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Abstract

Knowledge editing methods like MEMIT are
able to make data and compute efficient up-
dates of factual knowledge by using a single
sentence to update facts and their consequences.
However, what is often overlooked is a “pre-
computation step”, which requires a one-time
but significant computational cost. The au-
thors of MEMIT (Meng et al., 2022b) orig-
inally precompute approximately 44 million
hidden vectors per edited layer, which requires
a forward pass over 44 million tokens. For
GPT-J (6B) (Wang and Komatsuzaki, 2021),
this precomputation step takes 36 hours on a
single GPU, while it takes approximately 40
hours for Llama2-7B (Touvron et al., 2023).
Additionally, this precomputation time grows
with model size. In this paper, we show that
this excessive computational cost is unneces-
sary. Knowledge editing using MEMIT and
related methods, such as ROME and EMMET
(Meng et al., 2022a; Gupta et al., 2024c), can
be performed by pre-computing a very small
portion of the 44 million hidden vectors. We
first present the theoretical minimum number of
hidden vector precomputation required for solu-
tions of these editing methods to exist. We then
empirically show that knowledge editing using
these methods can be done by pre-computing
significantly fewer hidden vectors. Specifically,
we show that the precomputation step can be
done with less than 0.3% of the originally stip-
ulated number of hidden vectors. This saves
a significant amount of precomputation time
and allows users to begin editing new models
within a few minutes.

1 Introduction

Knowledge editing (Yao et al., 2023), or the
ability to edit knowledge stored within the pa-
rameters of large language models (LLMs), is
a topic of growing interest. A specific type of
parameter-modifying knowledge editing methods
called "locate-then-edit" methods (Yao et al., 2023)

allow us to edit any transformer-based LLMs with-
out the need for additional training. The most pop-
ular of these methods are MEMIT (Meng et al.,
2022b), the first successful method that allows
for batched editing, its predecessor ROME (Meng
et al., 2022a; Gupta et al., 2024a), which allows
only one edit at a time, and EMMET (Gupta et al.,
2024c), that generalizes ROME to batched editing.

While these "locate-then-edit" methods do not
require additional training, we cannot just start edit-
ing a newly launched LLM instantly (Yoon et al.,
2024). Each of MEMIT, ROME, and EMMET has
a precomputation step where a large number of
Wikipedia articles are passed through the model
being edited and the intermediate hidden represen-
tations of the edited layers are cached. The editing
loss function aims to preserve the outputs of these
cached hidden representations during the editing
process (Gupta et al., 2024c). Although this needs
to be done only once to edit a model, it still requires
a significant computational overhead. For exam-
ple, the original authors of MEMIT pre-computed
about 44 million hidden vectors per edited layer.
This computation takes about 36 hours for GPT-J
(6B) (Wang and Komatsuzaki, 2021) and 40 hours
for Llama-2 (7B) (Touvron et al., 2023) on a single
GPU1. Additionally, these numbers increase with
the size of the model and the number of layers be-
ing edited. This means that while locate-then-edit
methods do not require additional training and can
be very quick during inference, they do require a
significant initial computational cost which grows
with the model size.

In this paper, we show that this large amount of
precomputation is unnecessary. We first analyze
the closed-form solution for the different editing
algorithms and find the theoretical minimum
amount of tokens required for the precomputation

1Numbers calculated on a single NVIDIA A6000 GPU
with 48 GB GPU memory.
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step. We then empirically show that optimal
knowledge editing performance can be achieved
by performing precomputation on approximately
twice this minimum number. This allows us to
achieve comparable knowledge editing perfor-
mance using less than 0.1% of the originally
stipulated 44 million tokens for GPT2-XL and
GPT-J. We call the efficient versions of these
methods as the FastMEMIT family of editing
methods, which significantly reduce the upfront
computation costs, making it possible to begin
editing models within minutes. We also release
our code, which can be found here - https:
//github.com/scalable-model-editing/
efficient-model-editing.

