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Abstract

Non-autoregressive transformers (NATs) pre-
dict entire sequences in parallel to reduce de-
coding latency, but they often encounter per-
formance challenges due to the multi-modality
problem. A recent advancement, the Directed
Acyclic Transformer (DAT), addresses this is-
sue by capturing multiple translation modalities
to paths in a Directed Acyclic Graph (DAG).
However, the collaboration with the latent vari-
able introduced through the Glancing training
(GLAT) is crucial for DAT to attain state-of-
the-art performance. In this paper, we intro-
duce Diffusion Directed Acyclic Transformer
(Diff-DAT), which serves as an alternative to
GLAT as a latent variable introduction for DAT.
Diff-DAT offers two significant benefits over
the previous approach. Firstly, it establishes
a stronger alignment between training and in-
ference. Secondly, it facilitates a more flexible
tradeoff between quality and latency.

1 Introduction

The Transformer architecture (Vaswani et al.,
2017a) has gained immense popularity, particu-
larly in sequence-to-sequence learning problems
like machine translation. Conventional Transform-
ers employ an autoregressive approach to genera-
tion, yielding robust results but proving inefficient
at inference due to its sequential decoding. To ad-
dress this issue, Non-autoregressive Transformers
(NATs) (Gu et al., 2018) was introduced, signifi-
cantly boosting the decoding speed by generating
all output tokens simultaneously. This advantage
often comes with a trade-off in translation quality
due to the challenging multi-modality problem (Gu
et al., 2018), wherein a single source sentence may
have multiple translations in the target language.

Numerous approaches have been proposed to
address this challenge, primarily by introducing
additional latent variables to reduce the number
of translation modalities given the latent variables.

Among them, the Directed Acyclic Transformer
(DAT) (Huang et al., 2022b) emerges as the most
promising approach. In DAT, translation modal-
ities are assigned to paths in a Directed Acyclic
Graph (DAG), enabling the model to capture multi-
ple translation modalities. Although DAT enhances
translation quality and diversity, it still requires
additional context from the target as a latent vari-
able to perform effectively. Huang et al. (2022b)
demonstrated that the latent variable from Glancing
training (GLAT) (Qian et al., 2021a) significantly
improves DAT’s performance.

In this work, we aimed to enhance the capabili-
ties of DAT by introducing latent variables through
a diffusion process. We integrated diffusion models
into DAT, resulting in a novel model called Diffu-
sion Directed Acyclic Transformer (Diff-DAT). We
discovered that the diffusion model can effectively
replace GLAT as a latent variable introduction
mechanism, enabling DAT to function optimally.
This integration offers two significant advantages.
Firstly, diffusion models establish a stronger align-
ment between training and inference. Secondly,
they facilitate a more flexible tradeoff between
quality and speed by allowing decoding through
multiple iterations. Results on multiple machine
translation benchmarks demonstrate that our ap-
proach not only improves the performance of DAT
on fully non-autoregressive decoding but also im-
proves its iterative decoding performance without
a significant increase in decoding latency.

2 Preliminaries

DA-Transformer replaces the traditional Trans-
former’s decoder with a directed acyclic decoder.
This decoder organizes its outputs as a directed
acyclic graph (DAG), where each path corresponds
to a specific translation modality. Given a bilingual
pair, X = {x1, . . . , xN} and Y = {y1, . . . , yM},
DAT sets the decoder length to L = λ · N and
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models the translation probability by marginalizing
out the paths in the DAG.

Pθ(Y |X) =
∑

A

Pθ(Y |A,X)Pθ(A|X), (1)

where A = {a1, ..., aM} represents a path with
vertex indexes satisfying 1 = a1 < ... < aM = L.
Pθ(A|X) and Pθ(Y |A,X) denote the probability
of path A and the probability of target sentence
Y conditioned on path A, respectively. The DAG
factorizes the path probability Pθ(A|X) based on
the Markov assumption:

Pθ(A|X) =
M−1∏

i=1

Pθ(a
i+1|ai, X) =

M−1∏

i=1

Eai,ai+1 ,

(2)
where E ∈ RL×L is a row-normalized transition
matrix. The DAG’s unidirectional nature masks the
lower triangular part of E to zeros. Once the path
A is determined, token yi is generated conditioned
on the decoder hidden state with index ai:

Pθ(Y |A,X) =

M∏

i=1

Pθ(y
i|ai, X), (3)

where Pθ(y
i|ai, X) represents the translation prob-

ability of word yi on the position ai of decoder. To
enhance the performance of DAT, GLAT was incor-
porated as an additional latent variable, denoted as
Z. This variable is a randomly masked target and
serves as an extra input for the decoder. The final
training objective is to maximize the log-likelihood
with the additional latent variable:

logPθ(Y |X) = EQ(Z|Y,Â) logPθ(Y |X,Z), (4)

since the decoder input is longer than the target
sentence, (Huang et al., 2022b) first finds the most
probable path Â = argmaxA Pθ(Y,A|X) and
uses it to assign the masked target to vertices in
the DAG.

