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Abstract

In this paper, we introduce CoRet, a dense re-
trieval model designed for code-editing tasks
that integrates code semantics, repository struc-
ture, and call graph dependencies. The model
focuses on retrieving relevant portions of a code
repository based on natural language queries
such as requests to implement new features
or fix bugs. These retrieved code chunks can
then be presented to a user or to a second code-
editing model or agent. To train CoRet, we
propose a loss function explicitly designed for
repository-level retrieval. On SWE-bench and
Long Code Arena’s bug localisation datasets,
we show that our model substantially improves
retrieval recall by at least 15 percentage points
over existing models, and ablate the design
choices to show their importance in achieving
these results.

1 Introduction

Code editing is an important task that often re-
quires developers to make changes to code repos-
itories based on explicit natural language descrip-
tions such as a GitHub pull request about a bug,
a new feature, or about an error in the code. Suc-
cessful code editing requires correct navigation and
retrieval of relevant sections of the repository. This
process demands a repository-level understanding
of the code functionality (semantics), organisation
(repository hierarchy), and relationships between
various entities in the codebase (e.g. runtime depen-
dencies). Retrieving multiple relevant code chunks
is especially difficult in large, real-world reposito-
ries (Jimenez et al., 2024). Retrieval is important
for both coding agents and humans and forms an
important first step in the overall code editing pro-
cess.

We find that existing pretrained encoder mod-
els perform poorly in repository-level retrieval for
code-editing. We conjecture the reason for this
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is threefold: the representations do not align the
problem statements to segments of code; the struc-
ture from the repository hierarchy is lost; and the
runtime dependencies within a repository are not
captured. Models like CodeSage (Zhang et al.,
2024a) capture docstring-code relationships effec-
tively. Yet, we find that this capacity does not read-
ily transfer to retrieval for code-editing tasks. Sim-
ilarly, models like CodeBERT (Feng et al., 2020),
GraphCodeBERT (Guo et al., 2021), and UniX-
coder (Guo et al., 2022) focus on code semantics
but miss repository-level structures, limiting their
generalisation to this task.

Incorporating additional context has been long
known to improve the quality of retrieval (Khattab
and Zaharia, 2020; Zhu et al., 2024). The nature of
code presents challenges in determining how to in-
tegrate context and what type of context to use. For
tasks like code completion and summarisation, us-
ing chunks from other files within the same reposi-
tory as context improves performance (Bansal et al.,
2021; Ding et al., 2024). Bansal et al. (2023) argue
that the call graph dependency structure is required
to understand the semantics of code and consider
embedding code subroutines together. We follow
this direction.

Our work introduces a dense retrieval model for
code-editing tasks. We show that optimising di-
rectly the likelihood of the model to retrieve cor-
rect code sections brings significant advantages
over standard contrastive losses. Moreover, we
show how to effectively incorporate file hierarchy
and call graph context. These contributions lead
to improvements of at least 15 percentage points
recall over the baseline methods on SWE-bench
and Long Code Arena.

2 Problem setup

Representing a code repository in structurally-
informed and semantically succinct units is imper-
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ative for retrieval performance (Shrivastava et al.,
2023; Zhang et al., 2023b; Liao et al., 2024). An ob-
vious atom of a repository is a file. However, files
may be particularly long and may lack semantic
coherence. Therefore, we further break down each
file into its constituent functions, classes and meth-
ods of classes, as illustrated in Figure 1 (bottom).
We refer to each such atom as a chunk. Further
details on the chunking procedure are available in
Appendix B.

