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Abstract

Acoustic individual identification of wild ani-
mals is an essential task for understanding ani-
mal vocalizations within their social contexts,
and for facilitating conservation and wildlife
monitoring efforts. However, most of the work
in this space relies on human efforts, as the
development of methods for automatic indi-
vidual identification is hindered by the lack of
data. In this paper, we explore cross-species
pre-training to address the task of individual
classification in white-faced capuchin monkeys.
Using acoustic embeddings from birds and hu-
mans, we find that they can be effectively used
to identify the calls from individual monkeys.
Moreover, we find that joint multi-species rep-
resentations can lead to further improvements
over the use of one representation at a time.
Our work demonstrates the potential of cross-
species data transfer and multi-species repre-
sentations, as strategies to address tasks on
species with very limited data.

1 Introduction

For a long time, researchers viewed the vocaliza-
tions of non-human species as mere reactions to
internal emotional states (Lorenz, 1952). Conse-
quently, early scientific methods in animal com-
munication research largely overlooked individ-
ual differences and did not test for the presence
of linguistic features (e.g., pragmatics, seman-
tics, syntax) in animal communication systems.
This simplified view of animal communication has
been overturned by the growing evidence uncov-
ering the presence of linguistic features in non-
human animals (Bergman et al., 2019), leading
to the emergence of Animal Linguistics as a for-
mal interdisciplinary research field (Bowling and
Fitch, 2015; Engesser et al., 2015; Suzuki, 2024;
Berthet et al., 2023; Suzuki, 2021; Scott-Phillips
and Heintz, 2023). This shift in perspective high-
lights the need for individual-level analysis, as it

Figure 1: (A–D) Capuchin Twitter vocalizations show
diverse structural variations. (E–F) t-SNE of Google
Perch-Whisper embeddings. (E) Call type clusters. (F)
Colored by individual, highlighting four diverse exam-
ples of Twitters. (G) Adult female capuchin with infant
in Taboga. (H) Territories of four capuchin groups in
the Taboga Reserve in northwestern Costa Rica.

allows researchers to account for the social and
environmental contexts in which vocalizations oc-
cur, ultimately improving our ability to test their
linguistic capacities more rigorously.

Additionally, long-term, individual-level analy-
ses are critical for understanding and protecting
wildlife. Such analyses support key approaches
like social network quantification, assessing animal
cognition, and performing capture–recapture tech-
niques for tracking population dynamics (Slater,
1981; Carlson et al., 2020). Over the past decade,
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acoustic monitoring has emerged as a widely
adopted, cost-efficient strategy in conservation,
leading to growing interest in acoustic individual
identification. By enabling researchers to recognize
individuals from their vocalizations, this approach
paves the way for more nuanced insights into ecol-
ogy, behavior, evolution, and conservation (Knight
et al., 2024).

In this paper, we address the task of acoustic in-
dividual identification in white-faced capuchins.
We collect a two-year dataset of individualized
focal recordings, a labor-intensive yet optimized
method that mitigates signal-to-noise and cock-
tail party problems in wild bioacoustic settings
(Bermant, 2021; Miron et al., 2024). Using this
dataset, we evaluate human speech- and bird
bioacoustic-based pre-trained networks, compar-
ing single-embedding models to ensembles that
merge embeddings from distinct networks. We hy-
pothesize that human speech embeddings, such as
Whisper or HuBERT, complement bioacoustic em-
beddings like Google Perch or BirdNET–originally
trained on bird sounds–and predict that heteroge-
neous embedding combinations will outperform
single-embedding models.

Transfer learning has significantly advanced
acoustic classification tasks in non-human animals
(Miyaguchi et al., 2024; Kahl et al., 2023; Abza-
liev et al., 2024). Recent studies on gibbons have
explored the use of self-supervised speech mod-
els (e.g., HuBERT, Wav2vec 2.0), pre-trained bird
classifiers (e.g., BirdNET, Perch), and non-transfer-
learning deep models for primate acoustic identifi-
cation, finding that speech models most effectively
capture individual vocal signatures, bird classifiers
perform well in automated detection but are more
susceptible to background noise, and non-transfer-
learning models struggle when trained on small
datasets (Cauzinille et al., 2024; Clink et al., 2024).
Nevertheless, it remains unclear whether using mul-
tiple joint embeddings leads to better performance
by exploiting complementary features from differ-
ent training data domains.