2 Background

In “locate-then-edit“ knowledge editing methods,
facts for model editing are usually represented in
a key-value format, where the key vector helps lo-
cate a fact, and the value vector provides the target
output after editing (Meng et al., 2022b). For ex-
ample, for the edited fact "The capital of Malaysia
is Singapore," ke corresponds to the query "The
capital of Malaysia is," and ve corresponds to the
new target “Singapore.” Additionally, k0 represents
key vectors whose outputs need to remain constant
during editing, ensuring the editing process doesn’t
impact the general ability (Gupta et al., 2024b) or
unrelated knowledge of edited models.

During editing, we first identify the layer that
is maximally responsible for retrieving a fact, and
then update the corresponding weight matrix to re-
flect the updated fact. In this process, we want to
make sure two things: one is to preserve previously
stored knowledge, and the other one is to memorize
what we edit. For MEMIT (Meng et al., 2022b),
causal mediation analysis showed that the MLP
modules within certain layers are responsible for
storing factual knowledge. The knowledge edit-
ing objective of MEMIT is formulated as follows
(Gupta et al., 2024c):

argmin
Ŵ

λ
∥∥∥ŴK0 −W0K0

∥∥∥
2

F︸ ︷︷ ︸
preservation

+
∥∥∥ŴKE − VE

∥∥∥
2

F︸ ︷︷ ︸
memorization

(1)
The above loss can be interpreted as a summa-

tion of two terms. In the first term, we preserve the
outputs for a collection of input key-vectors (K0)
to preserve the existing knowledge of the model,
while in the second term we force the outputs of

certain key-vectors (KE) to a target (VE). The ar-
gument Ŵ is the second MLP matrix in the FFN
module of a transformer. Since the above objective
is linear in the argument, we can derive a closed
form solution, as shown below:

Ŵ = W0 +∆ where

∆ =
(
VE −W0KE

)
KT

E

(
λC0 +KEK

T
E

)−1

(2)
where W0 is the unedited weight matrix, and

Ŵ refers to the updated weights. k0 denotes the
key-vector for preserving knowledge from the orig-
inal model. K0 = [k01 |k02 | . . . | k0P ] is a matrix
containing all these preserved key-vectors. ke de-
notes the key-vectors representing modified facts,
and KE = [ke1 |ke2 | . . . | keB] is a matrix contain-
ing edited key-vectors. The output at the edited
layer corresponding to ke is denoted by ve and
VE = [ve1 |ve2 | . . . | veB] is the matrix containing
all target vectors.

2.1 Overview of knoweldge editing metrics

In this paper, we evaluate knowledge editing meth-
ods using the following standard knowledge editing
metrics (Meng et al., 2022b):

• Efficacy Score (ES) evaluates the success of
an edit. It is calculated as the percentage of
edits for which P (new fact) > P (old fact).

• Paraphrase Score (PS) evaluates the model’s
generalization ability for an edit, calculated as
the P (new fact) > P (old fact) when a para-
phrase of the editing prompt is used as query.

• Neighborhood Score (NS) evaluates the lo-
cality or specificity of an edit. It is calculated
as the percentage of the facts in the neighbor-
hood of the edited fact that remain unchanged
after an edit.

• Overall Score (S) is the harmonic mean of
ES, PS, and NS.

3 Dataset and Models

We perform singular and batch editing experiments
on the CounterFact dataset (Meng et al., 2022a).
CounterFact is a standard dataset used in knowl-
edge editing. We peform knowledge editing on
three representative models - GPT2-XL (Radford
et al., 2019), GPT-J (6B) (Wang and Komatsuzaki,
2021) and Llama2-7B (Touvron et al., 2023).
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4 Theoretical Minimum Tokens for
Precomputation

One major benefit of the closed-form solution in
MEMIT is the presence of the covariance matrix,
C0 = K0K

T
0 , which can be written as a sum of

outer products of key-vectors as shown below:

C0 = K0K
T
0 =

P∑

i=1

ki0k
iT

0 (3)

Here, P denotes the number of preserved vec-
tors in equation 1. This matrix C0 remains fixed
during editing since it is made up of key-vectors
that serve as the input of the edited matrix, which
is why C0 is precomputed before editing begins.
C0 is one part of the matrix that gets inverted in the
closed-form solution of MEMIT (equation 2). If
we represent the matrix being inverted in the closed
form solution as Ceff, then:

Ceff = λK0K
T
0 +KEK

T
E

= λ

P∑

i=1

ki0k
iT

0 +

B∑

i=1

kiek
iT

e

(4)

A pre-requisite of the closed-form solution to ex-
ist is the invertibility of the Ceff matrix. As shown
above, Ceff matrix is a sum of outer products of
P +B vectors, where B represents the batch size
for editing. For a model with hidden dimension
d, the dimensionality of a key-vector is usually 4d.
This means that the Ceff matrix is a square ma-
trix of dimensionality 4d. For a 4d-dimensional
square matrix which is a summation of rank-1 ma-
trices, it is invertible as long as there are at least
4d-independent vectors in the summation. For ex-
ample, for GPT2-XL with hidden dimension of
1600, the dimensionality of key vectors are 6400.
Thus, as long as representations of at least 6400 in-
dependent key-vectors are preserved or memorized
while editing, Ceff will be an invertible matrix. This
is a fundamental assumption in MEMIT.

We want to find the minimum number of keys
that need to be preserved in order for Ceff to be
invertible. Since the editing batch size (B) is varied
from one to larger batch sizes, we take B = 1
for this argument. If we let the dimensionatity of
the key-vectors be dk, then for an editing batch
size of 1, at least dk − 1 key-vectors need to
be preserved, granted they are independent of
each other. This number serves as the theoretical
minimum number of tokens over which we need to
perform precomputations.

In practice, MEMIT preserves the representa-
tions of a much larger number of vectors - 44 mil-
lion tokens to be specific. For each layer being
edited, this step takes about 1.5 hours for GPT-
XL, 6 hours for GPT-J, 8 hours for Llama-2-7B.
Since multiple layers are edited within a model in
MEMIT, this number usually requires tens of hours
of precomputation, and scales linearly with the size
of the model being edited2.

5 FastMEMIT Family of Methods

In the above section, we show that the minimum
number of tokens required for the computation
of C0 matrix is dk − 1, where dk is the dimen-
sionality of the key-vectors in an MLP. For GPT2-
XL, dk = 6400, whereas for GPT-J, dk = 16384.
While the theoretical minimum number of precom-
putations required is approximately equal to dk, we
ask the question - "what is the optimal number
of tokens required for precomputation without
compromising on editing performance?".

We begin by using the theoretical minimum num-
ber for precomputation and quickly find that this
leads to loss of editing performance. We also find
that for some cases, especially for Llama2-7B mod-
els, using this theoretical minimum leads to un-
invertible matrices, since the selected vectors may
not be independent. We increase the number of pre-
computation tokens in increments of the theoretical
minimum. For this, we introduce dynamic multi-
plier, a hyperparameter that controls the number of
preserved key vectors in C0. For example, with a
dynamic multiplier of dm = 3, the number of pre-
computed key vectors is reduced to 3× dk, where
dk is approximately equal to the theoretical mini-
mum. This is a significantly lower computational
cost while ensuring the matrix remains invertible.
For example, with dm = 3 for GPT2-XL, the pre-
computation is done over 12,288 tokens, which
is approximately 0.02% of the original 44 million
tokens.

With this dynamic multiplier, we can rewrite
Equation 4 as follows:

Ceff = λK0K
T
0 +KEK

T
E

= λ

P ′∑

i=1

ki0k
iT

0 +
B∑

i=1

kiek
iT

e ,
(5)

where P ′ = dm · dk. The same idea of using
the dynamic multiplier to reduce the number of

2Numbers calculated for 1 RTX A6000 48GB GPU
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(a) Overall Score (b) Efficacy score (c) Paraphrase score (d) Neighborhood score

Figure 1: Performance of FastEMMET in GPT-J across different batch sizes

(a) Overall Score (b) Efficacy score (c) Paraphrase score (d) Neighborhood score

Figure 2: Performance of FastMEMIT in GPT-J across different batch sizes

preserved keys can be applied to ROME (Meng
et al., 2022a) and its batch generalization EMMET
(Gupta et al., 2024c). We refer to the reduced
precomputation version of these methods as Fast-
MEMIT, FastROME, and FastEMMET in this pa-
per.