3 Methodology

Training objective: The latent variable Z in GLAT
is only used during training when a target is pro-
vided and is omitted during inference, forcing the
model to rely solely on X to predict the target. This
mismatch between training and inference can dam-
age the model’s generalizability. This motivates us
to incorporate diffusion models into DAT.

Diffusion models (Sohl-Dickstein et al., 2015)
aim to predict the target Y0 through a sequence of

latent variables Y1:T = Y1, Y2, . . . , YT . The for-
ward process gradually adds noise to the target Y0
over T steps to get YT , the final latent variable that
follows a prior noise distribution. The backward
process optimizes a neural network to denoise the
noisy latent variables, reversing the forward pro-
cess to recover Y0. When the step size is infinitesi-
mally small, the forward and backward processes
have the same functional form.

While diffusion models provide a strong theoret-
ical justification for aligning training and inference,
the large number of time steps (T ) hinders their
practical application in NATs, where decoding la-
tency is a critical concern. Therefore, we utilize
absorbing discrete diffusion (Austin et al., 2021)
that uses the absorbing state ([M ]) as noise to add
to the target sentence at each step, until all tokens
are masked (noise distribution YT ). This approach
reduces the number of forward steps T required to
reach the noise distribution.

We compute the translation probability by
marginalizing out the paths in the DAG and latent
variables from the diffusion backward process.

Pθ(Y0|X) =
∑

Y1:T

∑

A

Pθ(Y0:T , A|X)

=
∑

Y1:T

∑

A

P (YT )

T∏

t=1

Pθ(Yt−1, A|Yt, X) (5)

Diff-DAT maximizes the variational lower bound
(VLB) of the log-likelihood:

logPθ(Y0|X) = log
∑

Y1:T

∑

A

Pθ(Y0:T , A|X)

≥
∑

A

EQ(Y1:T |Y0,A) log
Pθ(Y0:T , A|X)

Q(Y1:T |Y0, A)

≈ EQ(Y1:T |Y0,Â)

∑

A

log
Pθ(Y0:T , A|X)

Q(Y1:T |Y0, Â)

=
T∑

t=1

Lt + const, (6)

Where Q(Y1:T |Y0, Â) represents the forward pro-
cess transition probabilities. Following Huang et al.
(2022b), we use the most probable path Â to sample
the latent variable Yt to avoid performing multiple
forward passes through the neural network for all
paths in the DAG in order to compute the objective.
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The objective at time step t is

Lt = EQ(Yt|Y0,Â)

∑

A

[
logPθ(A|Yt, X)

− KL[Q(Yt−1|Yt, Y0, A)∥Pθ(Yt−1|Yt, A,X)]
]
.

We compute the objective at time step t as follows:

Lt =
∑

A

M∑

i=1

γtb
i
t logPai,yi0

M∑

i=2

Eai−1,ai

where bit =

{
1 if yit = [M ]
0 otherwise

, and γt is

the hyper-parameters defined by the forward pro-
cess transition probability. Please refer to Ap-
pendix B for detailed derivation. This objective
can be optimized using a dynamic programming
algorithm similar to the approach in (Huang et al.,
2022b). The key differences between Diff-DAT
and DAT lie in the sampling of latent variables and
the computation of the objective function based on
the sampled latent variables at each step.

Inference: Diff-DAT can reuse various decod-
ing strategies from DAT, such as greedy, lookahead,
and joint-Viterbi, to perform decoding in a single
iteration. However, unlike DAT, we can perform
flexible iterative decoding based on the diffusion
backward process. Given the model prediction
from the previous step, we can continuously sam-
ple the latent variable for the next time step and
perform denoising. Unlike the fixed T value dur-
ing training, the diffusion can predict multiple steps
at a time, resulting in a more flexible number of
decoding steps during inference.