This work makes three main contributions. First,
we propose white-faced capuchin monkeys as
a model organism for advancing computational
research on animal communication. Second,
we show that combining embeddings from hu-
man speech and bird bioacoustics models sig-
nificantly improves acoustic identification perfor-
mance in white-faced capuchins, outperforming
single-embedding baselines. Finally, our findings

show that acoustic diversity and soundscape simi-
larity play a greater role than phylogenetic proxim-
ity. Smaller models trained on diverse bird vocal-
izations recorded in natural environments outper-
form much larger speech-trained models designed
for humans, despite humans being more closely
related to our study species. These results high-
light the value of cross-species model development
in achieving better generalization for the acoustic
identification task.

2 Study system: white-faced capuchin
monkeys in the Taboga Reserve, Costa
Rica

White-faced capuchin monkeys (Cebus capucinus)
are ideal for studying animal communication, with
27 call types (Gros-Louis et al., 2008), complex
social behavior and cognition including tool use
(Goldsborough et al., 2024), complex social net-
works (Crofoot et al., 2011) and cultural transmis-
sion (Perry et al., 2017). Taboga hosts their highest
known density (Tinsley Johnson et al., 2020).

Data collection. Our field team collected audio
recordings of focal individuals by following them
in the Taboga forest. We used directional micro-
phones aimed at the subjects from January 2021 to
December 2022 through the wet and dry seasons,
with hours ranging from 5 am to 5 pm. Record-
ings were captured at 48 kHz and 16 bit resolution.
These raw recordings were subsequently trimmed
to isolate the precise moments when vocalizations
were detected, and only the calls classified as either
a “Peep” or “Twitter” were included in this dataset,
according to established criteria in the literature
(Gros-Louis et al., 2008).

Audio recordings. The full dataset consists of
1,257 Twitter recordings and 2,089 Peep recordings
from 45 individuals, although 15% of the record-
ings were assigned to unknown individuals. We
include data from individuals that had at least 30
recorded calls, while recordings from unidentified
subjects encountered in the field are grouped into
an “Unknown” class. For Peeps, this dataset in-
cludes 16 individuals, and for Twitters this dataset
included 10 individuals (total sample=1609). Peep
calls are typically short (mean 0.27 s, SD 0.27 s),
whereas Twitter calls are more complex (Figure 1)
and longer (mean 0.40 s, SD 0.18 s).
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3 Cross-Species Embeddings for
Individual Classification

Collecting focal audio recordings of wild ani-
mals in their natural habitat is a challenging and
resource-intensive task. Even with dedicated field
teams, building large enough datasets to fully ex-
ploit deep neural networks is difficult. As a re-
sult, transfer learning–which leverages the induc-
tive bias of models pre-trained on larger, related
datasets–has emerged as the most effective strategy
for achieving high performance in bioacoustic clas-
sification under low-data conditions (Ghani et al.,
2023a).

Audio Representation Models. We extract pre-
trained embeddings from Google Perch V8 (Ghani
et al., 2023a), a model primarily trained on bird
vocalizations, and Whisper (Radford et al., 2022),
which was predominantly pre-trained on human
speech. While additional embeddings were eval-
uated, we focus on these two in the main text for
clarity, with results from five other models detailed
in Appendix A. We apply mean-pooling to ob-
tain lower-dimensional representations from large
speech models like Whisper.

Minimum Redundancy Maximum Relevance.
To combine representations from multiple species,
we explore a feature-select model using Minimum
Redundancy and Maximum Relevance (MRMR)
(Ding and Peng, 2005), alongside simple concatena-
tion and summation. Originally developed in can-
cer research for gene selection, MRMR improves
feature selection in high-dimensional datasets by
balancing two key criteria: maximizing relevance
to the target variable (measured via mutual informa-
tion) while minimizing redundancy (filtered using
a correlation coefficient threshold). Our implemen-
tation starts with the feature that has the highest
mutual information among both embeddings, re-
moves any features with a correlation coefficient of
0.8 or higher, and then iteratively selects the next
most informative feature. This process continues
until 1024 embedding features are selected from
both embeddings, ensuring an optimal balance of
diversity and informativeness.

