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Abstract

Unvoiced electromyography (EMG) is an ef-
fective communication tool for individuals un-
able to produce vocal speech. However, most
prior methods rely on paired voiced and un-
voiced EMG signals, along with speech data,
for unvoiced EMG-to-text conversion, which
is not practical for these individuals. Given
the rise of large language models (LLMs) in
speech recognition, we explore their potential
to understand unvoiced speech. To this end,
we address the challenge of learning from un-
voiced EMG alone and propose a novel EMG
adaptor module that maps EMG features to an
LLM’s input space, achieving an average word
error rate of 0.49 on a closed-vocabulary un-
voiced EMG-to-text task. Even with a conser-
vative data availability of just six minutes, our
approach improves performance over special-
ized models by nearly 20%. While LLMs have
been shown to be extendable to new language
modalities—such as audio—understanding ar-
ticulatory biosignals, like unvoiced EMG, is
more challenging. This work takes a crucial
first step toward enabling LLMs to comprehend
unvoiced speech using surface EMG.

1 Introduction and Related Works

Speech impairments affect around 4 million peo-
ple in the U.S. alone (NICD, 2024). Silent speech
interfaces (Zhang et al., 2021; Mohapatra et al.,
2024a; Gonzalez-Lopez et al., 2020; Srivastava
et al., 2024) have emerged as transformative solu-
tions, enabling communication for individuals who
cannot rely on spoken language. One such instru-
ment is surface electromyography (EMG) (Schultz
et al., 2017), which captures muscle activations cru-
cial for speech production, even during unvoiced
articulation. Inspired by the immense success of
the speech recognition abilities of text-to-text large
language models (LLMs) (Tang et al., 2023; Yu
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et al., 2024; Dighe et al., 2024), we study an im-
portant question—what is the potential of these
LLMs to understand unvoiced speech? Specifi-
cally, can they convert silent speech to text without
access to audio or voiced versions of the EMG
signals? This question is particularly relevant for
assisting individuals who can no longer produce
audible speech (Meltzner et al., 2017), where no
corresponding voiced EMG or speech data exists.
Additionally, given the highly personal nature of
these signals (Diener et al., 2020a; Wand et al.,
2009), it is crucial to develop methods that learn
effectively from limited unvoiced EMG data.

Prior works (Jou et al., 2006; Meltzner et al.,
2018; Schultz and Wand, 2010) on EMG-to-text
conversion focused primarily on voiced signals.
Other studies (Gaddy and Klein, 2021, 2020; Ben-
ster et al., 2024) on unvoiced EMG-to-text con-
version leveraged auxiliary tasks to align unvoiced
EMG with audio from voiced sessions or applied
strategic transfer learning from voiced EMG-audio
models, both of which rely on vocal data. However,
we consider a scenario where no voiced signals are
available for a speaker and explore a technique to
communicate with LLMs, the modern workhorses
for language understanding (Dubey et al., 2024;
OpenAl, 2023). Recent research successfully ex-
panded LLMs to other language modalities, such
as speech (Tang et al., 2023; Yu et al., 2024) and
silent video (Maaz et al., 2023; Yeo et al., 2024). A
key approach involves adaptor modules—ranging
from simple trainable linear layers (Ma et al., 2024)
to dedicated projector networks (Kang et al., 2024)
and explicit alignment strategies (Li et al., 2023;
Tan et al., 2024)—to map new language modal-
ities to LLMs’ input embedding space. While
Benster et al. (2024) incorporated LLLMs as a post-
processing step after multimodal EMG model pre-
dictions, it largely remains unexplored whether ef-
fective unvoiced EMG-to-text conversion can be
achieved by directly leveraging LLMs.
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Our Contributions. We study a practical setting
of converting unvoiced EMG to text without access
to voiced EMG or audio, by expanding LLMs to
understand this new language modality. We pro-
pose a novel trainable EMG adaptor module to
map EMG features into the LLM’s input space.
Our approach, focused on a closed vocabulary,
demonstrates promising results, achieving an av-
erage word error rate of 0.49. With just six min-
utes of training data, LLMs outperform special-
ized EMG-to-text models by 20%. We analyze the
EMG adaptor’s design, performance across varying
data amounts and features, and broader challenges
in learning from unvoiced EMG. Our work paves
the way for integrating unvoiced EMG with large
language models (LLMs), improving their text con-
version accuracy and enabling non-vocal users to
fully benefit from LLM-based assistants.