4 Experiments

Experimental Setup. We conduct experiments
on multiple public NMT datasets: IWSLT14 En-
De/De-En (Cettolo et al., 2014), WMT14 En-De
(Bojar et al., 2014), and WMT16 Ro-En/En-Ro
(Bojar et al., 2016). To ensure a fair compari-
son, we used the same settings as previous works
(Ghazvininejad et al., 2019; Huang et al., 2022c)
and reported the test performance in BLEU score
(Papineni et al., 2002a) (Appnedix A).
Main results: Table 1 demonstrates that Diff-
DAT significantly outperforms the baselines while
maintaining low decoding latency. Compared to
DAT, Diff-DAT shows improvements even in the
first iteration, implying that diffusion improves
DAT’s ability to find the optimal path for each

reference, effectively addressing multi-modality.
We observed a more pronounced improvement be-
tween the first and second steps in the WMT16
En-Ro and IWSLT14 De-En datasets, where we
used a smaller graph size (λ = 4). Given that
these datasets exhibit lower multi-modality due to
the smaller training data and the search space in
the graph is limited, the second step of Diff-DAT
remarkably boosts translation quality by captur-
ing more dependencies between tokens. We also
observed that the improvement between the two
steps is more pronounced when using the “Looka-
head” decoding strategy. We argue that this occurs
because the path found by “Lookahead” is less
optimal than “Joint-Viterbi”. As a result, the im-
provement relies more on the better dependencies
captured between tokens. Diff-DAT’s second de-
coding step outperforms FA-DAT, demonstrating
the capability of iterative decoding in addressing
the monotonic assumption in DAT. Diff-DAT out-
performs all other single-step decoding methods
and achieves comparable or better performance
than other multistep decoding methods while main-
taining a minimal trade-off in decoding latency.

Although the performance gains in terms of
BLEU score are not significantly higher than FA-
DAT (Ma et al., 2023), we would like to highlight
some of the limitations of FA-DAT: (i) Firstly, FA-
DAT optimizes the n-gram count objective, which
closely aligns with how the BLEU metric evalu-
ates translation quality. Our comparison using an
alternative metric, such as COMET (in table 2),
shows that Diff-DAT significantly outperforms FA-
DAT. Furthermore, the improvement of FA-DAT
over DAT in terms of COMET is less pronounced
than when measured with BLEU, indicating that
FA-DAT is particularly effective only under BLEU
evaluation. It is also worth noting that Diff-DAT
can be combined with FA-DAT to further enhance
performance. (ii) Secondly, FA-DAT exhibits be-
havior similar to Knowledge Distillation (KD), as
both methods weaken the model’s ability to capture
multiple translation modalities in the data, leading
to reduced translation diversity. FA-DAT causes the
vertex distribution to become less diverse, while
KD reduces data modalities, resulting in less di-
verse translations. In fact, the performance of FA-
DAT closely aligns with that of DAT combined
with KD (demonstrated in Huang et al. (2022b)),
and combining FA-DAT with KD further degrades
performance (demonstrated in Ma et al. (2023)).
Although FA-DAT and KD improve performance
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Table 1: Results on WMT14 En-De, WMT16 En-Ro, WMT17 Zh-En and IWSLT14 En-De/De-En datasets. The
best performance of the NAT methods is bolded. * denotes our implementation.

Model Iter. Speedup IWSLT14 WMT14 WMT16 WMT17
De-En En-De En-Ro Zh-En

Transformer (Vaswani et al., 2017b) M 1.0× 34.66 27.60 34.16 23.70

CMLM (Ghazvininejad et al., 2019) 10 2.2× 31.80 24.61 32.86 -
CMLM+SMART (Ghazvininejad et al., 2020b) 10 2.2× 30.74 25.10 32.71 -
DiSCo (Kasai et al., 2020) ≈ 4 3.5× - 25.64 - -
Imputer (Saharia et al., 2020) 8 2.7× - - 25.00 -
CMLMC (Huang et al., 2022c) 10 1.7× 34.28 26.40 34.14 -

DAT *(Huang et al., 2022b)
+ Lookahead 1 14.0× 33.79 26.52 33.46 22.42
+ Joint-Viterbi 1 13.2× 34.02 26.67 33.65 23.00

FA-DAT * (Ma et al., 2023)
+ Lookahead 1 14.0× 34.65 27.29 33.72 22.73
+ Joint-Viterbi 1 13.2× 34.66 27.31 33.74 22.87

