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Abstract

Uncertainty Quantification (UQ) in Language
Models (LMs) is key to improving their safety
and reliability. Evaluations often use metrics
like AUROC to assess how well UQ methods
(e.g., negative sequence probabilities) correlate
with task correctness functions (e.g., ROUGE-
L). We show that mutual biases-when both UQ
methods and correctness functions are biased
by the same factors-systematically distort evalu-
ation. First, we formally prove that any mutual
bias non-randomly skews AUROC rankings,
compromising benchmark integrity. Second,
we confirm this happens empirically by test-
ing 7 widely used correctness functions, from
lexical-based and embedding-based metrics to
LM-as-a-judge approaches, across 4 datasets X
4 models x 8 UQ methods. Our analysis shows
that length biases in correctness functions dis-
tort UQ assessments by interacting with length
biases in UQ methods. We identify LM-as-a-
judge methods as the least length-biased, offer-
ing a promising path for a fairer UQ evaluation.

1 Introduction

Language Models (LMs) excel at natural language
generation but often produce factually incorrect
outputs, or “hallucinations” (Guerreiro et al., 2023;
Huang et al., 2025). These hallucinations are typ-
ically associated with high uncertainty about the
correct output (Xiao and Wang, 2021), leading to
the emergence of Uncertainty Quantification (UQ)
methods as a compelling approach to detect errors
(Farquhar et al., 2024; Baan et al., 2023). A fun-
damental challenge in evaluating UQ methods is
the lack of ground truth uncertainty labels. Con-
sequently, benchmarks commonly rely on UQ per-
formance metrics such as AUROC, assessing how
effectively UQ methods distinguish correct from
incorrect outputs as determined by a correctness
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function. Thus, the accuracy and reliability of UQ
evaluations inherently depend on the quality of the
correctness assessments.

In this paper, we critically analyze how errors
and biases in correctness functions impact UQ per-
formance metrics. First, we provide a formal anal-
ysis showing that: i) if errors in the correctness
function are random and independent from the UQ
method, AUROC is noisy but unbiased; ii) con-
versely, if there exists a mutual bias—i.e. if the
correctness function errors correlate systematically
with the uncertainty scores—then AUROC rank-
ings are inherently skewed. Our formal results
demonstrate that any mutual bias introduces sys-
tematic distortions into AUROC evaluations, artifi-
cially advantaging certain methods and fundamen-
tally undermining the reliability of benchmarks.

We confirm this happens empirically by bench-
marking 7 widely-used correctness functions, in-
cluding lexical-based metrics (e.g., ROUGE met-
rics (Lin, 2004)), embedding-based metrics (e.g.,
BERTScore (Zhang et al., 2020)), and LM-as-a-
judge approaches (Zheng et al., 2024) across 4
datasets X 4 models x 8 UQ methods. We reveal
two key issues: (i) the correctness function choice
significantly impacts UQ results and (ii) widely
used lexical-based and embedding-based correct-
ness functions (Farquhar et al., 2024; Fadeeva et al.,
2023) introduce systematic biases that distort the
perceived effectiveness of certain UQ methods.

A human evaluation of 450 LM samplesreveals
that this bias stems, at least in part, from the mutual
dependence of certain UQ methods and correctness
functions on the output length. Building on this, we
identify correctness functions that mitigate bias by
avoiding such confounding, finding LM-as-a-judge
approaches best suited for UQ evaluation and most
aligned with human judgment. Overall, this study
highlights widespread pitfalls in UQ evaluation
and charts a path toward a more reliable evaluation
protocol.
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2 Evaluating uncertainty

In this section, we review common UQ methods,
correctness functions and UQ performance metrics.

2.1 UQ methods

Given an input x to an LM, which generates an
output sequence §j, a UQ method estimates a mea-
sure of the model’s uncertainty about g, denoted
as §(y, z). These methods can be broadly catego-
rized into three types: (i) single-sample, (ii) multi-
sample, and (iii) learned. One simple single-sample
approach is negative sequence probability,

NV
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where L is the length of the generated answer and
P the output probabilities assigned by the model.
Note that in Eq. 1, ¢ increases with L. Multiple-
sample approaches derive uncertainty scores by
sampling multiple responses for the same input
x and measuring a metric (e.g., variance) across
samples. Notably, several UQ methods in this sec-
ond group, like Naive Entropy and Semantic En-
tropy (Farquhar et al., 2024), use Eq. 1 to compute
the probability of a sequence of generated tokens.
Lastly, learned methods train a binary classifier
via supervised learning on a correctness-labeled
dataset (Kadavath et al., 2022). We refer readers to
App. A for more details on each family.

2.2 Correctness functions

Correctness functions fL(g), x,y) compare a gener-
ated answer ¢ to a reference answer y to estimate a
correctness score, and can be categorized as lexical-
based, embedding-based, or LM-as-a-judge.

Lexical-based correctness functions, such as
SQuAD (Rajpurkar et al., 2016) and ROUGE vari-
ants (Lin, 2004), are based on lexical overlap be-
tween y and y. While limitations of these met-
rics have been studied in areas like summarization
and Question Answering (QA) (Guo and Vosoughi,
2023; Chen et al., 2019; Cohan and Goharian, 2016;
Fabbri et al., 2021; Reiter and Belz, 2009), their im-
pact on UQ evaluation remains largely unexplored.

Embedding-based correctness functions, such
as BERTScore (Zhang et al., 2020) and Sentence-
BERT cosine similarity (Reimers and Gurevych,
2019), assess similarity by encoding both ¢ and y
using a language model, typically BERT-based.