Experimental Setup. To ensure a fair compar-
ison, we carefully control parameter counts and
apply hyperparameter tuning. Single-embedding
models and the MRMR model compress each
input into 512 units, then reduced it to 64 for

final classification. Concatenation and summa-
tion ensembles apply a 256-dimensional compres-
sion to each embedding separately, then sum or
concatenate the outputs before another 64-unit
layer. For a robust comparison, we generate
50 random train-test splits (10 recordings per in-
dividual in the test set) and train models with
all seven single embeddings as well as all pair-
wise combinations (concatenation, summation, and
MRMR). To identify the best hyperparameters for
each model trained, we conduct a search over
learning rates {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}
and dropout rates {0.2, 0.3, 0.4, 0.5, 0.6}, evaluat-
ing 30 randomly sampled configurations for 100
epochs each with early stopping (patience=10, min
∆F1=0.001), and selected the highest F1-scoring
setup. All models are trained using the Adam
optimizer. After confirming normality and ho-
moscedasticity, we compare each architecture’s
top-performing model via ANOVA and a post-hoc
Tukey test.

Whisper Layer Probing. To pinpoint which
Whisper transformer layer encodes the rich-
est individual-specific information, we trained
Perch–Whisper MRMR models in which the Whis-
per input is systematically replaced with the hidden
representation from each of the 33 encoder layers.
For each layer, we retrain the model across the
50 random train-test splits using the same training
schedule described above.

Spectrogram annotations and measurements.
To compare explainable acoustic features with non-
interpretable deep embeddings, we manually mea-
sure Peak Frequency and other acoustic parameters
from spectrograms, following standard bioacoustic
methods. Using Raven Pro 1.6 (K. Lisa Yang Cen-
ter for Conservation Bioacoustics at the Cornell
Lab of Ornithology, 2024), we select regions of
interest and extract 30 interpretable features (see
Appendix A), including Peak Frequency, Center
Frequency, and Center Time. These measurements
were taken from six individuals—one adult male,
one adult female, and one infant from each of the
two monkey troops—chosen for their distinct char-
acteristics.

4 Results

Table 1 shows the results of the acoustic identifica-
tion task for selected models. We present F1 scores
for the models trained on bird vocalizations and
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Figure 2: Peak frequency distributions for six capuchin
monkey individuals, shown for Twitters (top) and Peeps
(bottom) call types.

human speech data, together with their ensembles.
While single-species vocalization models perform
reasonably well, the models with the highest F1
scores are those that combine multiple embeddings
(either using summation, concatenation or MRMR).
Furthermore, the best-performing ensemble com-
bine models developed for bioacoustic vocaliza-
tions and models developed for human speech.
This highlights the potential of cross-species pre-
training in a limited data regime. Pre-training on
human speech does not capture enough information
for the bioacoustic domain, as shown by the per-
formance of Whisper for both vocalization types.
But combined, those two models achieve an F1
score of 0.70 for Peeps and 0.66 for Twitters. This
improved performance suggests that combining
speech-trained and bioacoustic-trained embeddings
effectively leverages complementary information.
We also present the results for other models in Ap-
pendix A.

Despite its smaller size and more limited training
dataset, the bioacoustic model Perch outperforms
the much larger Whisper model, which was devel-
oped for human speech. Domain relevance is more
important than model size, training data set size,
or phylogenetic proximity for the acoustic identi-
fication task in Capuchins. Trained on data from
noisy field conditions, Perch learns the acoustic
variability of field conditions, contributing to its
strong performance. Although our focal species
is neither a bird nor a human, the top-performing
models across architectures are trained using both
bird- and human-derived embeddings, suggesting
that joint multi-species embeddings provide better
generalization for Capuchin acoustic classification
tasks.