Diff-DAT

+ Lookahead
1 14.0× 34.21 26.34 33.65 22.60
2 11.8× 34.68 26.83 34.01 22.82

+ Joint-Viterbi
1 13.2× 34.37 26.94 33.72 23.60
2 9.2× 34.77 27.12 34.00 23.78

2 4 6 8 10 12
Size factor 

33.6

33.8

34.0

34.2

34.4

34.6

34.8
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EU

DAT
Diff-DAT: 1 iteration
Diff-DAT: 2 iterations

Figure 1: Effects of λ on IWSLT14 De-En. The graph
size of DAT is λ times the of source length. We use
Join-Viterbi decoding to evaluate BLEU.

when measured specifically by BLEU, they over-
look the most fundamental challenge in NAT—the
multi-modality problem. This limitation causes
the model to perform poorly when evaluated with
alternative metrics (e.g., COMET) and diversity
measures (e.g., pairwise BLEU). We also present a
combination of Diff-DAT and FA-DAT, which we
refer to as FA-Diff-DAT, in Appendix C.
Ablation study on the graph size: Figure 1 illus-
trates the results of DAT and Diff-DAT with vary-
ing graph sizes. As noted by Huang et al. (2022b),
larger graph sizes complicate transition predictions,
leading to a performance decline for both DAT and
Diff-DAT. Nonetheless, Diff-DAT consistently out-
performs DAT across all graph sizes. The graph
size also influences the iterative decoding perfor-
mance of Diff-DAT. Both transition predictions and
iterative refinement contribute to capturing token
dependencies in the generated sentence. When the
graph size is small, iterative decoding significantly

[0, 10) [10, 20) [20, 40) [40, 60) [60, 9999)
Reference Sequence Length

28

30

32

34

36

38

40

BL
EU

DAT
Diff-DAT: 1 iteration
Diff-DAT: 2 iterations
Diff-DAT: 4 iterations
Diff-DAT: 8 iterations

Figure 2: The effect of sequence length.

aids due to the limitations in transition predictions.
Ablation study on the number of decoding steps:
We examine the impact of graph size on iterative
decoding. Figure 2 displays BLEU scores cate-
gorized by reference length on IWSLT14 DE-EN
dataset, results on other datasets are shown in the
Appendix. Contrasting trends were observed in dif-
ferent length intervals: in the first interval (length
[0, 40)), the BLEU score increases as the number
of decoding iterations increases; in the second inter-
val (length [40, ∞)), the BLEU score decreases as
the number of decoding iterations increases. Since
sequence length directly influences graph size, we
conclude that once the graph size reaches a certain
threshold, it negatively affects iterative decoding.
Larger graph sizes make transition probability pre-
diction more challenging. Additionally, each de-
coding iteration generates sub-paths in the graph
that the model must navigate, further complicating
the prediction of transition probabilities. These fac-
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Model IWSLT14 De-En IWSLT14 De-En WMT16 En-Ro WMT16 En-Ro
BLEU COMET BLEU COMET

DAT 34.02 0.7617 33.65 0.7608
FA-DAT 34.66 0.7637 33.74 0.7618

Diff-DAT - 1 iter 34.37 0.7642 33.72 0.7619
Diff-DAT - 2 iters 34.77 0.7720 34.00 0.7717

FA-Diff-DAT - 1 iter 34.73 0.7655 34.13 0.7645
FA-Diff-DAT - 2 iters 35.06 0.7727 34.27 0.7751

Table 2: Comparison between Diff-DAT, DAT, and FA-DAT on COMET metric (Rei et al., 2020).

tors make it increasingly difficult for the model to
predict transitions with each iteration. Errors from
previous iterations affect subsequent ones, further
damaging the model’s ability to capture dependen-
cies through transition predictions. This intriguing
challenge is left for future work.

5 Conclusion

Our study introduces Diff-DAT, a novel approach
for enhanced non-autoregressive machine trans-
lation. Through a fusion of diffusion models
and DAT objectives and the integration of vari-
ous decoding schemes, Diff-DAT effectively ad-
dresses the multi-modality problem, achieving su-
perior translation quality while maintaining fast
decoding speed. Extensive experiments across di-
verse benchmarks demonstrate the effectiveness
of Diff-DAT, establishing a new state-of-the-art in
non-autoregressive translation. Our work bridges
the gap between decoding efficiency and transla-
tion quality, advancing the field of sequence-to-
sequence learning.

6 Limitations

Although the optimal trade-off between decoding
latency and performance occurs with 2-step decod-
ing, increasing the number of decoding iterations
does not lead to consistent performance improve-
ments. Instead, it degrades the performance, partic-
ularly for long sentences, as demonstrated in our
ablation study. This presents an ongoing challenge
for iterative decoding in DAT, which remains an
area for future research.