Correctness function Used in UQ eval protocol Threshold ¢

ROUGE-1 (F1) Aichberger et al. (2025) 0.1-1.0
ROUGE-L (F1) Fadeeva et al. (2023); Kuhn et al. (2023) 0.5

Duan et al. (2024); Chen et al. (2024a) 0.5

Qiu and Miikkulainen (2024) 0.1-1.0

Aichberger et al. (2025) 0.1-1.0
SQuAD (F1) Farquhar et al. (2024) 0.3
BERTScore (F1) Fadeeva et al. (2023) N/A
SentenceBERT Chen et al. (2024a) 0.9
AlignScore Vashurin et al. (2025) 0.5
LM-as-a-judge (Prompt) Farquhar et al. (2024) N/A

Table 1: Correctness functions used in UQ evals.

LM-as-a-judge correctness functions evaluate
correctness by using another LM to judge the accu-
racy of ¢ against y. Examples include AlignScore
(Zha et al., 2023), which uses a specifically trained
LM, and prompt-based variants of LM-as-a-judge
(Zheng et al., 2024).

Table 1 summarizes common correctness functions
used in recent UQ papers. AUROC requires binary
labels, so a certain threshold ¢ is typically applied to
binarize continuous correctness scores. Some cor-
rectness functions are inherently binary (e.g., LM-
as-a-judge), and some UQ performance metrics
do not require binarization (Fadeeva et al., 2023).
This variety in UQ eval protocols raises questions
about which combination to trust. App. B offers a
broader view on each metric.

2.3 UQ performance metrics

The utility of UQ methods is typically assessed us-
ing a UQ performance metric that quantifies how
well uncertainty estimates (§2.1) correlate with cor-
rectness. Among the various UQ performance met-
rics available in the literature (Malinin and Gales,
2020; Fadeeva et al., 2023), we focus on the Area
Under the Receiver Operating Characteristic curve
(AUROC) due to its widespread use in UQ bench-
marks (Farquhar et al., 2024; Chen et al., 2024a).

Let §; = ¢(v;, ;) be the uncertainty score as-
signed by some UQ method to the i-th data sample,
and let h; be a binary label denoting (ground truth)
correctness of that data sample (h; = 1 if correct,
h; = 0 if incorrect). AUROC can be written as

AUROC:P(§¢<§j‘hi:1, hj:()), 2)

i.e., the probability that a randomly chosen correct
data sample receives a lower uncertainty score than
a randomly chosen incorrect data sample.

2.4 Mutual biases in UQ performance metric

In practice, we estimate h; using a correctness func-
tion h; = h(y;, z;, y;) from §2.2. This means that
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Figure 1: AUROC of various UQ methods across correctness functions averaged over models and datasets. The
ranking of UQ methods (top row) changes across correctness functions, raising questions about which one to trust.
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Figure 2: Cohen Kappa agreement rates between anno-
tators and correctness functions. Per dataset: Fig. 6.

AUROC is not computed on ground-truth labels,
but rather on a potentially biased surrogate:

A@C:P(gi<gj]ﬁ,;:1, hjzo). 3)

Eq. 3 highlights a key challenge: the measured
performance is merely an estimate of the true AU-
ROC and is subject to correctness function errors,
which can interact with and distort the final out-
come. Specifically, two scenarios may arise:

i) Uncorrelated errors. If errors in / are indepen-
dent of g, AUROC is a noisy but unbiased estima-
tor of the real AUROC. While scores, in the worst
case, regress toward the 0.5 random baseline, no
UQ method is systematically favored or penalized.
ii) Mutually biased errors. If errors in h correlate
with g, the estimated performance of g will be sys-
tematically biased. Depending on the direction of
correlation, some UQ methods may appear more
or less effective than they truly are—Ileading to in-
flated or deflated evaluations and ultimately com-
promising the validity of performance comparisons.
These two scenarios are formally characterized and
analyzed in App. C, which provides a theoretical
foundation for understanding how correctness func-
tion errors propagate into UQ performance metrics.

In practice, in §3 we find that both UQ methods
and correctness functions can exhibit biases over
the answer length L, falling into scenario (ii). Un-
derstanding the impact of these biases is crucial to
ensuring fair and reliable comparisons in UQ.

3 Experiments

In this section, we evaluate several UQ methods fol-
lowing evaluation protocols in line with previous
related works (Lin et al., 2024; Fadeeva et al., 2023;
Farquhar et al., 2024) while varying just the correct-
ness function. We consider generative QA tasks, as
they are standard in UQ literature and their single-
answer format simplifies correctness evaluation rel-
ative to more open-ended tasks like summarization.

Experimental setup. We evaluate the perfor-
mance of 8 UQ methods across 4 datasets, 4 mod-
els, and 7 correctness functions. For details, see:
App. A on UQ methods; App. B on correctness
functions; App. D on models, datasets and prompts.

3.1 Impact of the correctness function on UQ

Fig. 1 illustrates the estimated performance of dif-
ferent UQ methods when varying only the correct-
ness function. For each method, we report aver-
age AUROC across datasets and models, focusing
on the most commonly used correctness functions
from Table 1. Fig. 1 reveals that changing the cor-
rectness function affects not only the estimated AU-
ROC value but also the ranking of UQ methods.
This, however, raises the question of which metric
to trust and what is causing the disagreement.

3.2 [Evaluating correctness functions for UQ

The previous section shows how correctness func-
tions choices impact benchmarking conclusions,
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Figure 3: Cohen Kappa
score w.r.t. human an-
notators for Rouge-L
(F1) against thresholds.

but it is unclear which function yields reliable UQ
results. To investigate, we evaluate several correct-
ness functions against human annotations (four an-
notators per sample for 450 samples, see App. E).
The Cohen’s Kappa (Cohen, 1960; Artstein and
Poesio, 2008) values in Fig. 2! show that LM-
as-a-judge approaches (prompt-based and Align-
Score) align best with human labelers, followed by
ROUGE-L (Recall) with t=1.