To evaluate these methods, we perform batched
knowledge editing for varying batch sizes, grow-
ing from 1 to 1024. For each batch size, we take
samples of multiple batches (Table 1 in appendix).
For example, for batch size 16, the results are cal-
culated by averaging editing results of 10 batches.
Since EMMET is a batch-editing generalization of
ROME, we present the results for EMMET in this
paper. The editing results for ROME correspond to
EMMET with batch size 1.

5.1 Results
The knowledge editing results for GPT-J (6B) with
reduced precomputation are shown in Figures 1
and 2 for EMMET and MEMIT respectively. The
results for the original EMMET and MEMIT algo-
rithm with complete precomputation of 44 million
tokens are represented on the x-axis by an "∞"
symbol. We present the results for different batch
sizes from 1 to 1024 and the different evaluation
metrics discussed in section 2.1. The figures also
contain a 95% threshold line, which represents 95%
performance with respect to the full precomputa-
tion value. The exact numerical values for these
figures are shared in Appendix A.

We can see that both FastEMMET and Fast-

MEMIT achieve performance that is similar to or
even better than the original algorithms with full
precomputation, as shown by the overall score met-
ric plots for both EMMET (Figure 1a) and MEMIT
(Figure 2a) for GPT-J. The results for GPT2-XL
follow a very similar trend and are presented in the
appendix (Figures 5 and 6).

This is true despite using a significantly lower
amount of precomputation. Starting at a dynamic
multiplier of 2, the editing results are nearly identi-
cal to those of the original algorithms where com-
putation is done over 44 million tokens. A dy-
namic multiplier of 2 means doing precomputa-
tion over 32k tokens for GPT-J, which is less than
0.08% of the amount of precomputation required
by the original algorithms. For GPT2-XL, a dy-
namic multiplier of 2 requires precomputation over
12.8k tokens, or 0.02% of the original amount. This
enables precomputation to finish within a few sec-
onds, avoiding the large precomputation stage that
precedes knowledge editing.

The results for Llama2-7B are shown in Figures
3 and 4. We see that the performance is within the
95% threshold for EMMET even when dm = 2, but
MEMIT requires extra precomputation tokens to
achieve comparable performance for smaller batch
sizes. For MEMIT, we also observe that for smaller
batch sizes from 1 to 10, the Ceff is not invertible
at low values of dynamics multiplier, suggesting
that the cached hidden representations are highly
correlated. We fix this with a minor regularization
term which is added into the closed-form solution
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(a) Overall Score (b) Efficacy score (c) Paraphrase score (d) Neighborhood score

Figure 3: Performance of FastEMMET in Llama 2 across different batch sizes

(a) Overall Score (b) Efficacy score (c) Paraphrase score (d) Neighborhood score

Figure 4: Performance of FastMEMIT in Llama 2 across different batch sizes

in equation 2 (Gupta et al., 2025). Note that this
is needed only for batch sizes less than 10. With
dm = 10, the editing performance for Llama2-7B
is reliably close to the full precomputation perfor-
mance for both algorithms. This requires approx-
imately 0.25% tokens when compared to the full
pre-computation.

6 Related Work

Knowledge editing methods can broadly be di-
vided into two categories - in-context editing and
parameter-modifying methods. In-context editing
techniques, such as SERAC (Mitchell et al., 2022),
ICE (Cohen et al., 2023), MeLLo (Zhong et al.,
2023) and GRACE (Hartvigsen et al., 2023), al-
low updated knowledge to be added temporarily
by providing new information in the model context.
On the other hand, parameter-modifying knowl-
edge editing do this by infusing new knowledge in
the model weights. MEMIT (Meng et al., 2022b)
and ROME (Meng et al., 2022a) are two notable
methods in this area that offer efficient solutions to
directly edit the model parameters and are closely
related to model interpretability. ROME introduced
the idea of identifying key layers that store factual
knowledge and then updating the corresponding
weights to edit the model. MEMIT extended this
approach by enabling batched editing, allowing
multiple facts to be edited at once using a closed-
form solution. These methods have been very popu-
lar and have seen a growing body of work in recent

times that overcome various limitations at scale
(Gupta et al., 2024b). These include methods like
PMET (Li et al., 2023), EMMET (Gupta et al.,
2024c), PRUNE (Ma et al., 2024), AlphaEdit (Fang
et al., 2024).

