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Abstract

Video Large Language Models (Video-LLMs)
suffer from high inference latency in long video
processing due to their auto-regressive decod-
ing mechanism, posing challenges for the ef-
ficient processing of video sequences that are
usually very long. We observe that attention
scores in Video-LLMs during decoding exhibit
pronounced sparsity, with computational fo-
cus concentrated on a small subset of critical
tokens. Motivated by this insight, we intro-
duce Sparse-to-Dense (STD), a novel decoding
strategy that integrates two distinct modules:
a sparse module that rapidly generates spec-
ulative tokens using efficient top- K attention,
and a dense module that verifies these tokens
in parallel via full self-attention. This collabo-
rative approach accelerates Video-LLMs loss-
lessly, effectively offering a free lunch for video
understanding. STD is a plug-and-play solu-
tion requiring no fine-tuning or architectural
changes and achieves up to a 1.94x wall time
speedup while preserving model performance.
It enables a seamless conversion of standard
Video-LLMs into sparse counterparts, unlock-
ing efficient long-video processing without sac-
rificing accuracy.

1 Introduction

Recent advances in Video Large Language Mod-
els (Video-LLMs), which combine large language
models with video understanding, have achieved
exceptional performance on tasks like video ques-
tion answering and captioning (Lin et al., 2024a;
Cao et al., 2024; Zhang et al., 2025a). A common
practice in Video-LLMs is representing a video
as a sequence of image frames, which results in
extremely long token sequences that can strain
computational resources. For instance, a 1-hour
video sampled at 5-second intervals produces 720
frames, which translates to 141,120 visual tokens
in VILA (Lin et al., 2024a). These extremely long
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token sequences cause Video-LLMs to suffer from
high inference latency when processing lengthy
videos, making real-time applications challenging.

This latency is primarily introduced by the auto-
regressive nature of current Video-LLMs, where
each new token must attend to all preceding to-
kens, creating substantial memory and computa-
tional challenges. While mechanisms like key-value
(KV) caching are employed to store pre-computed
key and value tensors and reduce redundant re-
computation, frequent access to the cache imposes
heavy demands on memory bandwidth due to the
growing amount of KV cache with the increasing
sequence length. This significantly reduces the
throughput of Video-LLMs. A common approach
to addressing this problem is KV cache compres-
sion (Du et al., 2024b; Chen et al., 2024b; Lin et al.,
2024b; Zhang et al., 2025b) or quantization (Su
et al., 2025; Hooper et al., 2024; Liu et al., 2024)
at test time. However, these methods introduce
discrepancies between training and inference, de-
grading the performance of LLMs.

In this paper, we aim to build a lossless accel-
eration method designed specifically for Video-
LLMs that preserves the exact output distribution
of the original model. Although speculative de-
coding (Leviathan et al., 2023; Chen et al., 2023;
Hou et al., 2025) meets this requirement, it usu-
ally requires an extra draft model, which is expen-
sive for Video-LLMs. In contrast, we observe that
Video-LLMs exhibit a unique structural property,
attention sparsity, which can serve as a training-
free and plug-and-play draft model. Specifically,
retaining only the top-K KV caches in the atten-
tion layers preserves the original predictions for
approximately 95% of tokens (empirically veri-
fied), suggesting that most attention heads con-
tribute minimally to the final output. Motivated
by this observation, we introduce a novel decod-
ing method called Sparse-to-Dense (STD), which
leverages the sparse structure of Video-LLMs as its
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draft model. This design eliminates the need for an
extra trained draft model, making STD a plug-and-
play solution. We refer to the original Video-LLM
as the dense model because it decodes using the
full KV cache, whereas the model with top-K at-
tention is termed the sparse model. Both models
share identical architectures, differing only in how
they compute attention. Therefore, we do not need
additional GPU memory to store the sparse model,
nor does it require any extra training. The top-K at-
tention in the sparse model boosts decoding speed
while sacrificing some token quality, whereas the
dense model is slower but guarantees accuracy. We
use the sparse model to auto-regressively draft the
next ~y tokens, while the dense model verifies them
in parallel. This approach avoids redundant full
KV cache memory and ensures the outputs exactly
match those of the original Video-LLM.