Revisiting Fig. 1, we see that these three cor-
rectness functions show more stable orderings,
with some variability in AUROC magnitudes—
consistent with expectations for small errors that
are mostly uncorrelated with UQ methods, as per
case (i) in §2.4. Conversely, most previously-used
lexical- and embedding-based correctness func-
tions poorly reflect human judgment.

Impact of threshold choice. A major source of
error in lexical- and embedding-based correctness
functions stems from the thresholding strategy used
to binarize scores for AUROC computation. As
shown in Table 1, prior work often applies standard
thresholds or experiments with a small set of op-
tions. However, Figs. 2 and 3 illustrate that metrics
like ROUGE-L (F1) and SentenceBERT are highly
sensitive to threshold choices, as assessed by the re-
sulting agreement with humans. Poor thresholding
can lead to degenerate outcomes—e.g., assigning
nearly identical labels to all predictions—which
drastically reduces alignment with human annota-

'Some approaches show no agreement at all due to poor
thresholding choices.

Figure 4: Spearman’s rank correlation coefficients.

tors. The issue is further exacerbated by the fact
that optimal thresholds vary across tasks (Figs. 3
and 8) and are heavily influenced by response ver-
bosity (Fig. 5), making it challenging to select a sin-
gle effective threshold. In contrast, metrics such as
ROUGE-L Recall, AlignScore, and LM-as-a-judge
exhibit considerably less sensitivity to threshold se-
lection, as shown in Fig. 7 of the Appendix.

3.3 Mutual bias in correctness functions and
UQ methods

We concluded that LM-as-a-judge approaches
achieve higher agreement with humans than other
correctness functions. However, this alone does not
explain the shift in UQ method rankings observed
in §3.1. If errors were random, no systematic ef-
fect would emerge, falling into case (i) of our error
analysis (§2.4). However, this is not the case: the
relative performance of negative sequence probabil-
ity, perplexity, and probes varies dramatically. This
is indicative of a spurious correlation between UQ
methods and errors in the correctness functions.

Many UQ methods are biased by length. Many
UQ methods explicitly or implicitly depend on the
length of a response. In particular, negative se-
quence probability assigns higher uncertainty to
longer responses, as each term in Eq. 1 is < 1.
Other UQ methods that incorporate Eq. 1 in their
computation (§2.1), such as Naive Entropy and Se-
mantic Entropy, may also be impacted. To investi-
gate this relationship, we compute Spearman corre-
lation between the scores from various UQ meth-
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Figure 5: Correctness function vs response length. The
color indicates human correctness judgments. Results
for other correctness functions in the Appendix, Fig. 7.

ods and the length of generated answers (measured
in tokens and characters). In Fig. 4, we see that
multiple estimators exhibit significant positive or
negative correlations with length.

Many correctness functions are biased by length
Many correctness functions are also known to ex-
hibit length bias when assessing summaries (Guo
and Vosoughi, 2023). We demonstrate that this
issue also affects QA. In Fig. 5, we analyze the
relationship between response length and correct-
ness function output, showing correctness values
for responses where all annotators agree on the la-
bel. The ROUGE-L (F1) score is highly dependent
on response length, favoring shorter sentences and
making threshold selection challenging. In contrast,
AlignScore is length-independent and clearly sepa-
rates correct and incorrect samples. App. F presents
similar findings for other correctness functions.

Spurious interaction. Mutual correlation be-
tween UQ methods and correctness functions on
answer length can systematically inflate or deflate
UQ performance metrics (App. C). This effect is
evident in Fig. 1, where length-based baselines (to-
ken and character length—blue bars) perform com-
petitively on lexical- and embedding-based correct-
ness functions but rank last under LM-as-a-judge
metrics. This may also explain discrepancies in
prior works, such as the inflated ranking of negative
sequence probability in Fadeeva et al. (2023). We
recommend using L.M-as-a-judge where possible,
as its lower error is less likely to impact UQ perfor-
mance metrics. While ROUGE-L (Recall) is inher-
ently independent of the generated answer’s length,
it offers lower correlation with human judgment,
leading to noisier AUROC estimates and offering
a higher likelihood of additional confounding vari-
ables. For example, it is vulnerable to exploitation
by models that produce multiple off-target answers
alongside the correct one.

4 Beyond Length Bias

In this paper, we argue that any biases—not just
length—present simultaneously in both the UQ
method and the correctness function induce a spu-
rious correlation that systematically biases the UQ
performance metric (AUROC). Crucially, this ef-
fect does not merely introduce random noise (i.e.,
increased variance) to the AUROC estimate; rather,
it leads to consistent bias, producing misleading re-
sults that can artificially favor certain UQ methods
over others. We support this claim through both an-
alytical derivation (App. C) and empirical evidence
(Fig. 1). Importantly, this is a general result. While
we use length bias as a running example—because
it is is the most severe and already impacting bench-
marks—the underlying issue extends to any con-
founding variable that correlates with both UQ
methodscorrectness functions. ldentifying such
confounders, which are less obvious than length, is
inherently difficult, which makes their presence par-
ticularly dangerous for evaluation protocols. For in-
stance, in settings that combine LM-as-a-judge ap-
proaches with verbalized uncertainty methods (e.g.,
Huang et al. (2024); Band et al. (2024); Yang et al.
(2024)), one might hypothesize less obvious and
harder-to-detect sources of confounding like vocab-
ulary used or writing style of the response (Feuer
et al., 2025). Our goal is not to enumerate all possi-
ble biases but to establish the existence of a broader
class of systematic evaluation failures—of which
length bias is a concrete and empirically validated
case. Identifying and mitigating other such biases
remains an important direction for future work.

5 Conclusion

We prove that UQ performance metrics are system-
atically biased when the UQ method and correct-
ness function share a confounder. Empirically, we
identify response length as a concrete instance of
such mutual bias which is affecting existing bench-
marks and undermines their reliability.