2 Approach

Adaptor Network Design. The input unvoiced
EMG signals are represented as X¥ € RT*C,
where C' is the number of EMG channels with T’
discrete time steps. The EMG signals undergo
standard minimal preprocessing, similar to past
works (Gaddy and Klein, 2021, 2020). Since the
original sampling rate is high (>800 Hz), we lever-
age a temporal 1D convolutional layer with a stride
of N (N = 6 in our case) to facilitate downsam-
pling to 7'/6. Similar to Gaddy and Klein (2021),
we use residual blocks with 1D convolutional lay-
ers to extract EMG features, employing a stack
of two residual blocks. Next, we explicitly facil-
itate the learning of sequential dependencies in
the extracted features, finding that a bidirectional
long-short-term memory (BiLSTM) network ef-
fectively captures complex temporal dependencies
(further design choices for this sequential block are
compared in Section 3.2). This is followed by an-
other 1D convolutional layer with stride N = 2 for
further downsampling, resulting in the embedding
E € RI/4)XF which is then projected using fully
connected linear layers to match the input embed-
ding dimension of the LLM, generating the EMG
embeddings E € RT*F, where T > T ~ T/48
and F € {4096',3072?} in our case. We use
GeLU activation function (Baevski et al., 2020).

Data Preparation for Large Language Mod-
els. Our EMG adaptor network is defined as
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Figure 1: Our trainable EMG adaptor with frozen LLMs
to transcribe text from only unvoiced EMG.

G : XE 5 E. We contextualize the embeddings
by prepending them with a text identifier Py =
Unvoiced EMG:, and appending a prompt describ-
ing the task as Po=Prompt: Convert unvoiced
EMG embeddings to text. The LLM tokenizer
converts the text identifier and prompt into text
embeddings using the mapping M : XP — HF,
where XP = [Py, P5]. To prepare the input for
the LLM, the embeddings from the prompts are
concatenated with the EMG embeddings.

Training Framework. For each unvoiced EMG
signal, we have a corresponding text transcription
XS Following the recommendations of Gaddy and
Klein (2021), we simplify our target by removing
punctuation and converting all text to lowercase.
We extract embeddings from the final LLM layer
and compute the predicted logits z;, ,» for each
vocabulary item 3/ at position 5. The cross-entropy
loss over time steps is given by:

T.
. exp(zt, .y /T)
£ — y/ IOg s,Y ,
PIPIEASS STy

where 7 = 0.8 is the temperature parameter and y/;_
is the true class at ;. We follow standard recom-
mendations for fine-tuning LLMs, employing the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a maximum learning rate of 5 x 1075 and
weight decay. During inference, we autoregres-
sively generate (Dubey et al., 2024) the predicted
target sequence with a beam-width (Freitag and
Al-Onaizan, 2017) of 4. More implementation de-
tails are provided in Appendix B. Our codebase is
release

3 Experimental Results and Discussion

Datasets. We primarily used the single-speaker,
8-channel, closed-vocabulary dataset from Gaddy
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and Klein (2021), which comprises 67 words and
approximately 26 minutes of unvoiced EMG data
across 500 utterances. More details are provided in
Appendix A. We accessed only the unvoiced EMG
modality.