We conduct experiments on representative
Video-LLMs including LLaVA-OneVision (Li
et al.,, 2024a) and Qwen2-VL (Wang et al.,
2024), evaluating them on video understanding
benchmarks like MLVU (Zhou et al., 2024) and
VideoMME (Fu et al., 2024). Experiment results
show that our STD, serving as a tuning-free, plug-
and-play solution, achieves up to a 1.94 x accelera-
tion of video input processing without any perfor-
mance degradation. It is immediately deployable,
requiring only 20 lines of code to transform an orig-
inal Video-LLM into a sparse Video-LLM, and it
does not require any extra training to deploy the
draft model.

2 Observation

In this section, we investigate the disparity in de-
coded tokens between two configurations of Video-
LLMs: 1) sparse top-K KV cache: utilizing only
the top- K KV caches based on the highest attention
weights; and 2) dense full KV cache: employing
the complete set of KV caches. We conduct ex-
periments using the Qwen2-VL-7B (Wang et al.,
2024) model on randomly selected samples from
MLVU (Zhou et al., 2024), and Video-MME (Fu
et al., 2024) datasets. We evaluate the next-token
prediction accuracy of the model when employing
sparse attention with top-K KV caches. Our find-
ings indicate that the model with sparse attention
maintains an average token prediction accuracy ex-
ceeding 95%. This high accuracy suggests that for
the majority of decoded tokens, only the top-K
KV caches are necessary. However, it is impor-

tant to note that the 95% accuracy is measured per
individual token and does not accumulate across
multiple tokens. For instance, the accuracy of cor-
rectly predicting five consecutive tokens drops to
approximately (95%)° ~ 77%.

3 Method

In this section, we present Sparse-to-Dense (STD),
a method designed to achieve lossless acceleration
for Video-LLMs. We refer to the original model
M as the dense model, as it requires the full KV
cache during decoding, while the sparse model M,
uses sparse attention. Although M is faster, it is
somewhat less accurate. Unlike traditional specula-
tive decoding, which relies on an additional draft
model, our approach leverages M with the same
parameters as M. The only difference is that M
loads a reduced KV cache to perform sparse atten-
tion, eliminating the need for extra GPU memory to
store another model’s parameters. In the following
subsections, we will detail the decoding procedure
and the design of the sparse model.

3.1 Decoding Procedures

In our STD, the sparse model M, functions as
a draft model to propose potential next v tokens,
while the dense model M verifies them to de-
rive the final output sequence. Given an input
sequence {xg,- - ,Tm—1}, consisting of visual
and textual tokens , the sparse model M, auto-
regressively generates  subsequent token candi-
dates {<p, - - , Tm4—1}. Because the tokens pro-
posed by the sparse model M might not align
with those predicted by the dense model M, it re-
quires the verification of M. The dense model
M verifies all v proposed tokens in parallel, re-
quiring only a single I/O operation for the full KV
cache. Thus, this verification procedure acceler-
ates the process compared with the auto-regressive
decoding of M itself, where each token requires
a separate I/O operation. During the verification,
M identifies the first n tokens that align with its
predictions, where 0 < n < +, and additionally
provides a bonus token &4, for free. The ver-
ified sequence {Zy,, - , Tmtn—1, Tnt+m} 1S then
appended to the input sequence {zg, - ,ZTpm—_1}
to form the context for the next round of proposal
and verification.