Our results highlight that lexical- and
embedding-based correctness functions, com-
monly used in prior work, frequently introduce
these distortions. In contrast, LM-as-a-judge ap-
proaches exhibit greater robustness and stronger
alignment with human judgments, making them
a more reliable choice for UQ evaluation. That
said, we recommend validating any LM-as-a-judge
setup against human annotations before applying it
to new tasks or datasets (Bavaresco et al., 2024).
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Limitations

In this work, we critically examine the role of the
correctness function in the evaluation of UQ meth-
ods using UQ performance metrics. While our
analysis sheds light on biases introduced by cor-
rectness functions, certain limitations remain.

Our analysis is focused on the context of QA,
as it is a standard task in UQ literature and pro-
vides well-defined single-answer questions, mak-
ing the definition of a correctness function easier
compared to open-ended tasks like machine trans-
lation and summarization where even objective hu-
man judgment of correctness is difficult. However,
previous work suggests that the length bias of er-
rors in correctness functions is not unique to the
QA setting (Guo and Vosoughi, 2023), suggesting
that UQ performance metrics will face similar is-
sues in such tasks.

Our recommendation is to use LM-as-a-judge as
a potential correctness function. While using an-
other LM to judge correctness has demonstrated
advantages (Zheng et al., 2024), it also comes with
known limitations (Wang et al., 2024; Chen et al.,
2024b). The reliability of the correctness assess-
ment may vary depending on the choice of the judg-
ing LM and the prompt formulation. More concern-
ingly, if the same LM is used as both the correct-
ness function and as part of the UQ method, we are
likely to have correlations between the LM-as-a-
judge’s errors and the UQ method, which could in-
flate the UQ method’s performance—although this
is mitigated by the relatively low frequency of such
errors. Additionally, while our analysis on QA is
based on widely used QA datasets, we do not know
whether the same LM judge and prompts would
generalize effectively to other tasks and datasets.
Ideally, an LM judge should be rigorously evalu-
ated against human annotators before being em-
ployed in new tasks and datasets (Bavaresco et al.,
2024). Furthermore, LM-as-a-judge introduces sig-
nificant computational overhead compared to tradi-
tional correctness functions, making it less practi-
cal for resource-constrained applications.

Finally, our study identifies response length as a
confounding factor in UQ benchmarking, but other
latent variables may also influence UQ methods
and correctness functions in subtle ways, as dis-
cussed in App. C. A deeper understanding of these
biases is crucial for refining UQ evaluation pro-
tocols and ensuring more reliable assessments of
model uncertainty.
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A Details of UQ methods

There are several methods for generating uncer-
tainty estimates that help assess the in-correctness
of LM outputs. These approaches can be broadly
classified into three main categories: 1) Single-
sample methods: methods that require a single
forward pass from the model and that generally
use directly the logits and probability distributions
over the vocabulary space provided as output from
the model; 2) Multiple-sample methods: methods
that, given a prompt z, sample multiple possible
outputs for the same prompt and compute an un-
certainty score based on these outputs; 3) Learned
methods: usually probes or small networks directly
trained to predict the accuracy of the model given
the prompt and the answer.

We denote with x the sequence of tokens cor-
responding to the prompt. This usually includes
the instruction prompt (e.g., "Answer the following
question") together with the question and additional
context. The L generated tokens are indicated as ;.
Additionally, a superscript () is used for multiple-
sample methods to indicate the s-th sample (out of
Suq samples) sampled for a given prompt. p(-) de-
notes the probability assigned by the model.

Single-sample methods. Single-sample methods
estimate the uncertainty score using the logits that
the models output. These logits are usually com-
puted on the greedy decoded output or on a low-
temperature sample decoded from the model given
the prompt x.

Negative Sequence Probability. Sequence
probability computes the cumulative probability
of the sequence. This can be used as an uncer-
tainty score by flipping the sign and considering
—p(g|z). When evaluated on the greedy decod-
ing samples, this method is sometimes referred to
in the literature as Maximum Sequence Probabil-
ity (MSP) (Fadeeva et al., 2023; Vashurin et al.,
2025). Aichberger et al. (2025) investigate the
difference between the performance of MSP esti-
mated using greedy decoding and estimated using
the Beam Search decoding algorithm, which yields
sequences with higher likelihood.

L
p(glz) = H (9il9<i ) )

Perplexity. Perplexity computes the uncer-
tainty score via the exponential of the mean token
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likelihood (Bahl et al., 1983). Compared to se-
quence probability, perplexity normalizes the un-
derlying probability by the number of the gener-

ated tokens,
) ) 5)

exp (

Mean Token Entropy. Mean token entropy
(Fomicheva et al., 2020; Malinin and Gales, 2020)
computes the mean of the per-token entropies over

the vocabulary distribution,

L
1 PPN
— > logp(Gili<i, v)

i=1

L

Hrlins) = 7 3 H Bl )] ©)
Multiple-Sample methods. Multiple-sample
methods compute an uncertainty score by sam-
pling Syq times for a single prompt. Since it is
accessing (more of) the full probability distribu-
tion, this class of methods should provide better
uncertainty scores than single-sample methods,
albeit at the expense of an increased computational
cost at inference time. The exact number of sam-
ples Suq is a hyperparameter that usually depends
on the specific UQ method.