Baselines and Experimental Setup. We use the
transducer model proposed by Gaddy and Klein
(2021) as an application-specific baseline. Our
analysis leverages two LLMs: Llama2-7B and
Llama3-3B. We also fine-tune Llama3-3B using
low-rank adaptation (LoRA) (Hu et al., 2022), train-
ing 0.13% of its parameters. We use three-fold
validation and report word error rate (WER) statis-
tics. Following standard practice, data is split 8:1:1
into training, validation, and test sets. All baselines
are trained solely on unvoiced EMG. A minimal
code implementation and sample predictions are in-
cluded in the supplementary materials, with further
details in Appendix B.

3.1 Key Findings

LLMs boost closed-vocabulary unvoiced EMG-
to-text conversion by 30% with minimal data
processing. As shown in Table 1, compared to
the application-specific (App-Specific) model with
transformers (54M trainable parameters), the pro-
posed EMG adaptor (EMG-Ad) with frozen LLMs,
using only 6M trainable parameters, achieves a
0.52 WER with raw EMG signals as input, out-
performing the App-Specific model’s 0.75 average
WER. While the closed-vocabulary setting poses a
challenge due to limited training data, it supports
the hypothesis that LLMs, through large-scale train-
ing, have likely learned universal language repre-
sentations that help understand unvoiced EMG with
limited datasets. Fine-tuning offered only a 17%
improvement over the App-Specific baseline in this
setting, possibly due to overparameterization.

Handcrafted EMG features improve LLM per-
formance for unvoiced EMG-to-text conversion
in closed vocabulary. Leveraging recommenda-
tions from previous works on temporal (Jou et al.,
2006) and spectral (Gaddy and Klein, 2020) fea-
tures, we extract 112 time-varying EMG features
and use them as inputs to the baselines. As shown
in Table 1, these handcrafted features consistently
outperform raw features across both LLMs used
as inputs to the EMG adaptor, showing an aver-
age improvement of 15%. However, for the App-
Specific baseline, raw features perform better, sim-
ilar to Gaddy and Klein (2021)’s findings.

Table 1: Comparison of App-Specific models and EMG
adaptors (EMG-Ad) with frozen and fine-tuned LLMs.
Frozen parts are shown in green, and the best perfor-
mance in each setting is in bold. Lower WER is better.

Model WER
App-Specific(Gaddy and Kiein, 2021) 0.75 £ 0.06
Raw EMG-Ad + Llama2-7B 0.65 £ 0.01
EMG EMG-Ad + Llama3-3B 0.52 + 0.05
EMG-Ad + Fine-tuned Llama3-3B  0.62 £ 0.04
Hand- APP-Specific(Gaddy and Klein, 2021) 0.84 + 0.06
crafted EMG-Ad + Llama2-7B 0.49 + 0.06
EMG-Ad + Liama3-3B 0.49 + 0.04

Features E\{G-Ad + Fine-tuned Llama3-3B  0.55 =+ 0.02

LLMs enable data-efficient learning for closed-
vocabulary silent speech. To further evaluate the
effectiveness of LLMs in facilitating learning from
a limited number of samples, we randomly sub-
sampled the training data from approximately 26
minutes to 6 minutes, as illustrated in Figure 2. Al-
though the WER increases with the reduced train-
ing set, our LLM-based approach still outperforms
the App-Specific baseline by an average of 26%.
Evidenced by prior work (Diener et al., 2020a) and
our pilot study in Section 3.3, surface-EMG signals
exhibit distinct person-specific phenotypes. Thus,
learning from a limited of samples facilitates build-
ing personalized silent-speech interfacing models
for LLM assistants.

o
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o
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Word Error Rate (WER)
o
~

=$—= EMG-Ad + Llama3-3B (raw EMG)

0.5 —$— EMG-Ad + Llama3-3B (handcrafted EMG features)
~$— App-Specific Model
0.4
5 10 15 20 25

Training Data (min)

Figure 2: Performance of EMG adaptor with Llama3-3B
model vs. App-Specific model across training dataset
sizes for unvoiced raw EMG-to-text conversion.