3.2 Model with Sparse Attention

Next, we introduce the design of our sparse model
M. Empirical observations in Section 2 indicate
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that during most decoding steps, attention scores
are predominantly concentrated on a small subset
of KV caches, a pattern we term sparse attention
(also known as top-K attention (Lou et al., 2024)).
Only a small fraction of tokens require more evenly
distributed dense attention. This insight motivates
a strategy to selectively apply sparse attention for
the majority of tokens and resort to dense attention
only when necessary, reducing the I/O overhead of
accessing the full KV cache, and thereby improving
decoding speed.

Since the number of visual tokens is typically
much larger than the number of textual tokens
(m, > my), with m, often exceeding 10,000
while m; are usually around 100, our primary fo-
cus is on reducing the size of the visual KV cache.
To achieve this, we leverage the attention patterns
of the textual tokens X; to identify and select the
most relevant KV caches from the visual tokens.
Specifically, we analyze the allocation of atten-
tion scores when processing the textual tokens
Xi = {xmy, -+ ,Tm—1} (i-e., the last m; tokens
in the input sequence) to identify which KV pairs
of the visual tokens X,, contribute more during the
prefilling stage. For each layer [, we calculate the
average attention scores directed toward the visual
tokens X, for textual tokens X;. We then retain
only the top-K KV pairs of visual tokens with the
highest attention scores. To balance performance
and efficiency, we determine the retained K KV
caches only during the prefilling stage and avoid
the computation-demand dynamic selections in the
decoding stage. The selected visual tokens can
vary across different layers and attention heads, re-
flecting the distinct focus of each layer and head
in processing the input. The selection of the KV
cache of layer [ can be formalized as

1
Cache,[l] = argTopK, ¢ x < g Al(ﬁ:,a:)>,
“\my
TEX:

where argTopK(-) is an operation that selects the
top-K elements indices with the highest values
from a given set, k is a predefined hyper-parameter,
and A;(Z,x) represents the attention score from
token 2 to token x in layer /. For models utilizing
Grouped Query Attention (GQA) (Ainslie et al.,
2023), where the number of query heads equals
the number of groups multiplied by the number
of KV heads, we directly sum the attention scores
within each group to select the top-K KV caches
for this head. The KV cache selection operates at
the granularity of individual KV heads, allowing

each layer or head to retain a distinct subset of
caches based on its specific requirements.

3.3 1/0 complexity analysis.

In the decoding phase, the I/O complexity of our
Sparse-to-Dense decoding method can be analyzed
as follows. For the sparse model Mg, which
speculatively proposes 7 subsequent tokens, the
I/O cost involves accessing the selected K vi-
sual KV caches and all m; textual KV caches.
Thus, the total I/O for the sparse model is given
by: /Ogparse = 7 % (K + my). For the dense
model M, which verifies the proposed tokens in
parallel, the I/O cost includes accessing the full
KV caches of all visual and textual tokens, result-
ing in: I/Ogepse = my + my. The total I/O for
Sparse-to-Dense decoding is therefore: I/Oora; =
v x (K +my) 4+ (my + my), and the average I/0O

per token is
Oy X (K +my) + my +my

I/Oaverage = = )
o Xy a Xy

where « ratio of the number of accepted tokens
among all proposed tokens. In contrast, the aver-
age I/0 complexity of vanilla decoding, where each
token is generated using full attention, is given by:
Uogsgigge = my, +m;. When a is sufficiently large,
ie.,a> (K+my)/(my,+my)+~1, the average
/O per token in our method becomes considerably
lower, resulting in improved decoding efficiency.
Intuitively, we hope that the ratio between the num-
bers of the accepted tokens and all proposed tokens
is larger than the ratio between the numbers of re-
trained KV pairs and the full KV cache. This can
be achieved due to the concentration behavior of
attention scores in Section 2. The empirical superi-
ority of our method in the next section verifies this
inequality in the realistic setting.