Naive Entropy.  Naive Entropy computes the
entropy over the different generated samples. The
sequence probability of each generation is com-
puted using the chain rule of probability, like in the
Sequence Probability method,

SUQ

—Zp j)|a) log p(§"°

Semantic Entropy. Semantic entropy com-
putes the entropy over the different semantic clus-
ters C' of the generated samples (Farquhar et al.,
2024). Semantic clusters are generated using a Nat-
ural Language Inference (NLI) model, which eval-
uates bidirectional entailment between pairs of an-
swers in Syq. This process group answers with
equivalent meanings into clusters ¢(*). Each cluster
probability p(c(?)) is computed by summing the Se-
quence Probabilities of the unique generations that
fall into that cluster (Farquhar et al., 2024). The
probability of each generated sequence is computed
using Eq. 4, either directly for Semantic Entropy
(without length normalization), or normalized by
the sequence token-length L for length-normalized
Semantic Entropy.

). (N

C

=37 i) log (e o).

i=1

SE(z)
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Learned methods. Learned methods leverage
the model’s internal activations or its entire archi-
tecture to train additional networks or classifiers
that predict the correctness of the answer.

Probes are the most common form of learned
method. The most prominent variety of probe is
P(IK), also known as P(I Know) (Kadavath et al.,
2022), which finetunes the entire model to predicts
a binary score whether the model can answer the
question correctly or not. This is accomplished by
attaching a classifier to the embedding of the final
token in the last layer. The training set is collected
by labeling some generations from the model with
the task correctness function. In this paper, we fol-
low the implementation of (Farquhar et al., 2024;
Kapoor et al., 2024) that does not train the full
model but just a logistic regression classifier on top
of the representation of the final answer token as in
(Chen et al., 2024a). We trained probes using two
different correctness functions: LM-as-a-judge (us-
ing Qwen/Qwen2.5-72B-Instruct), and ROUGE-
L (Recall) with a 0.5 threshold. When reporting
results, we specify the correctness function used
to label the dataset and train the probe in round
brackets—for example, Probe (LM-as-a-judge),
where LM-as-a-judge denotes the judging model.
Probes are trained until convergence on each train-
ing dataset with L-BFGS and a tolerance value of
0.0001 and maximum number of optimization iter-
ations of 10000.

B Details of Correctness functions

In this section, we describe in detail the correctness
functions used in our experiments. Many of these
metrics return a continuous score, which is bina-
rized for calculating AUROC; we detail the thresh-
olds t used in this binarization below.

B.1 Lexical-based

Lexical-based metrics assess similarity by measur-
ing lexical overlap between the generated sentence
and the ground truth. These metrics are among the
most widely used due to their low computational
cost and long-standing history in QA evaluation.

It is important to note that these metrics were
originally used to evaluate QA in trained sys-
tems, where the output distribution of generated
sequences has been aligned with the expected dis-
tribution of ground-truth answers in the dataset.
However, in common LM zero-shot evaluation set-
tings, this alignment is no longer guaranteed. Con-

sequently, these metrics may fail to accurately as-
sess correctness, requiring careful consideration
when applying them. While techniques like incor-
porating few-shot examples, as demonstrated by
Farquhar et al. (2024), can mitigate this issue to
some extent, this does not fully address the funda-
mental limitations of lexical-based metrics.

ROUGE-L. ROUGE-L measures the longest
common subsequence (LCS) between the gener-
ated response and the reference answer, allowing
for non-contiguous matches (Lin, 2004). In UQ the
Fl-score (ROUGE-L (F1)) of this metric is typi-
cally used, balancing precision and recall (Fadeeva
et al., 2023; Kuhn et al., 2023; Duan et al., 2024;
Chen et al., 2024a; Qiu and Miikkulainen, 2024,
Aichberger et al., 2025). ROUGE-L (Precision)
measures the ratio of the longest common subse-
quence (LCS) length to the number of unigrams in
the generated answer. ROUGE-L (Recall) measures
the ratio of the LCS length to the number of uni-
grams in the reference answer. ROUGE-L (F1) is
the harmonic mean of ROUGE-L precision and re-
call. It is important to note that ROUGE-L recall is
not affected by the length of the generated answer,
whereas precision and F1 metrics are influenced
by it. In the experiments of this paper, we con-
sider ROUGE-L (F1) and ROUGE-L (Recall) vari-
ants, with both metrics computed using the Python
package rouge_scorer. Both ROUGE-L variants
return continuous scores; where a binary score is
used, we consider thresholds ¢ € {0.1,0.3,0.5} for
ROUGE-L (F1), and t = 1.0 for ROUGE-L (Re-
call).

ROUGE-1. ROUGE-1 measures the unigrams
overlap between the generated response and the
ground truth (Lin, 2004). ROUGE-1 captures sim-
ilarity based on single-tokens overlap. This met-
ric has been widely used in QA evaluations and in
UQ benchmarks in Aichberger et al. (2025). As
in Aichberger et al. (2025), we use the F1 variant
(ROUGE-1 (F1)). In the experiments of this paper,
the metric has been computed using the Python
package rouge_scorer. ROUGE-1 (F1) returns
continuous scores; where a binary score is used,
we use a threshold ¢ = 0.1.

SQuAD. This metric has been introduced in Ra-
jpurkar et al. (2016) to measure the performance of
systems trained on the homonymous dataset. The
metric computes the F1 score based on word over-
lap between the prediction and ground truth, treat-
ing them as unordered bags of tokens, selecting the
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highest F1 among multiple references per question,
and averaging across all questions. This metric has
been used to evaluate correctness for UQ bench-
marks in Farquhar et al. (2024). To compute the
metric we used the implementation from Von Werra
et al. (2022). SQuAD returns continuous scores;
where a binary score is used, we use a threshold
t=0.3.

B.2 Embedding-based

Embedding-based metrics assess similarity by en-
coding both the ground truth and generated text
using a neural model, typically BERT-based. The
goal is to measure semantic similarity rather than
surface-level overlap.