Expanding LLMs to EMG is harder than au-
dio. To demonstrate the potential of additional lan-
guage modalities in expanding text-based LLMs,
we adopt Ma et al. (2024)’s strategy of incor-
porating a speech encoder—both an end-to-end
trained speech encoder using mel-frequency spec-
trogram features and a pretrained encoder (Baevski
et al., 2020)—with a linear-projection head into
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an LLM to convert speech to text (more details in
Appendix B.3). LLMs learn 33% better from audio
even with this simple approach, highlighting the
overall task complexity of unvoiced EMG-to-text,
as shown in Figure 3.

Augmenting training dataset with voiced EMG
benefits specialized models more than LLMs.
In an augmented setting, where we trained us-
ing voiced and unvoiced raw EMG, the additional
modality led to a 20% improvement in the App-
Specific model (expected behavior as Gaddy and
Klein (2021)), while it offered little benefit to the
LLM-based approach in this closed vocabulary set-
ting as shown in Figure 3. This suggests that more
dedicated efforts in instruction tuning or explicit
pairing of voiced and unvoiced EMG (Xu et al.,
2022) may be needed to learn improved represen-
tations from LLMs. However, in this paper, our
focus remains on converting unvoiced EMG to text.
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[ LLM + E2E-trained Audio Encoder
B App-Specific Model

B LM + EMG-Adaptor
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Figure 3: Performance comparison in (1) expanding
LLMs to the audio vs. EMG modality, and in (2) train-
ing our LLM-based approach and the specialized model
using voiced vs. unvoiced EMG data.

3.2 Ablation Analysis

Table 2 summarizes key variants of the EMG adap-
tor network design with raw unvoiced EMG, omit-
ting downsampling via high-stride 1D CNN layers.
Unlike specialized EMG-to-text models (Gaddy
and Klein, 2021) that benefit from transformers,
we find LSTMs perform better in this setting (Mo-
hapatra et al., 2023c). This may be due to the
shorter sequence length (average of four words per
utterance with more details in Appendix A) in the
closed-vocabulary dataset and our ability to lever-
age the language-pretrained transformer layers in
LLMs. Appendix B.2 presents additional ablation
results on the sequential backbone architectures.
Previous works with specialized models (Gaddy
and Klein, 2021; Benster et al., 2024) gener-
ally optimize connectionist temporal classifica-

Table 2: Ablation Study of EMG Adaptor training.

Component Variants WER
Fully Connected 0.70
EMG-Adaptor ResBlock (2) 0.64
w/ Llama3-3B  ResBlock (2) + Transformer 0.79
ResBlock (2) + LSTM 0.53
Objective w/  Cross-Entropy(section 2) 0.65
Llama2-7B CTC (Graves et al., 2006) 0.70

tion (CTC) (Graves et al., 2006) loss with a high
beam width (>100). However, most LLMs are
decoder-only architectures and are trained with
cross-entropy (CE) loss. One challenge in opti-
mizing these embeddings using CTC loss is ensur-
ing that their temporal length exceeds the target
sequence length (Sudo et al., 2025) for stable opti-
mization. To achieve this, we leverage 1D convo-
lution layers to dilate the embeddings. However,
we find that optimizing the embeddings extracted
from these LLMs with CTC loss remains subopti-
mal compared to using CE loss with temperature
and small beam widths of just 4 for inference.