To better understand Whisper’s contribution to
these multi-species embeddings, we conducted a
layer-wise probing analysis across 50 training runs.
We found that intermediate layers yielded slightly
better classification performance for both Peeps
and Twitters (Figure 3), though differences across
layers were relatively modest.

Figure 3: Whisper layer-wise probing (mean F1 across
50 random train-test splits) for Twitters (top) and Peeps
(bottom). Intermediate layers yield the highest perfor-
mance for individual classification (maximum value
highlighted).

We visualize the embeddings of the best-
performing model from table 1 using t-SNE
(van der Maaten, 2009) in Figure 1. Different
call types formed well-defined clusters (Figure 1E),
whereas individual classifications appear more dif-
fuse (Figure 1F), illustrating the difficulty of the
acoustic identification task (see Appendix A for
more t-SNE visualizations). We also analyze the
distribution of peak frequencies across individuals
in Figure 2. Lower-pitched sounds characterize
Peeps, while Twitters span a broader spectral range
of peak frequencies. Notably, both call types ex-
hibit bimodal distributions, with this pattern being
more pronounced in certain individuals. This bi-
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Table 1: Top-performing models for Twitters and Peeps
(Mean F1 Score ± SD), with significance assessed by
comparison to the best simple model (Perch). Signif-
icance levels: * for p < 0.05 and ** for p < 0.0001
(Tukey’s test).

Model F1 Score

Twitters
Chance (uniform 1/11) 0.09 ± 0.00
Perch (Simple) 0.61 ± 0.03
Whisper (Simple) 0.55 ± 0.03
Perch + Whisper (Concat) 0.63 ± 0.03
Perch + Whisper (Sum) 0.63 ± 0.03*
Perch + Whisper (MRMR) 0.66 ± 0.03**

Peeps
Chance (uniform 1/17) 0.06 ± 0.00
Perch (Simple) 0.66 ± 0.02
Whisper (Simple) 0.62 ± 0.03
Perch + Whisper (Concat) 0.67 ± 0.02*
Perch + Whisper (Sum) 0.68 ± 0.02**
Perch + Whisper (MRMR) 0.70 ± 0.02**

modal distribution could reflect two or more call
subtypes with distinct pitches and should be in-
vestigated further to test for the existence of prag-
matics or semantics in their communication sys-
tem through pitch modulation. Variability within
the Twitter call type extends beyond overall pitch
modulation. Some Twitters exhibit an n-shaped
pitch contour, a continuous descending note, a final
lower-pitched note, or a rising pitch throughout the
call (Figure 1-A, B, C, D, respectively). Empirical
studies incorporating rich social and environmental
contexts will be crucial for uncovering the func-
tional significance of this variation in Capuchin
calls.

5 Conclusion

This study examined acoustic individual identifica-
tion in two call types of white-faced capuchins. We
established performance baselines for pre-trained
embeddings and found that combining multiple
embeddings (summation, concatenation, and mini-
mum redundancy maximum relevance) improves
classification performance. Our findings also indi-
cate that domain relevance outweighs model size
in noisy environments. Future work should extend
these multi-species embeddings to other taxa, con-
firming broader applicability in bioacoustics and

animal linguistics.

6 Limitations

While this study focused on acoustic identification,
a deeper investigation into the behavioral and so-
cial functions of these call types remains relevant
for future work. While there are other ways of
improving acoustic identification, such as data aug-
mentation (MacIsaac et al., 2024), we considered
those techniques out of scope for the present study
and focused on investigating the complementarity
of joint multi-species embeddings. Our primary
goal with this dataset is to make it accessible to
the broader scientific community. We anticipate
making it publicly available in a forthcoming study
with further analyses.