BERTScore. BERTScore (Zhang et al., 2020)
evaluates generated answers by embedding both the
generated text and the ground truth using a BERT
pretrained model. It then computes the pairwise
cosine similarity between tokens. For each token
in the generated text, the highest similarity score
with any token in the reference text is selected. Fi-
nally, precision, recall, and F1-score are calculated,
with the F1-score commonly used in UQ to bal-
ance precision and recall. This metric has been
used to evaluate correctness for UQ benchmarks in
Fadeeva et al. (2023). In the experiments of this pa-
per, the metric has been computed using the Python
package bert_score as in Fadeeva et al. (2023).
BERTScore returns continuous scores; where a bi-
nary score is used, we use a threshold ¢ = 0.8,
which we empirically found to yield the highest
agreement with human raters in Fig. 2.

SentenceBERT Similarity. A SentenceBERT
model (Reimers and Gurevych, 2019) is used to
encode both the generated answer and the ground
truth answer. Specifically, following Chen et al.
(2024a), we use nli-roberta-largez. The cosine sim-
ilarity is then calculated between the ground truth
and generated answer embeddings. This metric has
been used to evaluate correctness for UQ bench-
marks in Chen et al. (2024a). SentenceBERT re-
turns continuous scores; where a binary score is
used, we use a threshold ¢ € {0.4,0.9}.

B.3 LM-as-a-judge methods

LM-as-a-judge metrics evaluate correctness by us-
ing another LM to judge the accuracy of a gener-
ated answer against the reference answer from the

“https://huggingface.co/sentence-transformers/nli-
roberta-large

dataset. The evaluating LM may be specifically
trained for this task or not.

AlignScore. AlignScore is a metric designed to
evaluate the factual consistency of generated text
with respect to a ground truth answer (Zha et al.,
2023). It employs a RoOBERTa model (Liu et al.,
2019) trained to assess the alignment between
two text pieces, determining how well the gener-
ated content corresponds to the source informa-
tion. The training process integrates data from sev-
eral NLP tasks—natural language inference, ques-
tion answering, paraphrasing, fact verification, in-
formation retrieval, semantic similarity, and sum-
marization—resulting in a model trained specifi-
cally to evaluate correctness. This metric has been
used to evaluate correctness for UQ benchmarks in
Vashurin et al. (2025). AlignScore returns continu-
ous scores; where a binary score is used, we use a
threshold ¢t = 0.5.

LM-as-a-judge (Prompt). LM-as-a-judge
(Zheng et al., 2024) encompasses a set of ap-
proaches that rely on a large language model to
provide a human-like assessment of generated con-
tent by comparing it against a reference answer.
Generally, different prompting strategies can be
applied to guide the evaluation process. In our ex-
periments, we used the same prompt as Farquhar
et al. (2024) with Qwen/Qwen2.5-72B-Instruct
as the judging model. LM-as-a-judge returns bi-
nary scores, so no thresholds are used.
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C Impact of Correlated and Uncorrelated
Errors in the Correctness function on
AUROC Estimation

In this section, we analyze the impact of correlated
or uncorrelated errors in the correctness function on
AUROC estimation. We note that a similar analysis
is performed in Ielanskyi et al. (2025), a concurrent
work that explores impact of bias and variance of
correctness functions on AUROC estimation.

Let g; = §(9s, ;) € R be the uncertainty (UQ)
score assigned to the answer ¢; given the question
z;. We use h; = h(y;,z;) € {0,1} to denote the
ground-truth correctness of g;, i.e., h; = 1 if the
answer is correct and 0 otherwise. The estimated
correctness under some correctness function his
hi = h(§;, z:,yi) € {0,1}, possibly using a refer-
ence answer y;.

We define:

TPR = P(h=1|h=1), FPR = 1-TPR,

TNR = P(h=0|h=0), FNR = 1-TNR.

The true AUROC of g, based on ground-truth labels,
is

AUROC(§) = P(gi <g; | hi=1, hj=0).
When correctness is measured by h, we obtain

AUROC(§) = P(3i < g; | hi=1, h; =0).

We additionally assume P(g; = g;) = 0 for i # j,
implying AUROC(g) = 1 — AUROC(—g).

Expanding AUROC. We rewrite A@C(g)
by conditioning on both the true labels (h;, h;) and
the estimated labels (h;, h;):

AUROC(§)

= Z P(gi<gj|ili:17 ilj:()v hi = a, hj:b)

a,be{0,1}
x P(hi=a|hi=1) - P(hj=0b|h;=0)

We discuss below two cases: (i) when h’s errors
are independent of §, and (ii) when they are corre-
lated.

C.1 Case 1: Independent Errors
Analysis h; 1L § | hs. Inthis setting, we have

AUROC(§)

= Z P(gi<gj|hi:a,hj:b)
a,be{0,1}
- P(h; = alh; = 1) - P(h; = blhj = 0)

P(g; < gjlhi = 0,h; = 0) - FPR - TNR

+ P(g; < gjlhi = 1,hj = 1) - TPR - ENR
+ P(gi < gjlhi = 1,hj = 0) - TPR - TNR
+ P(g; < gjlhi = 0,h; = 1) - FPR - FNR

=0.5-FPR-TNR + 0.5 - TPR - FNR
+ P(g; < gjlhi = 1,hj = 0) - TPR - TNR

+ P(g; < gjlhi =0,h; = 1) - FPR - FNR
=0.5-FPR - TNR + 0.5 - TPR - FNR
+ AUROC(§) - TPR - TNR
+ (1 — AUROC(§)) - FPR - FNR.
)

All terms {TPR, TNR, FPR, FNR} in Eq. 9 are
constant properties of the correcmess function h,
and do not depend on the UQ method g. Hence
AﬁREC(g) becomes a “noisy” version of the true
AUROC(g), biased toward 0.5.