3.3 Further Explorations

Person-identification from unvoiced EMG with
96 % accuracy. Physiological signals often carry
person-specific phenotypes (Zlatintsi et al., 2023;
Mohapatra et al., 2023b). To validate that EMG
signals also encode such individualized traits, we
conduct a pilot analysis on a public multi-subject
dataset (Diener et al., 2020b), containing 1,000
unique utterances from four participants. We col-
lapse the LLM’s embeddings along the temporal
dimension and train a simple classification head
(details in Appendix C), achieving an average accu-
racy of 0.96. This strong performance, consistent
with findings in other EMG settings (Diener et al.,
2020a; Wand et al., 2009), reaffirms that unvoiced
EMG exhibits distinct user-specific patterns—even
when users speak the same text segment. To fur-
ther support this, we also train a fully end-to-end
(non-LLM) model for person identification, which
achieves 0.99 accuracy, confirming that these sig-
nals are highly discriminative. Importantly, our
goal is not to propose a state-of-the-art method
for user identification using LLMs, but rather to
highlight that unvoiced EMG signals inherently
carry identifiable traits. This motivates the need for
personalized modeling, which typically requires
learning from limited data. In this context, our de-
sign choice—to use a lightweight trainable adaptor
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with frozen LLMs—offers a practical and efficient
solution. It enables learning user-specific repre-
sentations with minimal data, a key requirement
in personalized EMG-based systems. Our results
further emphasize the importance of data-efficient
learning, as demonstrated in Figure 2.

Exploration of data augmentation for un-
voiced EMG. We explored two data augmenta-
tion schemes: (1) random temporal shifts per
EMG channel (Gaddy and Klein, 2021, 2020) and
(2) Hilbert-transform-based phase augmentation
from limb-based EMG gesture recognition (Mo-
hapatra et al., 2024c; Wang et al., 2025), but nei-
ther significantly improved performance. Develop-
ing tailored augmentation methods for unvoiced
EMG—balancing diversity and phonetic coher-
ence—could enhance learning from limited data.

Conclusion

Our approach demonstrates the potential of using
LLMs to convert unvoiced EMG signals to text,
achieving a 0.49 WER without any voiced data.
In data-poor settings, it outperforms specialized
models by 26%. Our experiments also highlight
the value of hand-crafted features as input to LLMs
for this task. This work® helps enable users who
cannot produce vocal speech to interact with LLMs
through unvoiced commands, especially as LLM-
based assistants become ubiquitous.
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Limitations

Exploration with open vocabulary. In most
LLMs, the heavy lifting of supporting large vo-
cabulary sizes (32,000 in Llama2 and 128,000 in
Llama3) is carried out in the final layer (Wijmans
et al., 2024). This makes learning even a closed
vocabulary (67 words, approximately 4 words per
utterance, with the potential for 50,000 unique utter-
ances) from a new language modality a challenging
task, which is the focus of this paper. Supporting a

3Our processed dataset, codebase and sample predictions are available at
https://github.com/payalmohapatra/SilentSpeechLLM.

larger, in-the-wild open vocabulary using unvoiced
EMBG is even more complex, with its difficulty ex-
acerbated by the overall lack of data and the need
for personalized models. However, our current ex-
plorations lay the groundwork for exploring this
direction next. Prior specialized approaches in this
domain heavily rely on the availability of audio
and voiced EMG, typically using CTC loss for
optimization. This also presents an additional chal-
lenge in training LLLMs in low-resource modalities
with a new objective that does not effectively uti-
lize their learned embeddings from large-scale data,
leading to suboptimal training. These challenges
can be addressed by exploring multimodal LLMs
to leverage implicitly aligned embeddings or by re-
formulating the open vocabulary as a larger closed
set and using target-steering methods to train on
this restructured vocabulary (Han et al., 2024).

Broader Extension to more datasets and lan-
guages. Specialized EMG-to-text models are often
designed for a predetermined EMG configuration
or are deeply tied to phonetic auxiliary tasks, lim-
iting them to the English language and a specific
dataset. Our method has the potential to be ex-
tended to multilingual and multi-configuration in-
strumentation. However, due to the lack of publicly
available closed-vocabulary datasets in such set-
tings, we limit our investigation to English corpora.
A systematic multilingual and diverse instrumen-
tation closed- and open-set recording setup can
accelerate exploration in this challenging direction
of converting unvoiced EMG to text.

Additionally, our current approach is reliant on
the embedding layers of LLMs, so it cannot work
with language model APIs that do not provide di-
rect access to these embeddings.