The objective of code retrieval is to return all
parts of the codebase that are pertinent to the cur-
rent input. Let C represent a code repo as a set
of atoms: C = {cy,- - cpr}. We represent with ¢
a natural text input that describes an issue in the
repository. Our dataset D consists of N triplets
of issue descriptions, associated codebase, and
the ground truth atoms i.e. D = {(¢;,C;,C;)}Y,
where C/ C C;. We refer to each triplet as an
example, or instance. A retriever is a function
[ (g,ci) — [0,1] for ¢; € C that assigns a
numerical score to each of the atoms in C. A
ranking can be induced on the atoms by sorting
the scores. We parameterize f(q,c;;6y,0.)
sim(Q(q; 64), C(ci;6.)), where @ and C' are em-
bedding networks for g and ¢; respectively, and
‘sim’ is the cosine similarity between them. The
ideal retriever induces a ranking that puts all the
relevant atoms before the irrelevant ones. In prac-
tice, we extract the top-k most similar atoms to
the query, denoted by Cp, where k < [C| i.e.
Cr = argtopk.cc[f(q,c)]. We leave the depen-
dence of Cr on k implicit. For brevity, we represent
Q(q; 04) with g and C'(¢;; 0.) with ¢;. During infer-
ence, given a (test) codebase and a query in natural
language, the top-k£ most similar atoms retrieved
are from the set C' = {cy,...,cpr} where M is the
number of atoms (chunks) in this codebase.

3 Proposed method

Here we describe our method to train encoder mod-
els for the specific task of code retrieval.

3.1 Training

The goal of training the retrieval model f is to
learn an embedding space where the query and the
relevant code chunks have higher similarity than
irrelevant code chunks. Each instance ¢ € [V],
contains a single query ¢; and multiple ground truth
code chunks c}. These form positive pairs (g;, ¢} ).
The remaining pairs (g;, cx), for ¢, € C \ C*, are

jedi.py
example.sh
tests/

test_jedi.py

Figure 1: Top: Code repository before processing. Bot-
tom: Code chunks after filtering and chunking.

negative pairs. We optimise the following loss
function:

Z 1Ogexp<%f*)7 (1)
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where § = (0, 0..) are the parameters of the model
and I'(q,C) = > ¢ exp (L2) is the normalising
factor. This is the mean likelihood of retrieving the
code chunk per model, and is akin to the standard
cross-entropy loss for multi-class classification.

Since the normalising factor involves a summa-
tion over all the chunks in a code repository (which
can be in the order of 10000 chunks), we implement
an approximation by considering only a random
subset of instances:

[(g,¢",0) = exp (L) + > exp (%2) ()

ceB

where B C C is random sample of within-instance
negatives and 7 is a temperature parameter. Follow-
ing Zhang et al. (2024a), we set 7 = 0.05 through-
out. Prior works (see Appendix A) primarily use
contrastive losses for feature learning, whereas we
apply a standard log-likelihood loss in this setting.

3.2 Call graph context for code-editing

Context has been shown to significantly improve
the quality of retrieval (Lewis et al., 2020b; Giinther
et al., 2024; Borgeaud et al., 2022). A code reposi-
tory has a natural relationship between its chunks
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C; ; [DOWN] ; Cout

knights/jedi.py knights/utils.py
©s ©s

lightsaber_on() print( )

C; Cout

Figure 2: Given a function ¢; and its downstream neigh-
bour coy, We concatenate the strings as c¢;; [DOWNT; Cout,
including the special separation token, and fine-tune the
model to obtain CoRet.

endowed by the call graph (Ahn et al., 2009; Bansal
et al., 2023). The neighbours in the call graph are
the code entities that are invoked by or invoke the
current chunk of interest. We propose to enrich
each chunk ¢; in C with its call graph neighbours
N (¢;). To incorporate this information, we mod-
ify the chunk embedder C' to accept that informa-
tion as C'(¢;, N (¢;); 6.). Several implementations
for this C' are possible: we retain the same net-
work as without the call graph information, but
add the call graph chunks in the input itself i.e.
C([ci; N(¢:)]; 0.). We also use only downstream
neighbours by introducing a new token [DOWN]
that denotes this relationship. For instance, a chunk
with one incoming and one outgoing edge is repre-
sented as c¢;; [DOWNT; coyt, Where ‘57 denotes string
concatenation. See Figure 2 for an example of
how the call graph context is fed to the model. We
follow BERT (Devlin et al., 2019) in adding token
segment type embeddings i.e. trainable embeddings
that signify ¢; and NV(¢;).

4 Experiments

4.1 Dataset

For training, we consider repository-level code-
editing problems which contain a language prob-
lem statement g and a code repository C from SWE-
bench (Jimenez et al., 2024). The ground truth
pull requests are parsed to obtain the ground truth
chunks C* which correspond to the edited code
chunks. We evaluate our trained models on SWE-
bench Verified, and Long Code Arena (LCA) bug
localisation (Bogomolov et al., 2024). We provide

further dataset statistics in Appendix D.