Implications. In this uncorrelated setting, the
bias introduced by h does not depend on the UQ
metric §. Consequently, while the estimated AU-
ROC values will be inaccurate, the ranking of UQ
methods by AﬁRBC( g) will, in expectation, match
the ranking by AUROC(g), provided TPR-TNR >
FPR - FNR. In practice, finite-sample effects can
lead to variance, but with appropriate sample sizes,
comparisons based on A@C( §) remain valid.

C.2 Case 2: Correlated errors

Analysis h; g | h;. Inthis case,

P(g; < gjlhi = a,hj = b, h; = 1,h; = 0)
# P(gi < gj|hi = a,h; =1D).
In particular, if the correctness function’s errors

are negatively correlated with our UQ method (i.e.,
the more confident the UQ method is on a task,
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the more likely it is to be erroneously marked as
correct), then we have

P(gz < g]|hl = a,hj — b’ ilz = ]_,iL] = 0)
> P(g; < gjlhi = a,h; =b),

for all values of a and b, with the magnitude
of the difference increasing with the magnitude of
the correlation. This implies that AﬁRBC(g) >
AUROC(g). Similarly, if the errors are posi-
tively correlated with UQ metric, then we have
AUROC(§) < AUROC(§).

This indicates that we will over-estimate the true
AUROC if we have negatively correlated errors,
and under-estimate if we have positively correlated
errors. This is problematic because it introduces
errors in AUROC that do depend on the UQ method
under consideration, leading to potential reordering
of metrics.

Sources of Correlation. Since, in general, the
UQ method does not depend on the output of the
correctness function or vice versa, any correlation
between the UQ method, and errors in the cor-
rectness function, must be due to information in
y and/or x that a) introduces systemic errors in
the correctness function, and b) is used by the UQ
method. In this paper, we look at length as such a
confounding variable, but it is not the only possible
option. For example, the use of less frequently oc-
curring words in ¢ might lead to both an increase in
uncertainty scores due to unfamiliar language, and
an increase in the probability of erroneously mark-
ing an answer as incorrect due to reduced lexical
overlap with the reference answer. We leave the ex-
ploration of additional confounders as future work.

D Experimental Details

The datasets considered are TriviaQA (Joshi et al.,
2017), SQUAD (Rajpurkar et al., 2016), NQ-Open
(Lee et al., 2019), and SimpleQA (Wei et al., 2024).
The models considered are Falcon-7B (Penedo
et al., 2023), Qwen2.5-7B (Qwen et al., 2025), and
two versions of Mistral-7B (Jiang et al., 2023).
Our evaluation setup closely follows the method-
ology proposed by Farquhar et al. (2024)°. To
obtain model responses, we employed the same
prompt as in Farquhar et al. (2024) for the long-
form setting, instructing the model as follows:

Answer the following question in a single
brief but complete sentence.

3https://github.com/jlko/semantic_uncertainty/

Responses are sampled using greedy decod-
ing.  Similarly, for the LM-as-a-judge eval-
vation, we adhered to the same prompt of
Farquhar et al. (2024) and used the model
Qwen/Qwen2.5-72B-Instruct as the judging
model. For our experiments, we employed
the following models from the Hugging Face
Hub mistralai/Mistral-7B-Instruct-v@.1,
mistralai/Mistral-7B-Instruct-va. 3,
Qwen/Qwen2.5-7B-Instruct, and
tiiuae/falcon-7b-instruct. The datasets used
in our evaluation consist primarily of closed-book
QA datasets, with the exception of SQUAD which
is an open-book dataset. Specifically, for SQUAD
we incorporated the available context as part of
the prompt. In semantic clustering-based methods
(Semantic Entropy), we employed DeBERTa as
our Natural Language Inference (NLI) module as
in Farquhar et al. (2024).

E Details on Human Annotation process

We used an internal crowdsourcing platform to
gather annotations. The raters were fluent En-
glish speakers and were compensated at or above
the minimum wage. We randomly sampled 450
data points from TriviaQA (Joshi et al., 2017),
NQ-Open (Lee et al., 2019), and SimpleQA (Wei
et al., 2024). We then generated answers using
Qwen2.5-7B-Instruct, with with greedy decod-
ing. We excluded SQUAD from the human annota-
tion process to avoid incorporating the additional
context into the annotation prompt, thereby stream-
lining and accelerating the annotation process. We
then tasked human annotators to evaluate the cor-
rectness, collecting four annotations per data point.
Below, we present the annotation guidelines pro-
vided to each annotator. Each dataset included in
the guidelines two manually labeled examples.

In Fig. 2 and Fig. 6, we present the Cohen’s
Kappa agreement rates among human annotators.
The first figure reports agreement computed across
all 450 data points, while the second breaks down
the agreement rates for each individual dataset (150
data points each). For clearer visualization, Fig. 5
and Fig. 7 display a uniformly sampled subset of
150 data points from the full set of 450. These
points represent correctness values for responses
where all annotators agreed on the label.
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Figure 6: Cohen Kappa agreement rates between human annotators and correctness functions.

Annotation Guidelines

You will be provided with three pieces of
text:

* Question: A question previously pro-
posed to a system or user. You are not
asked to answer this question; it has
already been answered (see Proposed
Answer).

» Reference Answer: The authoritative
or "gold standard" answer provided for
the Question.

* Proposed Answer: The response
given by a user for the Question that
needs to be evaluated.

Your task is to determine whether the Pro-
posed Answer is equivalent to the Refer-
ence Answer in the context of the Ques-
tion.

Evaluation Criteria

e Focus on Equivalence: Assess
whether the Proposed Answer conveys
the same meaning as the Reference An-
swer, regardless of additional details
or alternative phrasings.

* Ignore Personal Knowledge: Do not
rely on your own knowledge or con-
duct external research. Base your judg-
ment solely on the given text.

* Exact Matching is Not Required:
The Proposed Answer does not need to
be identical to the Reference Answer,
but it must preserve the core meaning.