4 Experiment

Baselines. To evaluate the effectiveness of our
proposed Sparse-to-Dense decoding, we compare
it against the following baselines: 1) Layerskip (EI-
houshi et al., 2024): This method utilizes a model
with an layer-level early exit mechanism to pro-
pose draft tokens. This baseline is inspired by the
work of Elhoushi et al. on text-only LLMs, and
originally requires additional training. For a fair
comparison with our method, we adapt it to Video-
LLMs in a tuning-free manner. 2) Streaming (Chen
et al., 2024a): This method employs a model with
streaming attention (Xiao et al., 2023) to propose

736



Methods MLVU VideoMME-s VideoMME-m VideoMME-1
Acc. (%) Speedup Acc. (%) Speedup Acc. (%) Speedup Acc.(%) Speedup

LLaVA-OneVision-7B

LayerSkip 10.0 0.47x 5.6 0.33x 8.1 0.46x 4.8 0.44 %

Streaming 34.7 1.34x 36.4 1.38x 41.0 1.51x 36.2 1.45x%

STD (ours) 47.8 1.72 % 51.8 1.82% 52.1 1.83 % 52.9 1.59 %

Owen2-VL-7B-Instruct

LayerSkip 52 0.63x 3.7 0.59x 4.9 0.55x% 5.7 0.55x%

Streaming 53.9 1.61x 52.9 1.32x 59.2 1.36x 59.6 1.36x

STD (ours) 66.1 1.94 < 71.8 1.71 % 73.4 1.62x 81.8 1.70 %

Table 1: Comparisons of the acceptance rate (Acc.) and wall time speedup of STD and previous draft models.
Bold denotes the best method. Since all the methods are lossless, we do not report the evaluation of the generated

contents.

draft tokens. Similar to LayerSkip, this baseline is
derived from the work of Chen et al. on text-only
LLMs. To ensure comparability with our approach,
we extend its implementation to Video-LLMs.

Datasets and evaluation metrics. We eval-
uate Sparse-to-Dense on two widely adopted
benchmarks: MLVU (Zhou et al., 2024) and
VideoMME (Fu et al., 2024). MLVU is specif-
ically designed for long-duration videos, while
VideoMME encompasses short, medium, and long-
duration videos, providing a comprehensive assess-
ment across various video lengths. For our eval-
uation, we adhere to the protocols established in
previous works on speculative decoding. We report
two primary metrics: acceptance rate of the draft
tokens and wall time speedup.

Implementation Details. Our experiments are
conducted using widely adopted state-of-the-
art Video-LLMs, specifically LLaVA-OneVision
(7B) (Li et al., 2024a) and Qwen2-VL (7B) (Wang
et al., 2024). We prompt the Video-LLMs to gen-
erate chain-of-thought (Wei et al., 2022) responses
to enhance their performance. We set the sum of
the textual token count m; and the selected visual
KV cache count K to 1024, with a batch size of
8. The number of tokens verified by the dense
model M, is fixed at v = 9. The ablation of hy-
perparameters can be found in Appendix Section C.
Our framework is implemented based on Hugging
Face’s Transformers library. All experiments are
conducted on NVIDIA A100 GPUs with 80 GB of
memory, and are repeated three times with different
random seeds, and the average results are reported.

Main Results Table 1 summarizes the perfor-
mance across various reasoning tasks. We have the
following findings: 1) The draft model based on
LayerSkip performs worse than that utilizing sparse
attention (e.g., Streaming and STD). The primary

reason for this discrepancy is that LayerSkip causes
a substantial distributional shift between the draft
model and the target model, leading to a low ac-
ceptance rate. Although the draft model with layer
skipping runs considerably faster than the sparse
attention counterparts, this advantage is insufficient
to compensate for the overall wall-time speedup
loss introduced by layer skipping. 2) Draft models
based on sparse attention generally provide more
wall time speedup. Whether in STD or Stream-
ing, we observe a consistently high acceptance rate.
This indicates that, for most of the time, the target
model does not require the full KV cache but only
a sparsely selected subset cache. However, it is
important to note that since LLMs perform autore-
gressive decoding, an incorrect token can propagate
errors to subsequent tokens. Thus verification with
the full KV cache is essential. 3) Our model outper-
forms the streaming-based draft model, achieving
62.2% in acceptance length and 1.74 x in wall-time
speedup on average. This advantage stems from
our method’s ability to leverage the unique char-
acteristics of Video-LLMs to select important KV
cache. As observed in section 2, text-guided video
cache selection effectively identifies and retains the
most critical cache elements.