4.2 Maetrics

We measure the performance of our model using
standard retrieval metrics: recall@k and mean re-
ciprocal rank (MRR). Recall@k measures how
many of the ground truth chunks in C* are retrieved
when & most similar chunks are retrieved. MRR
measures the minimum k needed to retrieve at least
one correct code chunk; see Appendix C for formal
definitions. Additionally, when multiple chunks
have to retrieved, as in the case of LCA, we show
the performance metric Perfect-Recall @k which
is a binary value for each instance if all correct
chunks were retrieved at k. This is better suited to
measure improvements as partial retrievals are not
useful for subsequent code editing.

ol 1 ifCp;NC =Cf
{ nICFr; i — L (3)

1
Perf-RecallQk = N z; 0 otherwise.
1=

We prioritize recall in our choice of metrics be-
cause retrieving all the necessary code chunks is
necessary to solve a task, while the impact of re-
trieving unnecessary chunks (i.e. low precision) is
not clear.

4.3 Implementation

We implement CoRet wusing CodeSage
Small (S) (Zhang et al.,, 2024a) as our pre-
trained backbone with the following modification:
we use mean pooling over all chunk tokens
instead of using the standard [CLS] token. This
modification resulted in a moderate performance
boost in early experiments. We also tie the weights
for both C' and () models, meaning 6. = 6, which
we initialise with the publicly available CodeSage
S weights. We found that weight tying performs
consistently better in our experiments than letting
C and @ vary independently during training.
Further model and implementation details are in
Appendix E and Appendix G.

4.4 Results

Existing models are sub-optimal when used for
retrieval in code editing. We compare our model
to standard methods such as BM25 (Trotman et al.,
2014), several text-code encoder models like Code-
BERT (Feng et al., 2020), GraphCodeBERT (Guo
et al., 2021), UniXcoder (Guo et al., 2022), and
CodeSage (Zhang et al., 2024a). In Figure 3, we
present each baseline model retrieval performance
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Chunk level retrieval on SWE-bench Verified wo/ﬁlepath W, /ﬁlepath
________ X
80 =T o Model | @5 @20 MRR| @5 @20 MRR
60 - "'x/' BM25 015 021 014 |0.16 022 0.16
10 4 x,':;s ~ CodeSage S | 040 0.58 033 | 040 0.57 035
w0l 4 _ge——" CoRet | 042 058 042 | 053 070 053
.‘.-.
. ~ 8
7 (')" - . - - - - Table 2: Chunk-level accuracy on SWE-bench Veri-
#Chunks retrieved fied, comparing CoRet without (wo/filepath) and with
— EM25 —— GraphCodeBERT — CodeSage M (w/filepath) file path input. CoRet is fine-tuned with

CodeBERT == CodeSage S == CoRet

Figure 3: Recall@k for the baseline models and our
proposed method on instances of SWE-bench Verified.
CodeSage-family models substantially outperform other
baselines. CoRet, described in Section 3, consistently
outperforms baselines across all k. The dashed line
corresponds to the trained CoRet model, whereas the

solid lines correspond to the untrained baselines.

SWE Verified LCA
Model | @5 @20 MRR| @5 @20 MRR
CodeSage S 034 051 035 026 034 028
CoRet — CG 052 069 052|032 041 045
CoRet — CG +file | 0.54 0.69 052 | 029 038 044
CoRet | 054 071 053 [ 032 047 047

Table 1: Perfect recall at chunk level on code-editing
retrieval tasks.

on SWE-bench Verified in solid lines. Among the
models considered, CodeSage S and CodeSage M
perform the best with the caveat that CodeSage M’s
performance comes with a much higher computa-
tional resource requirements. For this reason, we
pick CodeSage S model as our pretrained backbone
for further finetuning.

Representation learning focused on retrieval im-
proves performance. In Figure 3, the dashed line
reports the performance of CoRet after training.
We report the perfect chunk recall in Table 1. It is
evident that CoRet improves upon the best baseline
CodeSage S significantly. On SWE-bench Veri-
fied, recall@5 improves by 52.9% compared to
CodeSage S for recall@5 and by about 35% for
recall@20.

