaningful way.

9 Ethical Considerations

We believe that our work is unlikely to have an im-
mediate ethical or societal impact. However, there
is potential that the reported effects serve as a foot-
print of LLM generated conversations – we didn’t
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prompt the model to adapt to the language, but this
effect appears inherently. This potentially leads to
patterns that are intrinsic to LLMs, which could be
leveraged to detect LLM generated conversations.
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A Prompts

A.1 System Prompt

The following template was used as the system
prompt in the data generation process:

You are in a conversation. There are two speakers,
SpeakerA and SpeakerB.
You are SpeakerA. The conversation will consists
of turns in the form:
[SpeakerA’s utterances]
[SpeakerB’s utterances]
[SpeakerA’s utterances]
. . .
You need to only give [SpeakerA’s utterances].
You will be prompted by [Language] that will
instruct you on the language that you shall use
as SpeakerA. Further, you will be prompted by
[Topic], the topic of the conversation. Behave
as in a normal conversation with SpeakerB to
discuss the [Topic]. [Language] {That agent’s
specific persona, see item A.2)}. [Topic] What
makes a day a good day?

A.2 Language Personas

The following language personas were used to vary
the language of each agent. Language personas are
inserted into the system prompt at the designated
position.

1. Your language is precise, and unambiguous.
You use clear and simple sentences.

2. Your language is gentle and thoughtful. You
use concise and not overly complex sen-
tences, to convey meaning efficiently.

3. Your language is dynamic, and provocative.
You often use vivid metaphors.

4. Your language is introspective, and deliber-
ate. You use contemplative phrasing.

5. Your language is smooth and reassuring. You
employ gentle pauses and a steady rhythm.

6. Your language is analytical and precise. You
use complex sentence structures sparingly,
preferring clear, well-organized sentences.

7. Your language is conversational and warm.
You use relaxed, varied sentence structures
that mirror casual speech, inviting readers
into an open, friendly dialogue.

8. Your language is inquisitive and reflective.
You frequently use open-ended questions
and layered sentences that encourage readers
to pause and ponder.

9. Your language is poetic and evocative. You
lean into complex, image-rich sentences that
build vivid scenes and sensations, letting
metaphors flow freely.

10. Your language is structured and methodical.
You rely on orderly, sequential sentences
that build upon each other in a clear, logi-
cal progression, guiding readers through a
well-defined thought process.

11. Your language is hesitant and unsure.
You use fragmented sentences and trailing
thoughts, leaving ideas partially formed, as
if questioning each phrase.

12. Your language is overly cautious and repet-
itive. You tend to rephrase ideas multiple
times in a single sentence.

13. Your language is anxious and scattered. You
jump between ideas mid-sentence, creating a
disjointed flow that feels hurried and restless.

14. Your language is straightforward, and no-
nonsense. You avoid fluff and filler.

15. Your language is crisp and engaging. You
use short, impactful sentences to create em-
phasis.

16. Your language is bold and unapologetic. You
rely on direct, declarative sentences that
avoid qualifiers.

17. Your language is understated and subtle. You
use concise sentences that suggest rather
than state.

B Dataset Compositions

Statistics of the Switchboard corpus and the con-
versations generated with GPT-4o and Llama-3-8B
are shown in Figure 4, Figure 5, and Figure 6 re-
spectively. The compositions of the conversations
between agents 5 and 6 for GPT-4o and Llama-3-
8B can be seen in Figures 7 and 8. The agents
were chosen, as they provide very even utterance
lengths across splits. This allows for similarly good
estimations on their rule probability distributions.

The cost for generating all conversations using
OpenAI’s API was around 100$. Generating the
Llama conversations took ≈ 7 GPU hours on a
single NVIDIA H100.

C Base Divergence Values between
Agents

In our study, we compared the distributions of rules
that agents use throughout conversations using the
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Figure 4: Statistics of the Switchboard Corpus.
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Figure 5: Statistics of the 124 conversations between agents generated with GPT-4o (GPT Corpus).