5 Conclusion

We introduce STD, a training-free, plug-and-play
decoding method that employs sparse top-K at-
tention as the draft model in speculative decoding
while leveraging full attention for verification in
parallel, ensuring lossless acceleration. Extensive
experiments demonstrate that STD significantly
outperforms strong baselines that use LayerSkip
and Streaming as the draft models. Overall, STD
achieves up to a 1.94x walltime speedup while
maintaining identical output quality. In the fu-
ture, we hope to extend our work to accelerate long
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CoT Video-LLMs such as QvQ (QwenLM Team,
2024).

Limitation

A notable limitation of our current approach is that
all KV caches are still stored in GPU memory (i.e.,
HBM). While HBM provides the high bandwidth
necessary for fast computations, its capacity is in-
herently limited, which poses a significant bottle-
neck during inference—especially as model sizes
and sequence lengths increase. The limited HBM
capacity may lead to restricted batch size.

In the future, a promising solution to this chal-
lenge is to offload portions of the KV caches to
CPU memory. Although CPU memory typically
has lower bandwidth compared to HBM, it offers
substantially larger capacity. By developing effi-
cient data transfer and caching strategies, it may be
possible to mitigate the HBM bottleneck without
sacrificing inference accuracy, thereby enabling
more scalable and efficient processing for large
Video-LLMs.
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A Preliminary

Speculative Decoding We first formalize our no-
tation and provide a brief overview of the spec-
ulative decoding in autoregressive LLMs, which
is the key background knowledge for our method.
We represent the input sequence for a Video-LLM
as a combination of visual tokens and textual to-
kens. Specifically, the visual tokens are denoted as
Xy = {xo,- ", Tm,—1}, and the textual prompt is
denoted as X; = {z,,, -, Tm—1}. Here, m, is
the number of visual tokens, m; is the number of
textual tokens, and the total input sequence length
is m = m, + my;. The key and value cache for
token x; are represented by K, and V,,,, respec-
tively.

Inference of Auto-regressive Models. The infer-
ence stage of auto-regressive models, e.g., Video-
LLMs, can be divided into two stages: 1) prefill-
ing: The video LLM processes the input sequence,
which includes both visual tokens X, and textual
tokens X4, in an autoregressive and parallel manner.
For each token x; in the combined input { X, X;},
the model computes and stores the corresponding
KV cache entries. This stage effectively encodes
the input sequence and prepares the model for gen-
erating a response. The output of this stage is the
first token x,, of the model’s response. 2) decod-
ing: After prefilling, the model enters the decoding
phase, generating output tokens sequentially. At
each decoding step j = m + 1,m + 2,---, the
video LLM generates a new token x; based on the
KV cache from all prior tokens. After generating,
the KV cache is updated with each newly gener-
ated token. This process continues iteratively until
a stopping criterion is met, such as reaching an
end-of-sequence token or hitting a maximum token
limit.