References
Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel

Tarlow, and Rianne Van Den Berg. 2021. Structured
denoising diffusion models in discrete state-spaces.
Advances in Neural Information Processing Systems,
34:17981–17993.
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A Details Experimental Setup

Table 3: The number of sentence pairs of the training, validation, and test sets in each dataset

IWSLT14 De-En WMT14 En-De WMT16 En-Ro WMT17 Zh-En

Train 160k 4.5M 610k 20M
Validation 6.75k 3k 2k 2k
Test 6.75k 3k 2k 2k

Table 4: Hyper-parameters

Hyper-parameters IWSLT14 De-En WMT14 En-De WMT16 En-Ro WMT17 Zh-En

learning rate 0.0005 0.0005 0.0005 0.0005
warmup 30k 10k 15k 10k
dropout 0.3 0.1 0.3 0.1
updates 200k 300k 200k 300k
batch size 8k tokens 64k tokens 32k tokens 64k tokens
Size factor λ 4 8 4 8

Datasets. We conduct experiments on four popular machine translation dataset WMT14 English-
German (En-De, 4.5M sentence pairs), WMT17 Chinese-English (Zh-En, 20M sentence pairs) and
WMT16 English-Romanian (En-Ro, 610k sentence pairs) and IWSLT14 German-English (De-En 160k
sentence pairs). The details size of each dataset is given in table 3. We apply BPE (Sennrich et al., 2015)
to learn a joint subword vocabulary for En-De, En-Ro, and De-En and separate vocabularies for Zh-En on
the tokenized data.

Baselines. We compare our Diff-DAT against leading NAR baselines, including CMLM (Ghazvininejad
et al., 2019) and its variants, CMLM+SMART (Ghazvininejad et al., 2020b), CMLM+AXE (Ghazvinine-
jad et al., 2020a) and CMLM+OaXE (Du et al., 2021), DisCo (Kasai et al., 2020), Imputer (Saharia
et al., 2020), GLAT (Qian et al., 2021b), DSLP (Huang et al., 2022a), CMLMC (Huang et al., 2022c),
PCFG-NAT (Gui et al., 2024), DAT (Huang et al., 2022b), and FA-DAT (Ma et al., 2023).

Metrics. For fair comparisons with previous work, we use tokenized BLEU (Papineni et al., 2002b) for
all benchmarks. The decoding speedup is measured with a batch size of 1.

Implementation details. All baselines and our proposed method are implemented using the open-
source toolkit Fairseq (Ott et al., 2019). BLEU scores are evaluated on the validation set, and the final
model is obtained by averaging the best 5 checkpoints. To ensure fair comparisons with previous work,
we adhere to the training hyper-parameters set by (Huang et al., 2022b,c), as detailed in Table 4. On the
IWSLT14 dataset, we employ the Transformer-small configuration 512-1024-4, whereas on the WMT
datasets, we utilize the Transformer-base configuration 512-2048-8 for both the encoder and decoder in
our autoregressive baseline. These numerical values correspond to the embedding dimension, FFN layer
size, and number of attention heads, respectively. Our model architecture strictly adheres to the settings
of DAT, where we set the decoder length to 8 times the source length (λ = 8) and incorporate graph
positional embeddings as decoder inputs unless otherwise specified. Additionally, we set the number of
time steps adaptively equal to the length of the source sentence. We assess BLEU scores on the validation
set and average the best 5 checkpoints to obtain the final model. In cases where DAT performance is not
reported for the WMT16 dataset, we independently train the model using the original code and maintain
the same settings in our Diff-DAT approach. Throughout all experiments, we utilize the Adam optimizer
(Kingma and Ba, 2014) with default settings and conduct training on 4 Nvidia A100-80G GPUs.

B Derivations of the Variational Lower Bound for Diff-DAT

The following provides the derivation for the loss objective of Diff-DAT:
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logPθ(Y0|X) = log
∑

Y1:T

∑

A

Pθ(Y0:T , A|X)

= log
∑

A

EQ(Y1:T |Y0,A)
Pθ(Y0:T , A1:T |X)

Q(Y1:T |Y0, A)

≥
∑

A

EQ(Y1:T |Y0,A) log
Pθ(Y0:T , A1:T |X)

Q(Y1:T |Y0, A)

=
∑

A

EQ(Y1:T |Y0,A) log
Pθ(YT |X)