Ethical Concerns and Potential Risks

In this work, we utilize pretrained LLMs, specifi-
cally Llama, in accordance with their usage license,
solely for academic research purposes. We do
not foresee any immediate ethical concerns arising
from our work. However, as an LLM application
for interpreting biosignals, appropriate measures
must be taken to preserve user privacy. Our tech-
niques help make LL.M-based assistants accessible
to speech-impaired users, thereby encouraging so-
cially beneficial outcomes.
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APPENDIX

A Dataset Statistics

Table 3 provides a summary of the dataset statistics,
while Figures 4 and 5 illustrate the distribution of
the input EMG sequence lengths and target lengths.

Table 3: Comparison of dataset statistics from Gaddy
and Klein (2020) and Diener et al. (2020b). Here, N
represents the number of participants, and "Train" in-
cludes both training and validation samples.

Statistic Gaddy CSL

Dataset Size 500 utterances 1000 utterances

Target Type Closed Vocabulary Fixed Open Vocab-
Template ulary

Number of Individuals (V) 1 4

Train Set (Train + Val) 450 800

Evaluation Set 50 200

k-fold Evaluations 3 3

Sampling Rate 1000 Hz — 800 Hz 2048 Hz

EMG Sequence Lengths

Target Lengths
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Time Steps Length

Figure 4: Histogram of the distribution of the sequence
lengths and the target lengths for Gaddy and Klein
(2020) closed-vocabulary dataset.

3
]
g
5
3
S
1 I
0
4000 6000

Figure 5: Histogram of the distribution of the sequence
lengths and the target lengths for Diener et al. (2020b)’s
Person 1 Block] Initial segment of the data which is the
superset for all the utterances.
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B Implementation Details

We provide more implementation-specific details
of the baselines here and summarize the sizes of all
models in Table 4.

B.1 Application-specific Baseline

To test the application-specific baseline model un-
der fair settings, we ran it with beam widths of 4
(same as our LLM-based model) and 100. As noted
in Table 5, the WER for both the beam widths are
nearly the same, indicating that beam width has a
negligible effect on the prediction in the case of
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Table 4: Trainable parameters of different models. Val-
ues are reported in millions (M) and thousands (k).

Model Trainable Parameters
Application-Specific Model 54M
Application-Specific (Modified) 8.1M
LLaMA-7B + EMG Adaptor, LLaMA-3B + 6.4M
EMG Adaptor

Fine-tuned LLaMA-3B + EMG Adaptor 10.3M
Fine-tuned LLaMA-3B + EMG Adaptor (Al- 5.94M
ternative)

LLaMA-3B + Audio Adaptor 590k

the closed vocabulary. We also train the baseline
model with smaller trainable parameters (8M) by
reducing the feature size, size of feedforward linear
layers, and number of layers in the transformers to
512, 512, and 2 respectively. As shown in Table 5,
the WER with a smaller baseline model is also in
the same range as with 54M parameters. This high-
lights the fact that the difference in performance
between our model and the baseline model in Ta-
ble 1 is due to the choice of LLM for the prediction.

Table 5: WER performance comparison of the original
(54M) and reduced (8M) Gaddy models under different
beam-width settings.

Model Beam-width WER
Original (54M) "~ 4 0.70

n = 100 0.72
Reduced (8M) n=4 0.87

B.2 Additional Ablation: EMG-Adaptor
Backbone Variants

We conducted additional ablation studies to ex-
plore different sequential backbones for the EMG-
Adaptor (EMG-Ad) when used with the LLaMA
3B LLM. The results are summarized in Table 6.

Table 6: Performance of different sequential backbones
for the EMG-Adaptor with LLaMA 3B. Number of
transformer layers are denoted as L.