Call graph context improves multi-chunk re-
trieval. Next, we ablate on the call graph context to
assess the contribution of including this additional
information during training and inference. Table 1
reports perfect chunk recall on our two evaluation
datasets. CoRet - CG indicates our method without
the call graph context described in Section 3.2. We
present results of additional baselines in Figure 4

file paths, highlighting performance drop without them.
CoRet performance improves with file path context.

in the Appendix and provide a summary here. We
further perform an ablation (CoRet - CG + file)
where we include as additional context a number of
chunks randomly sampled from the same file as the
target chunk, and we leave the rest of the pipeline
unchanged. We observe a substantial decrease in
performances throughout, further validating our
design choice.

Choice of negative samples in Equation (2) in-
fluences the performance. Traditional meth-
ods for representation learning using contrastive
losses (Chopra et al., 2005; Chen et al., 2020;
Karpukhin et al., 2020) form negative samples
by using positives from elements across the batch.
We term this across-instance negatives. In Equa-
tion (2), we form the negatives from entirely within
a problem’s repository and not across problems,
like in Sohn (2016a), and we term this in-instance
negatives. For our experiments we randomly draw
up to a maximum of 1024 negative samples to com-
pute the term T in our loss (Equation (2)) and con-
sider the influence of the number of negatives in
Figure 5 in the Appendix. We find improvements
for all £k when we include in-instance negatives.
Additionally, the impact of number of negatives is
also evident; the larger the number of negatives, the
better the performance. Increasing the number of
negatives from 8 — 1024 improves the recall@20
by almost 10 points. This provides further evi-
dence that Equation (1) with the approximation
from Equation (2) mimics the goal of a retriever: it
explicitly models which code chunks are relevant
and which are not.

File hierarchy is an important feature for re-
trieval. We prefix the file path to each chunk as a
part of the chunking strategy. We find that it is an
important feature. In Table 2, we show the retrieval
performance drops for CoRet when file paths are
removed from the chunk representation for infer-
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ence, as the models are originally trained with the
file path present. The performance difference is
minimal for both BM25 and CodeSage S whereas
CoRet learns to rely on the file name through train-
ing. Additional evidence from an attention matrix
is presented in Appendix .

5 Conclusions

In this work, we present an explicit study of
repository-level code-editing retrieval. We propose
a method for training models specifically designed
for this task and demonstrate that existing retrieval
models are suboptimal in this setting. We iden-
tify that this problem differs from the traditional
constrastive representation learning problem and
propose a loss function that substantially improves
the performance of retrieval models compared to
using standard contrastive losses. Further, incor-
porating code context from neighbours in the call
graph gives an additional boost in performance.
We speculate that further improvement may come
with better strategies to select relevant neighbours,
e.g. by leveraging topological properties of the
call graph Tsourakakis et al. (2017); Chiang et al.
(2014); Cesa-Bianchi et al. (2012). We hope this
work highlights the importance of retrieval for code
editing and inspires further research to advance
models and techniques in this domain.

Limitations

Our work can be extended in several ways. For
instance, our experiments are restricted to Python,
and are based on two datasets - SWE-bench and
LCA. At the time of the submission they were the
only datasets that allowed for repository level code
retrieval problems. Recently, a multi-language
dataset called SWE-PolyBench (Rashid et al.,
2025) has been released and we plan to include
it in our future work on this topic.

Furthermore, SWE-bench Verified requires to
modify, for the large part, one file in each test case.
Thus, file recall can be very high. LCA features
edits in multiple files, and thus is a better repository
to benchmark. The data preparation and chunking
step, while extensible, can be expensive to imple-
ment for languages other than Python.

Our investigation has been limited to encoder
models for their feature prediction abilities. Sev-
eral modern LLMs have been modified to output
feature embeddings (BehnamGhader et al., 2024;
Tao et al., 2024). It is also likely that these LL.Ms

trained on large corpus can provide better base-
line performance, but training them requires more
resources.
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Appendix A Related work
Here, we present some works related to ours.