7 Conclusion

In this paper, we significantly reduce the upfront
precomputation time required to cache hidden rep-
resentation of a model before editing can begin for
locate-then-edit methods like MEMIT, ROME and
EMMET. We do this by first finding the theoret-
ical minimum number of precomputation tokens
required. We then empirically search for the opti-
mal ‘minimum’ number of precomputation tokens
required to perform successful editing without com-
promising performance. Our recommendation is
to use 10 times the theoretical minimum of to-
kens, or to use a dynamic multiplier of 10. Note
that this number is less than 0.4% of the originally
used 44 million tokens. However, this number can
further be reduced for specific models and editing
algorithms as shown in our paper. This study al-
lows editing for a new model to beging within a
few minutes, saving many hours of precomputation
time.

8 Limitations

In our work, we present optimal number of tokens
required for precomputation for popular knowledge
editing methods. We evaluate this in the setting
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of singular and batched editing. A recently pop-
ular mode of editing is sequential editing (Fang
et al., 2024). We leave evaluation of optimal pre-
computation requirements for sequential editing to
future work. Additionally, it has been shown that
sequential editing also leads to loss of downstream
performance (Gupta et al., 2024b). In this work,
we do not analyze the relationship between the
number of precomputation tokens and downstream
performance, which we also leave for future work.
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A Appendix

Batch Size Num Batches Total Edits
1 1000 1000
16 10 160
64 5 320
256 5 1280
1024 3 3072

Table 1: Statistics for batch size and number of batches
used to create the numbers for this paper.
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BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.9 50.4 94.0 50.35 65.59 49.09 83.57 49.93

16 100.0 70.62 96.25 60.31 74.19 47.69 88.57 58.01
64 100.0 90.31 95.94 72.03 73.56 54.37 88.18 69.20
256 99.84 91.95 96.13 70.23 67.14 54.83 84.95 69.20

1024 99.32 86.72 92.15 91.62 68.28 54.11 81.35 67.17

Table 2: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 1 in GPT2-XL on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.9 100.0 94.0 94.25 65.59 63.61 83.57 82.57

16 100.0 100.0 96.25 96.88 74.19 72.44 88.57 87.90
64 100.0 99.69 95.94 96.88 73.56 71.03 88.18 87.12
256 99.84 99.84 96.13 94.34 67.14 64.26 84.95 82.92

1024 99.32 98.89 92.15 89.86 68.28 59.23 81.35 78.69

Table 3: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 2 in GPT2-XL on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.9 100.0 94.0 94.35 65.59 64.91 83.57 83.32

16 100.0 100.0 96.25 96.25 74.19 72.44 88.57 87.73
64 100.0 99.69 95.94 97.19 73.56 72.28 88.18 87.83
256 99.84 99.69 96.13 94.14 67.14 65.72 84.95 83.63

1024 99.32 99.06 92.15 90.97 68.28 60.79 81.35 79.91

Table 4: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 3 in GPT2-XL on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.9 100.0 94.0 94.2 65.59 64.95 83.57 83.30

16 100.0 100.0 96.25 95.94 74.19 74.31 88.57 88.54
64 100.0 99.69 95.94 96.56 73.56 72.10 88.18 87.61
256 99.84 99.92 96.13 95.86 67.14 66.18 84.95 84.38

1024 99.32 99.19 92.15 91.62 62.68 61.18 81.35 80.33

Table 5: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 4 in GPT2-XL on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.9 100.0 94.0 93.25 65.59 66.55 83.57 83.89

16 100.0 99.38 96.25 95.94 74.19 74.38 88.57 88.41
64 100.0 99.69 95.94 95.0 73.56 73.38 88.18 87.75
256 99.84 99.69 96.13 95.55 67.14 66.4 84.95 84.37

1024 99.38 99.19 92.15 92.01 62.68 61.88 81.35 80.88

Table 6: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 10 in GPT2-XL on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 97.2 50.6 86.55 51.25 71.14 48.28 83.56 50.01