∏T
t=1 Pθ(A|Yt, X)Pθ(Yt−1|Yt, A,X)

Q(YT |Y0)
∏T

t=2Q(Yt−1|Yt, Y0, A)

=

T∑

t=2

EQ(Yt|Y0,A)

∑

A

[
logPθ(A|Yt, X)− KL[Q(Yt−1|Yt, Y0, A)∥Pθ(Yt−1|Yt, A,X)]

]

+ EQ(Y1|Y0)

∑

A

[
logPθ(A|Y1, X) + logPθ(Y0|Y1, A,X)

]
+ const

Forward process: At time step t, for each path At in the DAG, we sample Yt ∼ Q(Yt|Yt−1, At) by
applying the following forward transition probabilities independently for each token yit−1 in the sequence
Yt−1:





Q(yit = [M ]|yit−1 = [M ], ai ∈ A) = 1
Q(yit = yi0|yit−1 = yi0, ai ∈ A) = βt
Q(yit = [M ]|yit−1 = yi0, ai ∈ A) = 1− βt
Q(yit = yi0|yit−1 = [M ], ai ∈ A) = 0

Q(yit = [M ]|yit−1, ai /∈ A) = 1
Q(yit ̸= [M ]|yit−1, ai /∈ A) = 0

(7)

For each token, if it is part of the current path At, it has a probability of transitioning to the absorbing
state [M ], or it may remain unchanged. Tokens that are not part of the path, or were already masked
in previous steps, will always remain in the absorbing state. We can also perform a t-step marginal,
Q(Yt|At, Y0), to directly sample Yt from Y0:





Q(yit = yi0|yi0, ai ∈ A) = αt

Q(yit = [M ]|yi0, ai ∈ A) = 1− αt

Q(yit = [M ]|yi0, ai /∈ A) = 1
Q(yit = yi0|yi0, ai /∈ A) = 0

(8)

where αt :=
∏t

i=1 βt is specified to decrease from 1 to 0
Backward process: We then compute the posterior at time t − 1 as Q(Yt−1|Yt, Y0, A) =

Q(Yt|Yt−1,A)Q(Yt−1|Y0,A)
Q(Yt|Y0,A) . The backward transition probabilities for each token are then calculated as

follows:




Q(yit−1 = yi0|yit = [M ], yi0, ai ∈ A) = γt
Q(yit−1 = [M ]|yit = [M ], yi0, ai ∈ A) = 1− γt
Q(yit−1 = [M ]|yit = yi0, y

i
0, ai ∈ A) = 0

Q(yit−1 = [M ]|ai /∈ A) = 1

(9)

where γt =
αt−1−αt

1−αt
. Instead of training a neural network fθ(Yt, X) to directly predict the logits of the

distribution Pθ(Yt−1|Yt, A,X), we follow the approach in (Ho et al., 2020) and focus on learning a neural
network fθ(Yt, X) to predict the logits of the distribution P̃θ(Ỹ0|Yt, A,X). We then combine this with
Q(Yt−1|Yt, Y0, A) and sum over the one-hot representations of Y0 to obtain the following parameterization:
Pθ(Yt−1|Yt, A,X) =

∑
Ỹ0

P̃θ(Ỹ0|Yt, A,X)Q(Yt−1|Yt, Ỹ0, A) The parameterized backward transition
probabilities for each token are then derived as follows:
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



Pθ(y
i
t−1 = yi0|yit = [M ], ai ∈ A,X) = γtPai,yi0

Pθ(y
i
t−1 = [M ]|yit = [M ], ai ∈ A,X) = 1− γt

Pθ(y
i
t−1 = [M ]|yit = yi0, ai ∈ A,X) = 0
Pθ(y

i
t−1 = [M ]|ai /∈ A,X) = 1

(10)

where P = P̃θ(ỹ
i
0|Yt, X) = fθ(Yt, X) ∈ RL×|V | is the matrix containing the token distributions on

the L vertices, and P̃θ(ỹ
i
0 = yi0|ai, Yt, X) = Pai,yi0

. Since the forward and backward processes are
factorized as conditionally independent over the image or sequence elements, the KL divergence between
Q and Pθ can be computed by simply summing over all possible values of each random variable, which is
given by the following:

KL(Q(yit−1|yit, yi0, At)∥Pθ(y
i
t−1|yit, A,X)) =

{−γt logPai,yi0
if yit = [M ] and ai ∈ A

0 otherwise
(11)

Put it into Lt in (6), we have the objective:

Lt =
∑

A

EQ(Yt|Y0,A)