Benchmarks for code retrieval The scope of
standard benchmarks for semantic matching or
code search between a natural language query
and code such as CoSQA (Huang et al., 2021),
CodeSearchNet (Husain et al., 2019), AdvTest (Lu
et al., 2021), CodeXGLUE (Lu et al., 2021) are
based on docstrings and corresponding code. The
repository-level retrieval benchmarks such as Re-
poEval (Zhang et al., 2023a), Repobench (Liu
et al., 2024), CodeRAG-Bench (Wang et al., 2024),
EvoCodeBench (Li et al., 2024a) are typically
used for code completion tasks where they do not
have natural language queries or the retrieval is
only for context and not editing. ColR (Li et al.,
2024b) is a recent benchmark that curated a collec-
tion of multiple datasets for various scenarios, in-
cluding text-to-code, code-to-text, code-to-code re-
trieval, thus going beyond our target setting. There-
fore, we focus our work on real-world GitHub
repositories with natural language queries such
as SWE-bench (Jimenez et al., 2024) and Long
Code Arena for bug localisation (Bogomolov et al.,
2024). CoRNStack (Suresh et al., 2025) is the an-
other dataset that is relevant to us, however this is a
concurrent work to ours and we do not experiment
with it.

Models for code-editing retrieval Generative
Large Language Models (LLMs) are showing
improvements on many code related tasks (Li
et al., 2023; Guo et al.,, 2024; Yang et al.,
2024a). BehnamGhader et al. (2024) proposes
LLM2Vec which allows LLMs to be used for dense
retrieval. LLM2Vec comes at a cost of a much
higher parameter count for the model model, mak-
ing it slower during inference, more costly to store
embeddings, and challenging to fine-tune. Xia et al.
(2024) propose a simple LLM-only framework to
code-editing. Their approach prompts the model to
localise, repair, and validate their solution. Most
current approaches use agents which allows an
LLM to interact with the repository through the use
of tools such as reading, editing files, and running
bash commands (Yang et al., 2024b). A notable
LLM-agent AutocodeRover is provided with spe-
cific code search APIs which iteratively retrieve
code context and locate bugs (Zhang et al., 2024b).
Further improvements are seen by SpecRover
which generates summaries and feedback messages

during agent steps (Ruan et al., 2024). To improve
repository-level navigation, Ma et al. (2024) pro-
pose an agent RepoUnderstander that condenses
the codebase into a knowledge graph and exploit
the structure of the repository using Monte Carlo
tree search. Liu et al. (2025) parses a repository
into code entities and establishes relationships be-
tween them through a dataflow analysis, forming a
repo-specific context graph. This is shown to im-
prove code completion accuracy. Liu et al. (2025)
integrate LLM agents with graph database inter-
faces extracted from code repositories. By lever-
aging the structural properties of graph databases
and the flexibility of the graph query language,
CodexGraph. RepoGraph (Ouyang et al., 2024)
constructs a graph of code lines, with the nodes
being code lines that capture definition-reference
dependencies. These works are orthogonal ways
of approaching the code retrieval problem through
prompting LLMs.

Representation learning for code Represen-
tation learning for programming languages has
benefited many downstream applications. Differ-
ent techniques have been applied to learning rep-
resentation such as masked language modelling
(MLM) (Feng et al., 2020; Li et al., 2023), next
token prediction (Kanade et al., 2020; Li et al.,
2023) and contrastive learning (Guo et al., 2022;
Zhang et al., 2022, 2024a). Representation learning
seeks to induce meaningful (vector) embeddings
of inputs, and is motivated by applications such as
information retrieval via semantic search (Reimers
and Gurevych, 2019; Izacard et al., 2021; Zhang
et al., 2024a). Successful application of unsuper-
vised contrastive learning leverages text-code pairs,
mined from docstrings (Husain et al., 2019; Guo
et al., 2022; Zhang et al., 2022, 2024a). These
works involve models that semantically align the
embeddings of code to its natural language descrip-
tion. However, they do not consider the alignment
or abstraction required for retrieval for code-editing
queries at the repository-level. Concurrent to our
work, CoCoMic (Ding et al., 2024) shows that in-
cluding relevant cross-file context based on import
statements significantly improves retrieval.