* Context Matters: Ensure that the Pro-
posed Answer is relevant to the Ques-
tion and correctly aligns with the Ref-

Rating Scale

Choose one of the following ratings for each
evaluation:

* Equivalent: The Proposed Answer
conveys the same meaning as the Ref-
erence Answer.

* Not Equivalent: The Proposed An-
swer does not convey the same mean-
ing, either due to missing essential in-
formation, contradictions, or incorrect
interpretation.

Additional Notes

* More Detail vs. Different Informa-
tion: Extra information is acceptable
as long as the meaning remains the
same. However, if the additional de-
tails introduce contradictions, the Pro-
posed Answer should be marked Not
Equivalent.

» Paraphrasing is Allowed: The word-
ing of the Proposed Answer does not
need to match exactly, but the core
meaning must remain intact.

* Avoid Assumptions: Do not infer ad-
ditional meaning beyond what is ex-
plicitly stated.

Examples

Example 1: Equivalent

<Follows one annotated equivalent example
from the dataset>

Example 2: Not Equivalent

<Follows one annotated not equivalent ex-
ample from the dataset>

erence Answer’s meaning.
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F Additional Results

We present here supplementary results that were
excluded from the main paper.

Fig. 6 presents the Cohen’s Kappa agree-
ment rate with human annotators, broken down
by dataset. LM-as-a-judge approaches demon-
strate stronger alignment with human judgments,
whereas lexical-based and embedding-based cor-
rectness functions are highly sensitive to the selec-
tion of an appropriate threshold.

Fig. 7 illustrates the score assigned by correct-
ness functions as a function of the generated an-
swer’s length. Among the evaluated approaches,
LM-as-a-judge methods (AlignScore and LM-as-
a-judge Qwen/Qwen2.5-72B-Instruct) appear to
be the only robust ones that remain invariant to
length while effectively distinguishing between cor-
rect and incorrect samples without requiring thresh-
old tuning.

Fig. 8 shows how human-agreement rates vary
with the threshold used to binarize different cor-
rectness functions across datasets. Lexical and
embedding-based metrics (e.g., ROUGE-L (F1),
BERTScore) show high sensitivity to threshold tun-
ing and inconsistent alignment with human judg-
ments. In contrast, AlignScore yields consistently
high agreement across thresholds and datasets.

757



] ]
0.6 ® Correct 0.6 ®  Correct
0.51 oo ®  Incorrect 0.51 o ®  Incorrect
= o ° = o °
=04 ° 00 ° o ET_-</ 0.4 o o0 ° o
\: o®® ° A o®®
e e o0
= 03 N =03 .
D o® @o oo ' °® ] D o® @o oo ' ™
Q0.2 o comme .o.‘.o’ — . O 0.2 o o .“.oJ
o=t o:'. ) . ~. ) ..’.... A o~ o:'. ) . oﬁ. ..’.... .
0.1 o L ° 0.1 Y .
0o © © @ o4 o
0.01 © eeme oo o®® 060 © o( 0.01 e eewe o0 0@ 00 © o(
0 50 100 150 200 250 0 50 100 150 200 250
Length of the response in characters Length of the response in characters
1.0 © O CENNSESOEBESIE® WO 0O BOWO O O 0.7 .
[}
0.6 Correct
0.8 . o ®  Incorrect
= 0.51 ° o
§ eomee @ ) — o® 5
£0.61 ® Correct £04 oo Sos °
— 0 G® eSS ® OWO®  © WO a ® 00 o
%1 0.4 .. ®  [Incorrect <::5 0.31 e
D oa® o@o @0 @ o.. ) ee gOZ' ..-=. 3'5{'!‘. ® °
©) @ oe® ®#® 00 © ) o ©0© o '.o'
o~ 0.21 e o o0 ° ° .a\.:‘.o ° ° o,
C 0.19 0‘.‘: ® o0 ©
0.01 © 0ove NN CIEEEIEEEBOTNO O ODO O O O O 0.0 e eome oo o®me 00 o o
0 50 100 150 200 250 0 50 100 150 200 250
Length of the response in characters Length of the response in characters
° ° °
0.90+ ®  Correct 071 "\ °°. . ®  Correct
8
0.88+ Incorrect 0641 o .':'."‘ 0w w  ® Incorrect
%8 ®, oo -
80'86-. EO.E)' — :a’é ....o.'..: °
€ 0.841 o A Vg e LT
50 204 ,%::}..c,t &o. .
] o . ]
A 0.80- 2 °% o Z .21 & o338 ¢ ° %,
7 8 L] ) w2 . .. v. ..z.. ! . ° .
0.78 i 0.1 ’JQ.°"’..° o
0.761 O 0.0 0. o® & e °
. °
0.74 : : : : N : :
0 50 100 150 200 250 0 50 100 150 200 250
Length of the response in characters Length of the response in characters
1.0 ® S Poo 0O g0 o 1.0 © PEENEES  GRIGOENC) (1080 &0 © O
° °~ ‘.‘ox o ° % ¢ :
e a% 5 &, © oo
0.8 Soar—a" ° 0.8
e ® S ° .
[ ] L &)
£ 0.6 . ° ’%o 6
Ug) s, ° ®  (Correct T 0. ®  Correct
.Eo 04 ® Incorrect % 041 ®  Incorrect
< ° e % .. E '
° ° —
0.2 £ e ., 0.2
8 o:. ¢ °.’: ® ° ° A
0.041° » 'M.o.n. ® of 0.01e o o @soe ome 00 © od
0 50 100 150 200 250 0 50 100 150 200 250
Length of the response in characters Length of the response in characters

Figure 7: Correctness function vs response length. Color indicates human correctness judgments.
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Figure 8: Human-agreement rate as a function of the correctness function threshold.
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