M∑

i=1

γtb
i
t logPai,yi0

M∑

i=2

Eai−1,ai

where bit =

{
1 if yit = [M ]
0 otherwise

. Optimizing requires multiple forward passes of the neural

network each time we sample Yt ∼ Q(Yt|Y0, A) given a path A. To simplify this, we condition only
on the path with the highest probability Â = argmaxA Pθ(Y0, A|X), and sample Yt ∼ Q(Yt|Y0, Â).
Consequently, Lt becomes:

Lt = EQ(Yt|Y0,Â)

∑

A

M∑

i=1

γtb
i
t logPai,yi0

M∑

i=2

Eai−1,ai

We can efficiently compute Lt using dynamic programming, similar to the approach in DAT. During
training, we sample a time step t and update the model parameters to maximize the objective in (??).

C Fuzzy Alignment in Diff-DAT

FA-DAT (Ma et al., 2023) addresses the strict monotonic alignment in DAT by fine-tuning it using a fuzzy
alignment objective as follows:

pn(Ỹ0, Y0) =

∑
g∈Gn(Y0)

min(Cg(Ỹ0), Cg(Y0)
∑

g∈Gn(Ỹ0)
Cg(Ỹ0)

(12)

pn(θ, Y0) = EPθ(A|X)pn(Pθ(Ỹ0|A,X), Y0) (13)

Due to the high complexity, they optimize a more tractable approximation of (13) as follows:

p̃n(θ, Y0) =

∑
g∈Gn(Y0)

min(EPθ(A|X)Cg(Pθ(Ỹ0|A,X)), Cg(Y0)

EPθ(A|X)

∑
g∈Gn(Ỹ0)

Cg(Pθ(Ỹ0|A,X))
(14)

(14) can be efficiently computed using Dynamic Programming as outlined in (Ma et al., 2023). We
extend this objective for fine-tuning Diff-DAT as follows:

p̃n(θ, Y0, t) =

∑
g∈Gn(Y0)

min(EQ(Yt|Y0,Â,X)EPθ(A|X)Cg(Pθ(Ỹ0|Yt, A,X)), Cg(Y0)

EQ(Yt|Y0,Â,X)EPθ(A|X)

∑
g∈Gn(Ỹ0)

Cg(Pθ(Ỹ0|Yt, A,X))
(15)
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Similar to Diff-DAT, at each gradient descent step, we sample t ∼ Uniform(T ) and Yt ∼
Q(Yt|Y0, A0, X) to compute the objective (15).

We conducted experiments to compare Diff-DAT with a Fuzzy Alignment objective (FA-Diff-DAT)
against other baselines, as shown in Table 5. When combined with the Fuzzy Alignment objective,
FA-Diff-DAT further improves performance, surpassing FA-DAT in both 1 and 2 iterations of decoding.

Table 5: Comparison between Diff-DAT, FA-Diff-DAT, DAT, and FA-DAT. The highest-performing NAT methods
are highlighted in bold. * indicates our implementation.

Model Iter. Speedup IWSLT14 WMT16
De-En En-Ro

Transformer (Vaswani et al., 2017b) M 1.0× 34.66 34.16

DAT *(Huang et al., 2022b)
+ Lookahead 1 14.0× 33.79 33.46
+ Joint-Viterbi 1 13.2× 34.02 33.65
+ Greedy 1 14.2× 33.68 33.28

FA-DAT * (Ma et al., 2023)
+ Lookahead 1 14.0× 34.65 33.72
+ Joint-Viterbi 1 13.2× 34.66 33.74
+ Greedy 1 14.2× 34.64 33.69

Diff-DAT

+ Lookahead
1 14.0× 34.21 33.65
2 11.8× 34.68 34.01

+ Joint-Viterbi
1 13.2× 34.37 33.72
2 9.2× 34.77 34.00

+ Greedy
1 14.2× 33.96 33.47
2 12.2× 34.51 33.87

FA-Diff-DAT

+ Lookahead
1 14.0× 34.71 33.74
2 11.8× 35.04 33.97

+ Joint-Viterbi
1 13.2× 34.73 34.13
2 9.2× 35.06 34.27

+ Greedy
1 14.2× 34.69 33.72
2 12.2× 35.03 33.94

D Ablation Study on the Impact of Size Factor λ

Figure 3 illustrates the results of DAT and Diff-DAT with varying graph sizes. Previous work (DAT)
indicates that larger graph sizes complicate transition predictions, leading to a performance decline for
both DAT and Diff-DAT. Nonetheless, Diff-DAT consistently outperforms DAT across all graph sizes.
The graph size also influences the iterative decoding performance of Diff-DAT. Both transition predictions
and iterative refinement contribute to capturing token dependencies in the generated sentence. When the
graph size is small, iterative decoding significantly aids due to the limitations in transition predictions.