Repository-level feature learning The standard
loss for code retrieval is contrastive multi-class
N-pair loss or InfoNCE (Sohn, 2016b; van den
Oord et al., 2018; Chen et al., 2020). This loss
maximises similarity between positive pairs while
reducing similarity to all other pairs. This loss is
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used in many retrieval or semantic search applica-
tions (Husain et al., 2019; Karpukhin et al., 2020;
Zhang et al., 2024a). Hard-negative mining selects
negative examples that differ from the anchor but
have similar embeddings, making them the most
challenging for the model to distinguish (Robin-
son et al., 2021). Supervised contrastive learning
with hard-negatives has been show to generally
improve retrieval performance (Karpukhin et al.,
2020; Lewis et al., 2020a,c). However, Xiong et al.
(2021) argues that in-batch negatives are unlikely
to be hard negatives when the mini-batch size is far
smaller than the corpus size and when only a few
negatives are informative. This has been shown
to produce suboptimal training signals for dense
passage retrieval across independent documents.
A solution is to use negatives from lexical mod-
els such as BM25 during training (Karpukhin et al.,
2020; Gaoetal., 2021; Luan et al., 2021). Similarly,
for code retrieval across independent repositories,
we reduce in-batch negatives in favour of sampled
hard negatives within the instance repository. Our
formulation closely resembles standard maximum
likelihood estimation. For each repository, the like-
lihood function is modeled as a categorical distri-
bution over pairs, each consisting of the query and
a repository code chunk. To reduce computational
complexity, we approximate the normalisation fac-
tor by sampling a number of ‘negative’ pairs. Our
training loss is then computed by averaging across
all repositories. On the architecture side, we note
that other kinds of fusion like feature fusion have
been explored in literature in other contexts (Giin-
ther et al., 2024), however for this work, we limit
ourselves to input string concatenation for its ease
of implementation.

Appendix B Chunking methodology

B.1 Representing file & class information

We form chunks of code by splitting each file into
its constituent classes, methods and functions as
shown in Figure 1.

File hierarchy: These code chunks do not contain
any information about their locality in the code
repository. To add this information, we insert the
file path at the beginning of all code chunks. This
is an important bias for code-editing retrieval as
the problem statements ¢’s may often contain rel-
evant file paths. For instance, on SWE-bench Ver-
ified (Jimenez et al., 2024), 26% of the problem
statements contain the path of at least one ground

truth file (i.e. one file that needs to be edited) (see
Table 4). Empirically we verify the efficacy of this
representation by showing improved retrieval per-
formance and visualising the attention maps of a
trained retrieval model in Appendix I.

Class representation: Similarly, we preserve the
class hierarchy within the chunks. We represent a
class by its documentation string, its constructor
and declaration of class methods. Each method is
represented by including the class it belongs to.

Appendix C Metric Definitions

We measure the performance of our model using
standard retrieval metrics: recall@k and mean re-
ciprocal rank (MRR). We report recall at both a
file and a chunk level. We compute file recall by
retrieving k chunks and take the files those chunks
have been extracted from. A similar process is
done to the ground truth chunks as well.

N

1 |Cr; NC|
Recall@k = — — 4)
N
N
1 1
MRR = — _— 5
N ; rank(C;, Cr;) )

Here rank(-, -) refers to the rank of the first ele-
ment that is common to both the arguments. This
metric measures the minimum value of &k needed to
retrieve at least one correct code chunk, and is also
known as the First Answer Reciprocal Rank (Radev
et al., 2002).

Appendix D Dataset statistics

We report relevant dataset statistics in Table 3 and
Table 4. If an instance does not have at least
one modified function, class or method of class,
we discard it for the purpose of computing re-
ported statistics. For all token calculations we
use the SentencePiece (SP) tokenizer employed by
CodeSage (Zhang et al., 2024a). We extract ground
truth (GT) files and chunks using the ground truth
patch for each instance, namely a file is in the
ground truth if it is edited in the patch, and the
same for other chunks. Overall, training instances
(SWE-bench train) have slightly larger ground truth
sets, comprising on average 5 chunks, than test in-
stances (SWE-bench verified and LCA). File over-
lap (GT file overlap in Table 4) is overall high
across datasets, suggesting that typically changes
are restricted to a single or a small number of files.
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Finally, more than a quarter of queries in SWE-
bench and more than a third in LCA of queries
contain the path of at least one file to edit (GT file
in query, Table 4).