B Related Works

Sparse Attention in MLLMs Normally, an im-
age or a video frame is represented as a large num-
ber of tokens in MLLMs, e.g., 196 visual tokens
per image in VILA (Lin et al., 2024a), which sig-
nificantly impacts the computational and storage
during model training and inference. Visual token
compression aims to reduce the number of visual
tokens to address it directly. The majority of vi-
sual token compression methods either train from
scratch or perform additional training based on ex-
isting models. For example, some image-based
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MLLMs rely on vision-language alignment (Cao
et al., 2024; Yao et al., 2024; Song et al., 2024)
or aggressively removing all visual tokens after
a certain layer (Wen et al., 2024), while meth-
ods designed for video-based MLLMs consider
the unique characteristics of video, such as em-
ploying memory mechanisms (Lan et al., 2024)
or compressing tokens along spatial and tempo-
ral dimensions sequentially (Shen et al., 2024). A
smaller portion of works study the test-time (train-
ing free) visual token compression for accelerating
the inference procedure. FastV (Chen et al., 2024b)
performs pruning by analyzing the attention pattern
from shallow layers and deep layers, while another
approach directly applies full visual token removal
during the inference stage (Lin et al., 2024b). In
our method, STD, the design of the drafter model
is related to training-free visual token compression
techniques. However, these previous methods in-
evitably impact the original model’s performance.
In contrast, we propose to utilize visual token com-
pression as a drafter model to achieve lossless in-
ference acceleration.

Speculative Decoding Speculative decoding is
proposed by (Leviathan et al., 2023) and (Chen
et al., 2023) to accelerate the inference of LLMs,
where the throughput of LLMs is improved 2 ~ 3
times without sacrificing the performance. The
algorithm consists of two stages: drafting and veri-
fication. The drafting stage adopts a small model
(drafter) to generate a long sequence of possible
future tokens swiftly, while the verification stage
accepts a part of the tokens predicted in the drafting
stage in a token-by-tone manner. The follow-up
improves the speculative decoding from these two
perspectives. Specinfer (Miao et al., 2024), Ea-
gle (Li et al., 2024b) and Medusa (Cai et al., 2024)
propose to train a drafter to generate tokens with
a tree structure, and the verification is conducted
on the tree in a branch-by-branch manner. Hu and
Huang (Hu and Huang) also organize the draft to-
kens as a tree, but they verify the tokens in a branch
as a whole. Glide (Du et al., 2024a) generates draft
tokens as an unbalanced tree, which alleviates the
burden of the drafter while achieving significant ac-
celeration. SpecTr (Sun et al., 2024b) views specu-
lative decoding from the optimal transport view and
proposes to verify a batch of draft tokens jointly.
They show that the proposed algorithm is optimal
up to a multiplicative factor. Sun et al. (Sun et al.,
2024a) boot the acceleration by a joint verification
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Figure 1: Effect of K and v on MLVU using LLaVA-
OneVision-7B.

of a single draft trajectory. Instead of using a token-
by-token manner, they accept the draft sentences
as a whole. Lie et al. (Liu et al., 2023) proposes
to update the parameters of drafters in an online
manner, which is shown to be effective in various
applications. MagicDec (Chen et al., 2024a) ana-
lyzes the speculative decoding in the long-context
setting with an emphasis on the FLOPS and mem-
ory. SpecExec (Svirschevski et al., 2024) focuses
on a special setting where the LLMs are offloading
their parameters. Several works (Gagrani et al.,
2024; Jang et al., 2024; Teng et al., 2024) study the
speculative decoding of MLLMs. However, they
focus either on the image understanding problem
or the image generation problem. In contrast, our
work is the first to study video generation accelera-
tion via speculative decoding.

C Ablation Stuidies

We also conducted additional experiments to ana-
lyze the impact of hyperparameters (y and K) on
model performance. As shown in Figure 1a, we can
see that as gamma increases, the speed up grad-
ually improves. This improvement is because the
sparse model makes accurate predictions, which
allows the computational overhead to be spread
out over more tokens. However, when gamma
reaches 13, the speed up starts to decline because
the model’s accuracy in correctly predicting 13 con-
secutive tokens is insufficient. At the same time, as
shown in Figure 1b, when K is small, the accep-
tance rate is low, resulting in a lower speed up. In
contrast, when K is large, the sparse model is not
as fast, which also leads to a reduced speed-up.
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