E Analysis of the impact of varying the number of decoding steps

We conducted another analysis to examine the impact of graph size on iterative decoding. Figures 4, 5, 6,
and 7 display the BLEU scores for each dataset, categorized by reference length. A consistent trend was
observed that in the results of each dataset there are two intervals: in the first interval, the BLEU score
increases as the number of decoding iterations increases; in the second interval, the BLEU score decreases
as the number of decoding iterations increases. Since sequence length directly influences graph size, it can
be concluded that once the graph size reaches a certain threshold, it negatively affects iterative decoding.
Larger graph sizes make it more challenging to predict transition probabilities. Additionally, each decoding
iteration generates sub-paths in the graph that the model must navigate, further complicating the prediction
of transition probabilities. These factors combined make it increasingly difficult for the model to predict
transitions with each iteration. Moreover, errors from previous iterations affect subsequent ones, leading
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Figure 3: Effects of λ on IWSLT14 De-En. The graph size of DAT is λ times the of source length. We use
Join-Viterbi decoding to evaluate BLEU.
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Figure 4: The BLEU score on IWSLT14 De-En bucketed by the reference length.
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Figure 5: The BLEU score on WMT14 En-De bucketed by the reference length.
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Figure 6: The BLEU score on WMT16 En-Ro bucketed by the reference length.
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Figure 7: The BLEU score on WMT17 Zh-En bucketed by the reference length.

to a negative impact on the model’s ability to capture dependencies within the sentence through transition
predictions. This intriguing challenge inspires us to address it in future work.

F Inference

In inference, we adopt the translation of DAG with Greedy, Lookahead (Huang et al., 2022b), and
Joint-Viterbi (Shao et al., 2022) decoding.
Greedy The most straightforward approach involves selecting the most probable transitions and tokens.
In essence, we conduct simultaneous argmax operations to determine the most probable transition and
token for every vertex. Subsequently, we construct the translation by gathering the predicted tokens
along the selected path. This greedy decoding method is remarkably efficient, requiring only two parallel
operations, as illustrated in Algorithm 1.

Algorithm 1 Greedy / Lookahead Decoding in Pytorch-like
Parallel Pseudocode

Input: Graph Size L, Transition Matrix E ∈ RL×L,
if Using Lookahead then
E := E⊗ [P.MAX(dim=1).UNSQUEEZE(dim=0)]
# E now jointly considers P and E
# ⊗ is element-wise multiplication

end if
tokens := P.ARGMAX(dim=1) # shape: (L)
edges := E.ARGMAX(dim=1) # shape: (L)
i := 1, output := [ tokens[1] ]
repeat
i := edges[i] # jumping along the transition
output.APPEND(tokens[i])

until i = L

Lookahead Lookahead decoding enhances the efficacy of the greedy approach by jointly considering
both transitions and tokens. Specifically, we rearrange Pθ(Y,A|X) into the following sequential decision
problem:
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Pθ(y1|a1, X)
M∏

i=2

Pθ(ai|ai−1, X)Pθ(yi|ai, X), (16)

This formulation transforms the task into choosing ai and yi sequentially. We concurrently derive:

y∗i , a
∗
i = argmax

yi,ai
Pθ(yi|ai, X)Pθ(ai|ai−1, X), (17)

This can still be executed in parallel with minimal overhead, as outlined in Algorithm 1.
Joint-Viterbi We additionally utilize Joint-Viterbi decoding (Shao et al., 2022) to determine the global
joint optimum of translation and path within a predefined length constraint. Subsequently, we reevaluate
these candidates through length normalization to refine their ranking.

It is notable that Joint-Viterbi decoding can be seen as enhancements to Greedy decoding and
Lookahead decoding, respectively. While both Greedy and Lookahead decoding methods fo-
cus on the immediate probability and select the next token using argmaxai Pθ(ai|X, ai−1) and
argmaxyi,ai Pθ(yi|ai, X)Pθ(ai|ai−1, X), respectively, Joint-Viterbi algorithm consider the entire de-
coding path. They ensure the discovery of the globally optimal solution argmaxA Pθ(A|X) and
argmaxA,Y Pθ(A, Y |X), respectively.
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