Appendix E Baseline Model Details

We report in Table 6 various statistics about the
models and methods we choose as baselines. Given
the trade-offs between the performance and re-
source requirements, we choose CodeSage S as
our base model to build CoRet upon.

Appendix F Baseline performance

We report in Figure 4 the performance of various
models and methods on SWE-bench Verified (be-
fore fine-tuning).
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Figure 4: Performance of various models on SWE-
bench Verified before fine-tuning. Top: chuck level re-
call; bottom: file-level recall. It is evident that the mod-
ern encoder models like the ones from the CodeSage
family perform substantially better than other baselines.
However, those models reach acceptable performance
(say around 80% chunk recall) only when retrieving a
large number of chunks (k > 50). This motivates our
need to train models that are specific for code retrieval.

Appendix G Fine-tuning details

All experiments use the model CodeSage
small' (Zhang et al., 2024a) for comparability and

'We use the initial version https://huggingface.co/
codesage/codesage-small as the second version was re-
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Figure 5: The influence of number of negatives || and
their source.

reproducibility. This Transformer encoder has 6
layers with 8 attention heads per layer. The size for
the word embedding vectors and model projections
are 1024, feed-forward dimensions are 4096 which
leads to models of approximately 130 million train-
able parameters. We use bf16-mixed precision to
reduce the memory footprint. The model was pre-
trained on natural language and code tokenized
with a Sentence Piece Tokenizer with a vocabulary
of approximately 50K tokens. Each fine-tuning
experiment takes approximately 24 hours to run
on 8 NVIDIA A10G Tensor Core GPUs. During
fine-tuning we use the hyperparameters reported in
Table 7.

We choose the optimiser hyperparameters to in-
crease stability and remove the need of initial learn-
ing rate warm up. Learning rate was selected over
the grid

{1e73,5e7*,1e74,5e 75,175, 5¢ 75, 176}

The batch size is 1 instance per GPU over 8 GPUs
with gradient accumulation of 32; namely, we use
an effective batch size of 256 instances. For each
instance we sample 1024 (in-repository) negatives
during training.

Appendix H Choice of negative samples
in Equation (2) influences
the performance

In Figure 5, we show the impact of choice of neg-
atives. Karpukhin et al. (2020) propose including
hard-negative chunks from BM25 which we se-
lect from the same instance — we found marginal
improvement when considering a single BM25 neg-
ative. In summary, in-instance negatives show a
clear advantage, and including more negatives is
advantageous for the performance. These results

leased after completion of the project.
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Chunk-level Query
Dataset ‘ Instances  Files Chunks ‘ GT Lines Tokens ‘ Tokens ‘
SWE-bench  Train 8349 2631269 3628(3150) | S1s) 206y  198(60) | 631(1974)
SWE-bench  Verified 435 420(222) 8551(6118) | 2(3) 19  1954) | 539esr)
LCA Test | 34 2100235y 3243(5010) | 45) 19s) 206(142) | 911(s7s) |

Table 3: General dataset statistics for SWE-bench dataset. GT is the ground truth number of chunks that are edited,

Lines the average number of lines and Tokens the aver
deviation are reported in brackets.

age number of tokens (with SP tokenizer) edited. Standard

Dataset ‘ Chunks per File Files per GT GT file overlap GT file in query
SWE-bench Train 178 1.97(3.06) 0.83 0.28
SWE-bench Verified 229 1.24(1.06) 0.82 0.26
LCA Test | 16(7) 2.4(2.24) 0.70 0.38

Table 4: GT file overlap: On instances where there are

multiple chunks to edit, we report the empirical probability

that at least one file is in common between the chunks to edit. GT file in query is the empirical probability that the

query contains at least one file path of the ground truth

have been computed on a hold-out set from the
SWE-bench train dataset.