16 96.25 51.88 82.5 44.69 78.19 53.0 84.98 49.57
64 97.19 83.12 86.41 67.97 77.56 60.09 86.31 69.14
256 96.88 85.23 86.48 56.17 72.86 68.52 84.24 67.98

1024 95.48 91.6 84.94 76.07 70.38 59.37 82.29 73.33

Table 7: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 1 in GPT2-XL on the CounterFact dataset.
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BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 97.2 100.0 86.55 92.45 71.14 67.12 83.56 83.99

16 96.25 100.0 82.5 92.19 78.19 76.31 84.98 88.36
64 97.19 100.0 86.41 95.16 77.56 75.47 86.31 88.86
256 96.88 99.77 86.48 94.3 72.86 69.94 84.24 85.89

1024 95.48 99.38 84.94 92.24 70.38 67.61 82.29 84.04

Table 8: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 2 in GPT2-XL on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 97.2 99.6 86.55 91.1 71.14 71.01 83.56 85.47

16 96.25 100.0 82.5 90.00 78.19 77.50 84.98 88.20
64 97.19 98.44 86.41 91.09 77.56 76.91 86.31 87.88
256 96.88 99.06 86.48 92.70 72.86 71.48 84.24 86.03

1024 95.48 98.76 84.94 90.92 70.38 68.43 82.29 83.94

Table 9: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 3 in GPT2-XL on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 97.2 99.4 86.55 91.3 71.14 71.54 83.56 85.73

16 96.25 98.75 82.5 86.56 78.19 77.75 84.98 86.85
64 97.19 98.44 86.41 90.16 77.56 77.12 86.31 87.67
256 96.88 99.06 86.48 90.43 72.86 71.73 84.24 85.48

1024 95.48 98.37 84.94 89.01 70.38 69.29 82.29 83.72

Table 10: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 4 in GPT2-XL on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 97.2 98.4 86.55 90.2 71.14 72.84 83.56 85.76

16 96.25 96.25 82.5 84.38 78.19 78.06 84.98 85.58
64 97.19 97.19 86.41 87.66 77.56 77.47 86.31 86.69
256 96.88 97.89 86.48 88.48 72.86 72.81 84.24 85.10

1024 95.48 97.04 84.94 87.65 70.38 69.85 82.29 83.26

Table 11: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 10 in GPT2-XL on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.9 51.6 94.95 49.85 77.59 50.01 89.73 50.47

16 100.0 60.0 93.44 53.44 81.25 46.69 90.88 52.81
64 99.69 58.75 93.91 52.5 81.78 52.59 91.16 54.46
256 99.45 98.12 94.14 86.6 78.62 54.66 89.82 86.6

1024 99.67 95.15 93.67 82.62 74.27 54.98 87.78 73.52

Table 12: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 1 in GPT-J on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.9 100.0 94.95 97.4 77.59 71.81 89.73 87.73

16 100.0 100.0 93.44 96.56 81.25 79.88 90.88 91.25
64 99.69 100.0 93.91 96.88 81.78 80.03 91.16 91.41
256 99.45 99.84 94.14 97.19 78.62 74.18 89.82 88.79

1024 99.67 99.8 93.67 96.35 74.27 68.01 87.78 85.46

Table 13: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 2 in GPT-J on the CounterFact dataset.
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BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.9 100.0 94.95 96.65 77.59 75.2 89.73 89.16

16 100.0 100.0 93.44 94.38 81.25 80.88 90.88 91.02
64 99.69 100.0 93.91 96.56 81.78 80.72 91.16 91.61
256 99.45 99.84 94.14 96.99 78.62 75.73 89.82 89.46

1024 99.67 99.8 93.67 96.14 74.27 70.16 87.78 86.51

Table 14: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 3 in GPT-J on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.9 100.0 94.95 96.85 77.59 74.72 89.73 88.99

16 100.0 100.0 93.44 95.0 81.25 81.12 90.88 91.31
64 99.69 100.0 93.91 94.06 81.78 81.72 91.16 91.27
256 99.45 99.92 94.14 96.33 78.62 76.45 89.82 89.63

1024 99.67 99.74 93.67 95.8 74.27 71.03 87.78 86.84

Table 15: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 4 in GPT-J on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.9 100.0 94.95 95.7 77.59 76.55 89.73 89.51