7 Ethical Considerations

No animals were harmed during this study. All
research adhered to ethical guidelines for animal
welfare, recognizing the importance of studying an-
imal communication while prioritizing their well-
being, particularly in the context of climate change
and habitat loss affecting this species. Addition-
ally, all individuals involved in data collection and
processing were engaged in formal employment or
academic research under ethical labor practices.
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A Appendix

Figure 4: Mutual information of the top features for both call type datasets, spanning seven acoustic pre-trained
embeddings. We display the five highest-performing features per pre-trained embedding, along with the top five
interpretable features per model.
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Figure 5: Mutual information of the top features in the Peeps call type dataset, spanning seven acoustic pre-trained
embeddings. We display the five highest-performing features per pre-trained embedding, along with the top five
interpretable features. Asterisks show correlation coefficients above 0.8.
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Figure 6: Mutual information of the top features in the Twitters call type dataset, spanning seven acoustic pre-trained
embeddings. We display the five highest-performing features per pre-trained embedding, along with the top five
interpretable features. Asterisks show correlation coefficients above 0.8.
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Figure 7: t-SNE visualizations of five pre-trained embeddings, primarily trained on human speech data (with
AudioMAE also incorporating internet-sourced audio). The first column presents the t-SNE plot of call types
(Peeps in yellow and Twitters in blue), while the second and third columns show the t-SNE projections of Peeps
and Twitters, respectively, with points colored by individual identity. From top to bottom, the rows correspond to
HuBERT, Wav2Vec, Wav2Vec BERT, Whisper, and AudioMAE.
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Model F1 Score (Mean ± Std)

Simple Network

Perch 0.66 ± 0.02
Whisper 0.62 ± 0.03
BirdNET 0.60 ± 0.02
HuBERT 0.55 ± 0.02
Wav2Vec2 0.47 ± 0.02

Concatenation (2 Embeddings)

BirdNET + Perch 0.67 ± 0.02
Perch + Whisper 0.67 ± 0.02
Perch + HuBERT 0.66 ± 0.02
Perch + AudioMAE 0.64 ± 0.02
Perch + Wav2Vec2 0.64 ± 0.02

Summation (2 Embeddings)

Perch + Whisper 0.68 ± 0.02
Perch + BirdNET 0.67 ± 0.02
Perch + HuBERT 0.66 ± 0.02
BirdNET + Whisper 0.64 ± 0.02
Perch + Wav2Vec2 0.64 ± 0.02

MRMR (2 Embeddings)

Perch + Whisper 0.70 ± 0.02
Perch + BirdNET 0.69 ± 0.02
Perch + HuBERT 0.68 ± 0.02
Perch + Wav2Vec2 0.67 ± 0.02
Perch + Wav2Vec-bert 0.67 ± 0.02

Table 2: Performance of the top 5 models per method on the acoustic identification task using the Peeps dataset
(Mean F1 Score ± Standard Deviation).
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Model F1 Score (Mean ± Std)

Simple Network

Perch 0.61 ± 0.03
BirdNET 0.60 ± 0.04
HuBERT 0.56 ± 0.04
Whisper 0.55 ± 0.03
Wav2Vec-bert 0.43 ± 0.03

Concatenation (2 Embeddings)

BirdNET + Whisper 0.63 ± 0.03
BirdNET + Perch 0.62 ± 0.03
Perch + Whisper 0.62 ± 0.03
BirdNET + HuBERT 0.62 ± 0.03
Perch + HuBERT 0.61 ± 0.03

Summation (2 Embeddings)

BirdNET + Whisper 0.63 ± 0.04
Perch + Whisper 0.63 ± 0.03
BirdNET + Perch 0.63 ± 0.03
BirdNET + HuBERT 0.62 ± 0.03
Perch + HuBERT 0.62 ± 0.03

MRMR (2 Embeddings)

Perch + Whisper 0.66 ± 0.03
BirdNET + Whisper 0.65 ± 0.03
Perch + HuBERT 0.64 ± 0.03
BirdNET + Perch 0.64 ± 0.03
Perch + Wav2Vec2 0.64 ± 0.03

Table 3: Performance of the top 5 models per method on the acoustic identification task using the Twitters dataset
(Mean F1 Score ± Standard Deviation).
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Measurement Units Definition

Center Freq Hz The frequency that divides the selection into two intervals of
equal energy (i.e., the 50th percentile frequency) measured on
each spectrogram slice.