Appendix I Repository hierarchy
experiment

In this experiment we show that including the file
path to the chunks representation is important for
the retrieval task and aids in maintaining the repos-
itory hierarchy. In Table 2, we show the retrieval
performance of models tested with and without in-
cluding the file path. The BM25 and not-fine-tuned
CodeSage model achieve minor improvements in
retrieval performance, indicating that fine-tuning
is crucial for the model to make use of the added
information.

We also investigate to what extent a model
trained with file paths rely on them. In Table 2 in
the main paper, we show the retrieval performance
drop of a model trained with file paths once they
are removed. We further analyse this by showing
the attention plots of a model trained with file paths
when given a query, visualised in Figure 6. For
this, we consider a repository from the SWE-bench
train subset which was not used in our training set
(it is a validation example) and contains the correct
file path in the query. We select the second from
the last layer of the model and averaged over all
attention heads. Figure 6 and Figure 7 shows that
the model attends to the file path both for queries
and code chunks and highlights that the model has
learned to find and leverage the path information

files to edit.

in a natural language query.

Appendix J License of artefacts used

SWE-bench (Jimenez et al., 2024) dataset pack-
ages multiple repositories that are based on BSD 3-
Clause, MIT, Apache-2.0, Custom (based on BSD-
2 and BSD-3), GPLv2 licenses. The exact details
are available in the original paper in Table 12. The
LCA dataset is released under Apache-2, with its
constituent data point from repositories with MIT
and Apache 2.0 licenses.

The code for training the models for CodeBERT
and GraphCodeBERT is released under a MIT
license at https://github.com/microsoft/
CodeBERT/blob/master/LICENSE and their
weights are released under with no license spec-
ified at https://huggingface.co/microsoft/
codebert-base and https://huggingface.
co/microsoft/graphcodebert-base respec-
tively. UniXcoder’s weights are released under
Apache 2.0 at https://huggingface.co/
microsoft/unixcoder-base. Our primary
baselines, the CodeSage family, have been
released under a permissive Apache 2.0 li-
cense at https://huggingface.co/codesage/
codesage-small.
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Dataset \ Calls GT call overlap
SWE-bench Train 1.40(9.70) 0.46
SWE-bench  Verified | 1.92(5 99 0.38
SWE-bench Lite 2.37(2.90) 0.16
LCA Test 1.15(0.49) 0.40

Table 5: GT call overlap: When there are multiple chunks to edit what is the probability of at least 1 chunk being
connected by the call graph. The standard deviation is represented in the brackets.

Model Parms  Tok  Length Encoding
BM25 - words - -
CodeBERT 125M  BPE 512 0.5min
GraphCodeBERT | 125M  BPE 512 0.5min
UniXcoder 125M  BPE 512 0.5min
CodeSage S 130M SP 1024 1.5min
CodeSage M 400M SP 1024 Smin
CodeSage L. 1.3B SP 1024 22.5min

Table 6: Statistics about baseline models and methods. Parms: number of model parameters; Tok: tokenizer with
SentencePiece (SP), Byte-Pair Encoding (BPE); Length: maximum number input tokens (maximum context length);
Encoding the approximate inference time in minutes per 10K chunks, on a single GPU. The model we chose for
fine-tuning (CodeSage S) is highlighted. Additionally, the models have been released under permissive licenses, or
their official huggingface repositories do not have a license specific.

Hyperparameters Full Late Fusion
Optimiser RAdam RAdam
Learning rate 5e~4 5e~4
Scheduler cosine decay cosine decay
Batch size 8 8
Gradient acc. 32 32
Negatives 1024 1024
Epochs 4 8

Table 7: Hyperparameters for fine-tuning
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Figure 6: Attention map: query (problem statement) containing file path. Top: full average attention map (best
viewed on a screen); bottom: zoom-in portion of the attention map containing the file path. Best viewed in colour

on a digital display

788



Query

sp
acy

lem
mat
izer

py

def
le

m
mat
ize

(
string

Query

index
exceptions

rules

):

> E® 5 3z ©TLER
® 9 £ N ° £

Key

string
index
exceptions
rules

Figure 7: Attention map: code chunk containing file path. Top: full average attention map (best viewed on a screen);
bottom: zoom-in portion of the attention map containing the file path. Best viewed in colour on a digital display
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