16 100.0 100.0 93.44 94.06 81.25 81.19 90.88 91.05
64 99.69 100.0 93.91 94.53 81.78 81.78 91.16 91.44
256 99.45 99.77 94.14 94.8 78.62 77.27 89.82 89.51

1024 99.67 99.64 93.67 94.91 74.27 73.24 87.78 87.65

Table 16: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 10 in GPT-J on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 100.0 51.3 94.75 49.8 80.34 50.12 86.27 50.39

16 100.0 43.12 96.56 52.55 80.19 46.88 91.38 47.19
64 100.0 46.88 96.09 47.97 81.28 52.56 91.71 49.01
256 99.77 75.55 96.02 62.23 78.02 55.02 90.21 63.18

1024 99.74 76.4 94.66 65.27 75.65 56.43 88.73 65.03

Table 17: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 1 in GPT-J on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 100.0 100.0 94.75 96.9 80.34 67.79 86.27 85.53

16 100.0 100.0 96.56 96.88 80.19 80.38 91.38 91.56
64 100.0 100.0 96.09 96.41 81.28 80.41 91.71 91.43
256 99.77 99.77 96.02 96.88 78.02 77.16 90.21 90.07

1024 99.74 99.71 94.66 95.49 75.65 74.05 88.73 88.22

Table 18: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 2 in GPT-J on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 100.0 100.0 94.75 96.75 80.34 72.72 86.27 88.00

16 100.0 100.0 96.56 97.19 80.19 80.62 91.38 91.76
64 100.0 100.0 96.09 97.03 81.28 81.09 91.71 91.91
256 99.77 99.84 96.02 96.56 78.02 77.77 90.21 90.27

1024 99.74 99.71 94.66 95.48 75.65 74.88 88.73 88.60

Table 19: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 3 in GPT-J on the CounterFact dataset.
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BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 100.0 100.0 94.75 96.45 80.34 73.78 86.27 88.43

16 100.0 100.0 96.56 96.56 80.19 80.62 91.38 91.57
64 100.0 100.0 96.09 96.88 81.28 80.53 91.71 91.63
256 99.77 99.84 96.02 96.52 78.02 78.05 90.21 90.39

1024 99.74 99.74 94.66 95.12 75.65 75.65 88.73 88.89

Table 20: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 4 in GPT-J on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 100.0 100.0 94.75 95.65 80.34 74.85 86.27 88.71

16 100.0 100.0 96.56 96.25 80.19 80.75 91.38 91.53
64 100.0 100.0 96.09 96.72 81.28 81.31 91.71 91.91
256 99.77 99.69 96.02 95.43 78.02 78.38 90.21 90.17

1024 99.74 99.71 94.66 94.61 75.65 76.12 88.73 88.92

Table 21: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 10 in GPT-J on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.5 51.2 98.5 49.45 59.0 50.15 80.75 50.26

16 99.38 52.5 95.62 49.69 82.94 51.56 92.08 51.22
64 98.44 49.38 97.19 47.66 78.0 52.03 90.17 49.62
256 99.61 75.31 97.89 60.86 62.1 51.25 82.51 60.94

1024 98.73 73.44 96.14 62.65 57.17 50.34 78.90 60.67

Table 22: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 1 in Llama 2 on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.5 99.8 98.5 99.0 59.0 49.54 80.75 74.42

16 99.38 99.38 95.62 98.12 82.94 72.25 92.08 87.98
64 98.44 100.0 97.19 97.81 78.0 66.09 90.17 84.85
256 99.61 98.98 97.89 95.74 62.1 53.37 82.51 76.36

1024 98.73 94.66 96.14 88.64 57.17 51.49 87.78 78.9

Table 23: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 2 in Llama 2 on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.5 99.9 98.5 99.0 59.0 52.04 80.75 76.28

16 99.38 98.12 95.62 96.25 82.94 77.19 92.08 89.45
64 98.44 99.69 97.19 98.44 78.0 70.94 90.17 87.49
256 99.61 99.3 97.89 97.62 62.1 56.05 82.51 78.62

1024 98.73 97.59 96.14 92.74 57.17 52.24 78.90 74.67

Table 24: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 3 in Llama 2 on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.5 99.7 98.5 98.0 59.0 54.39 80.75 77.68