Sequential Backbone Params WER
BiLSTM 5.94M  0.52
LSTM 5.5M 0.58
Transformer (6L + Sinusoidal) (Vaswani et al., 2017) 6.7M 0.79
Transformer (6L + RoPE) (Touvron et al., 2023) 6.7M 0.75
Transformer (2L + RoPE) 5.3M 0.72

We experimented with Rotary Position Encod-
ing (RoPE) (Touvron et al., 2023), motivated by its
effectiveness in the LLaMA models, with the intu-
ition that it might produce better input tokens for

the LLM. Although RoPE-based transformers im-
proved performance over the vanilla sinusoidal vari-
ant, they still underperformed compared to LSTM-
based models.

This aligns with findings from prior time-series
literature. For example, Zeng et al. (2023) have
argued that the permutation-invariant nature of self-
attention leads to temporal information loss. Simi-
larly, practical studies such as IMUPoser (Mollyn
et al., 2023) empirically corroborate that LSTMs
outperform transformers in fine-grained time-series
tasks like human activity recognition, e.g., stating
in Section 4.1 of (Mollyn et al., 2023): “Although
we did experiment with newer architectures such
as transformers, we found these models did not
perform well in practice.”.

While advanced positional encoding schemes
and specialized architectures (Wu et al., 2021; Nie
et al., 2022) have enhanced transformer perfor-
mance on time series, we restrict our analysis to
vanilla transformers for simplicity and focus on
their ability to generate suitable EMG tokens for
LLMs. Our findings suggest that LSTMs are better
suited for this task. This observation is currently
limited to short sequences drawn from a closed vo-
cabulary. Future work will investigate more special-
ized transformer-based architectures for unvoiced
EMG modeling.

B.3 Expanding LLMs to Audio

In this experiment, we primarily leverage the im-
plementation of Tang et al. (2023) and the idea
proposed by Ma et al. (2024) to employ an embar-
rassingly simple approach for speech recognition
with LLMs, using a linear projector from a frozen
speech encoder. We use the wav2vec 2.0 (Baevski
et al., 2020; Mohapatra et al., 2023a, 2024b, 2022)
BASE architecture as our speech encoder, which
produces a 768-dimensional feature vector. This
vector is then passed through two linear layers to
generate the 3072-dimensional input required for
Llama3-3B. While the speech encoder can be re-
placed with alternatives such as HuBERT (Hsu
et al., 2021) or Whisper (Radford et al., 2023), our
goal is not to optimize speech-to-text conversion.
Instead, we aim to demonstrate that while both
audio and EMG involve expanding an LLM’s capa-
bility to a new language modality, integrating EMG
signals poses significantly greater challenges.
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B.4 Additional Reproducibility Information

All experiments were conducted using NVIDIA
A100 GPUs (3 available, 40GB CUDA memory)
and TITAN RTX GPUs (4 available, 24GB CUDA
memory) with a maximum runtime of 12 hours in
PyTorch. Hyperparameter tuning combined man-
ual and random search, typically requiring fewer
than five runs, with selection based solely on vali-
dation loss and WER.

The batch size for LLM experiments was 8, and
the maximum number of epochs was 500. For
the App-Specific model, we retain the original set-
tings (Gaddy and Klein, 2021), where the authors
re-batchified the input by rolling the temporal di-
mensions to support training on longer sequences.

C Person Identification using Unvoiced
EMG : Implementation Details

For the person identification task, we use LLaMA
3.2-3B. Overall the model architecture remains the
same as shown in Figure 1 except we do not use
any prompt in this case. The logits output from
the LLM, Z € RT*V s reduced to Z € RV
by taking mean along the time axis. The Z is then
fed into several linear layers to predict logits y? €
R*4 as there are 4 distinct persons in the dataset
(Diener et al., 2020b). Due to the linear layers, the
number of trainable parameters is 38M, which is
higher than the numbers mentioned in Table 4 for
LLM-based models. Using y” and actual person
ID, the softmax loss is calculated to fine-tune 32M
parameters.

D Additional Ethical Statements

In preparing this work, we only used Al assis-
tants in the capacity to polish the language in the
manuscript.
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