Freq 25% Hz The 25th percentile frequency (first quartile) measured on each
spectrogram slice.

Freq 75% Hz The 75th percentile frequency (third quartile) measured on each
spectrogram slice.

Freq 5% Hz The 5th percentile frequency measured on each spectrogram
slice, indicating the lower bound of the energy distribution.

Freq 95% Hz The 95th percentile frequency measured on each spectrogram
slice, indicating the upper bound of the energy distribution.

BW 50% Hz The inter-quartile range bandwidth, computed as the difference
between the 75th and 25th percentile frequencies (i.e., the band-
width containing 50% of the energy).

BW 90% Hz The bandwidth encompassing 90% of the signal’s energy, cal-
culated as the difference between the 95th and 5th percentile
frequencies.

Peak Freq Hz The frequency at which the maximum power (or peak power)
occurs within the selection, as observed in each spectrogram
slice.

Center Time s The time that divides the selection into two intervals of equal
energy (i.e., the median or 50th percentile time) for the signal’s
energy distribution.

Time 25% s The time by which 25% of the total energy has been accumulated
within the selection.

Time 75% s The time by which 75% of the total energy has been accumulated
within the selection.

Dur 50% s The duration over which the central 50% of the signal’s energy
is distributed, computed as the difference between the 75th and
25th percentile times.

Time 5% s The time by which 5% of the total energy has been accumulated
within the selection.

Time 95% s The time by which 95% of the total energy has been accumulated
within the selection.

Dur 90% s The duration over which 90% of the signal’s energy is distributed,
computed as the difference between the 95th and 5th percentile
times.

Delta Freq Hz The difference between the upper and lower frequency limits of
the selection.

Delta Time s The difference between the beginning and ending times of the
selection.

Time 5% Rel. – The relative time (as a proportion of total duration) at which 5%
of the signal’s energy is accumulated.

Time 25% Rel. – The relative time at which 25% of the signal’s energy is accumu-
lated.

Center Time Rel. – The relative time corresponding to the median (50%) of the
signal’s energy distribution.

Time 75% Rel. – The relative time at which 75% of the signal’s energy is accumu-
lated.

Time 95% Rel. – The relative time at which 95% of the signal’s energy is accumu-
lated.

Peak Time Relative – The time at which the peak amplitude occurs, expressed as a
proportion of the total selection duration.

PFC Avg Slope Hz/ms The average slope of the peak frequency contour over time,
computed as the mean of the differences between successive
peak frequencies.

PFC Max Freq Hz The maximum frequency reached in the peak frequency contour.
PFC Max Slope Hz/ms The maximum rate of change (slope) observed in the peak fre-

quency contour.
PFC Min Freq Hz The minimum frequency reached in the peak frequency contour.
PFC Min Slope Hz/ms The minimum rate of change (slope) observed in the peak fre-

quency contour.
PFC Num Inf Pts – The number of inflection points in the peak frequency contour,

indicating how frequently the slope changes sign.

Table 4: Summary of acoustic measurements derived from Raven Pro 1.6. Definitions are adapted from the Raven
Pro manual.
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Figure 8: tSNE visualizations of five pre-trained embeddings, primarily trained on bioacoustics bird data (with
BirdNET also incorporating other animals). The first column represents the t-SNE plot of call types (Peeps in
yellow and Twitters in blue), while the second and third columns depict the t-SNE projections of Peeps and Twitters
colored by individual, respectively. From top to bottom, the rows correspond to BirdNET and Perch, respectively.

Model name Number of parameters Training data (hours) Reference

BirdNET 27M 8300 Kahl et al. (2021)
HuBERT-Large 1B 60960 Hsu et al. (2021)
Perch 7.8M <10k Ghani et al. (2023b)
Wav2vec2 317M 54000 Baevski et al. (2020)
W2v-BERT 2.0 600M 60960 Hsu et al. (2021)
Whisper-Large-v2 1.55B 680000 Radford et al. (2022)
AudioMAE 304M 5500 Huang et al. (2023)

Table 5: List of considered models for acoustic embeddings, including their size, training data, and references.

659