881



Figure 6: Statistics of the 135 conversations between agents generated with Llama-3-8B (Llama Corpus).
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Figure 7: Statistics of the 506 conversations between agents 5 and 6 generated with GPT-4o. Utterance lengths
(right) are averaged across all conversations for each split and for both agents.
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Figure 8: Statistics of the 513 conversations between agents 5 and 6 generated with Llama-3-8B. Utterance lengths
(right) are averaged across all conversations for each split and for both agents.
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Figure 9: Jensen-Shannon divergence values between agents. Distributions of syntactic rules are taken from 10
GPT-4o conversations of all agents with themselves (see Appendix C). Appendix A gives an overview of their
different language prompts. Agents 14-17 were excluded due to repeating patterns in their conversations (see
Appendix E).
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Figure 10: Jensen-Shannon divergence values between agents. Distributions of syntactic rules are taken from 10
Llama-3-8B conversations of all agents with themselves (see Appendix C). Appendix A gives an overview of their
different language prompts.
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Jensen-Shannon divergence as distance measure-
ment. To place our reported values in context, we
provide baseline divergence values between each
agent on an additional set of conversations that
we present here. For each agent, we calculated
their probability distribution of uttered rules from
10 conversations with themselves. The topic of
all conversations was again kept identical: ”What
makes a day a good day?” Conversations were cre-
ated turn by turn and stopped once they surpassed
a length of 800 words (see Section 4). Probability
distributions are taken to be the normalized fre-
quencies of rule occurrences in the 10 conversa-
tions of each agent. Conversations were created
using GPT-4o and Llama-3-8B. In the GPT conver-
sations, agents 14-17 ended in repeating patterns
and were excluded as a result (see Appendix E).
The resulting JSD values of pairwise comparisons
between each agent are shown in Figure 9 for GPT-
4o and Figure 10 for Llama.

D Analysis with all Rules

In our analysis, we exclude rules that have very
high frequencies, and those that appear only once.
To test whether removing these rules affects overall
conclusions, we ran the analysis again on the GPT
corpus using all rules. Results can be found in
Table 2 for Switchboard and in Table 3 for the GPT
corpus.

The results show that effects still persist with
similar effect sizes. The only difference is that
significance values are lower. For the GPT cor-
pus, for example, the p-values for SameConv,
ln(Freq):SameConv, and ln(Freq):ln(Size) are p <
0.004, p < 0.002, and p < 0.012 respectively,
which are much larger than the above recorded
p < 0.000 for all effects.

This shows that including the rules only inflates
the sample space with samples that have identical
values for Prime for both SameConv = 0 and
SameConv = 1.

E Repeating Patterns in Conversations

Some conversations between Llama-3-8B or GPT-
4o ended in repeating patterns. These were short,
repeated statements from both agents, including
repeated expressions of gratitude, farewells, or af-
firmational remarks. Examples are provided in
Figure 11.

GPT Agent3 with itself
Agent3: Indeed. Action is the essential link in
that chain.
Agent3: Correct. It’s crucial for progress.
Agent3: Absolutely. Without it, progress stalls.
Agent3: Yes. Action keeps momentum alive.
Agent3: Precisely. It fuels continuous movement
forward.
Agent3: Correct. It sustains growth and develop-
ment.

...

GPT Agent3 and Agent5
Agent3: Later!
Agent5: Till next time!
Agent3: Till then!
Agent5: See you soon!
Agent3: See you!

...

Figure 11: Repeating patterns in GPT conversations.
An affirmative pattern is shown on the top, a loop of
parting expressions on the bottom.
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β SE z P > |z|
Intercept -3.537 0.022 -159.723 0.000
ln(Freq) 1.202 0.008 149.061 0.000
SameConv 0.263 0.027 9.693 0.000
ln(Size) 1.473 0.039 38.228 0.000
ln(Freq):SameConv -0.103 0.010 -10.147 0.000
ln(Freq):ln(Size) 0.025 0.014 1.821 0.069

Table 2: The regression model for the Switchboard corpus including all rules.

β SE z P > |z|
Intercept -2.255 0.051 -44.013 0.000
ln(Freq) 1.297 0.0260 50.582 0.000
SameConv 0.173 0.061 2.847 0.004
ln(Size) 1.361 0.116 11.724 0.000
ln(Freq):SameConv -0.101 0.033 -3.053 0.002
ln(Freq):ln(Size) 0.140 0.056 2.501 0.012

Table 3: The regression model for the GPT corpus including all rules.
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