16 99.38 100.0 95.62 97.81 82.94 79.25 92.08 91.34
64 98.44 99.69 97.19 97.81 78.0 71.53 90.17 87.62
256 99.61 99.22 97.89 96.72 62.1 57.05 82.51 79.05

1024 98.73 97.85 96.14 94.32 57.17 52.86 78.90 75.49

Table 25: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 4 in Llama 2 on the CounterFact dataset.
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BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET EMMET FASTEMMET
1 99.5 99.8 98.5 98.25 59.0 56.72 80.75 79.30

16 99.38 99.38 95.62 96.88 82.94 81.81 92.08 92.00
64 98.44 99.69 97.19 97.5 78.0 75.53 90.17 89.47
256 99.61 99.22 97.89 98.2 62.1 59.17 82.51 80.72

1024 98.73 98.37 96.14 95.88 57.17 54.74 78.90 77.19

Table 26: Comparison between EMMET and FastEMMET for multiple layers with different batch sizes, dynamic
multiplier = 10 in Llama 2 on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 96.6 53.9 89.4 54.45 60.82 51.81 78.98 53.36

16 99.38 46.25 99.38 44.38 65.12 51.44 84.55 47.17
64 98.12 49.69 97.03 48.59 61.09 50.94 81.37 49.72
256 96.33 79.06 93.59 65.39 56.85 50.9 77.60 63.04

1024 93.95 65.89 90.45 55.37 60.17 49.98 78.28 56.34

Table 27: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 1 in Llama 2 on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 96.6 72.5 89.4 72.5 60.82 53.81 78.98 64.97

16 99.38 97.5 99.38 97.5 65.12 59.81 84.55 80.57
64 98.12 95.31 97.03 95.0 61.09 58.66 81.37 78.81
256 96.33 89.14 93.59 81.68 56.85 54.0 77.60 71.46

1024 93.95 88.57 90.45 78.04 60.17 54.11 78.28 70.44

Table 28: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 2 in Llama 2 on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 96.6 90.0 89.4 85.95 60.82 55.36 78.98 73.51

16 99.38 99.38 99.38 97.5 65.12 67.56 84.55 85.42
64 98.12 98.12 97.03 96.56 61.09 62.13 81.37 81.87
256 96.33 95.08 93.59 91.05 56.85 55.72 77.60 76.05

1024 93.95 90.69 90.45 82.75 60.17 55.51 78.28 72.94

Table 29: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 3 in Llama 2 on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 96.6 94.9 89.4 91.05 60.82 57.15 78.98 76.88

16 99.38 98.75 99.38 98.44 65.12 70.19 84.55 86.87
64 98.12 98.12 97.03 96.09 61.09 63.06 81.37 82.29
256 96.33 95.08 93.59 90.51 56.85 57.33 77.60 76.90

1024 93.95 93.42 90.45 90.22 60.17 59.34 78.28 77.63

Table 30: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 4 in Llama 2 on the CounterFact dataset.

BATCH SIZE
ES (EFFICACY) PS (GENERALIZATION) NS (LOCALITY) S (SCORE)

MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT MEMIT FASTMEMIT
1 96.6 98.7 89.4 93.05 60.82 67.07 78.98 83.82

16 99.38 98.75 99.38 98.75 65.12 75.37 84.55 89.49
64 98.12 98.44 97.03 97.5 61.09 69.88 81.37 86.39
256 96.33 97.42 93.59 94.26 56.85 57.93 77.60 78.66

1024 93.95 93.42 90.45 90.22 60.17 59.34 78.28 77.63

Table 31: Comparison between MEMIT and FastMEMIT for multiple layers with different batch sizes, dynamic
multiplier = 10 in Llama 2 on the CounterFact dataset.
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(a) Efficacy score (b) Paraphrase score (c) Neighborhood score (d) Overall Score

Figure 5: Performance of FastEMMET in GPT2-XL across different batch sizes

(a) Efficacy score (b) Paraphrase score (c) Neighborhood score (d) Overall Score

Figure 6: Performance of FastMEMIT in GPT2-XL across different batch sizes
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